

All-IUFRO Conference 21-23 September 2022; online and Vienna, Austria

IUFRO Forest and Water Task Force

Thinning and Hydrology

A global synthesis on the effects of thinning on hydrological processes: implications for forest management

- Antonio del Campo
- Kyoichi Otsuki
- Yusuf Serengil
- Juan A. Blanco
- Rasoul Yousefpour
- Xiaohua Wei

A global synthesis on the effects of thinning on hydrological	processe
Implications for forest management	

Forest Ecology and Management 519 (2022) 12032

Forest Ecology and Management

journal homepage: www.elsevier.com/locate/fored

Antonio D. del Campo $^{a,*},$ Kyoichi Otsuki b, Yusuf Serengil c, Juan A. Blanco d, Rasoul Yousefpour c, Xiaohua Wei f

^a Research Group in Forest Science and Technology (Re-ForeST), Universitat Politecnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain ^b Kasuya Research Forest, Kyushu University, Fukuoka 811-2415, Japan

^c Istanbul University Cerrahpasa, Dep. of Watershed Management, 34473 Bahcekoy, Istanbul, Turkey

- ^d Institute for Multidisciplinary Applied Biology (IMAB), Dep. of Sciences, Public University of Navarre (UPNA), 31006 Pamplona, Spain ^e Institute of Forestry and Conservation, John Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, ON MSS 3B3, Toronto, Canada
- ² Institute of Forestry and Conservation, John Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, ON MSS 3B3, Toronto, Canada ⁴ Dep. of Earth, Environmental and Geographic Sciences, University of British Columbia (Okanagan), 1177 Research Road, Kelowna, British Columbia V1V 1V7, Canada

WHY?

Forest Management and water

- Hibbert's hypotheses (Goeking & Tarboton 2020):
 - 1. Reduction of forest cover increases water yield.
 - 2. Establishment of forest cover on sparsely vegetated land decreases water yield.
 - 3. Response to treatment is highly variable, and, for the most part, unpredictable.

Role of thinning to increase resistance and resilience of forests to global change

In the hydrological processes meta-analyzed

\Λ/ΗΔΤ ?				
VVII/~\I :	Hydrol. Process	Moderator	Intercept	R ²
	Throughf. (40)	Intensity (%BA) Years Thin	38.5 3.48	13.9% 23.6%
In the moderators of the hydrological processes meta- analyzed	Soil Moist. (55)	Intensity (%SD) Years Thin Al	55.8 5.13 0.55	25.7% 12.8% 10.2%
	Transp. (69)	Intensity (%SD) Years Thin P T Al Age	47.2 6.52 710.5 13.1 0.56 47.4	36.0% 15.6% 7.2% 8.5% 11.1% 8.5%
	Sap Flow (57)	Intensity (%SD) P	52.6 1059.9	21.0% 13.7%

Tree water use and sap flow

Soil moisture

CONCLUDING

- Significant effect of thinning on RP, SM, T, and SF
- Thinning intensities threshold 40–60%
- Thinning interval 3–8 years to sustain significant effects
- Thinning an effective mean for remaining trees to cope with climate change (drought)
- Large variations subject to climate, local site conditions and thinning operations.
- Need to report full results (mean, SD, and N) in units used in forest ecohydrology, i.e., mm, volumetric content, liter/tree, and meaningful timestep (day, growing season, year).

ACKNOWLEDGMENTS

- Javier Perez (UPV, Spain), Risa Kamitani (KUF, Japan), and Yuzhu Li (KUF, Japan)
- Projects: CGL2017-86839-C3-2-R, RED2018-102719-T (both funded by MCIN/AEI /10.13039/501100011033) and FEDER a way to make Europe), LIFE17 CCA/ES/ 000063, JSPS KAKENHI (JP 18H04152 and JP 19H03088), contract RE21NOR-029 (BC MFLNRORD, Canada), and NSERC CRD (CRDPJ 485176-15)
- Open access was funded by CRUE-Universitat Politécnica de Valencia

THANKS