

The role of forests and trees for the livelihood of African people in a changing climate

Forest Responses to Climate Change: Why African Forests Matter Hosted by BMNT, BMBWF and IUFRO

University of Vienna, Universitätsring 1, 1010 Vienna, Kleiner Festsaal organized by Ministry of Sustainability and Tourism & Ministry of Education, Science and Research & IUFRO

Ramni. H. Jamnadass and Team TREEs

29th May 2019

Measures of Consumption over time

Measures of human impact over natural systems

Transforming Lives and Landscapes with Trees

Africa never enjoyed the financial benefits generated by putting greenhouse gases up there in the first place," he continued, "so it never accumulated the wealth to be able to bear the shocks." Sierra Leonean climate scientist Ogunlade Davidson

CO2 emissions per capita, 2016

Average carbon dioxide (CO₂) emissions per capita measured in tonnes per year.

The anthropogenic component of the greenhouse effect is caused by man's activities that emit greenhouse gases to the atmosphere

Future climates and projections

AFRICLIM Version 3.0 spans ten general circulation models (GCM)

Number out of 18 AFRICLIM models that project increases in the Moisture Index

Source: <u>https://www.york.ac.uk/environment/research/kite/resources/</u> Roeland KINDT : <u>R.Kindt@CGIAR.org</u> Cereal productivity in Sub-Saharan Africa under a scenario of the IPCC that shows CO₂ atmospheric concentrations a level at 520-640 ppm by 2050

Forest areas have decreased since 1990 but the rate of net forest loss has been cut by 50%

World's forest annual net loss

Forest area annual net change 1990 - 2015

1 Net forest increases

have been mostly in the temperate and boreal zones. The largest forest loss

has occurred in the tropics, particularly in Africa and South America.

How are the world's forests changing?*

A lot is being asked of agricultural areas – produce food, energy for towns, produce water for towns and energy for industry.

Zambia turns to charcoal as hydroelectricity sources drain

Zambia has long relied on rainfall to generate electricity. But with climate change rapidly depleting water sources, people are turning to charcoal for their power needs, prompting calls to ban the black fuel.

The benefits: climate mitigation

Land-use change and the land sink significant in the global carbon balance (Le Quéré et al 2017)

Natural Climate Solutions "can provide over one-third of the cost effective climate mitigation needed between now and 2030 to stabilize warming to below 2° C" (Griscom et al 2017)

Other benefits:

- Economic value: positive, one to two digits rate of return.
- Positive correlations with biodiversity and resilience; and with agricultural produce and dietary diversity

Chazdor	n et al 2017	Direct cost and intensity of intervention	Similarity between biodiversity at target state and native forest	Agricultural or forestry production value
us	Spontaneous natural regeneration	\$, , , , , , , , , , , , , , , , , , , 	
ral neratio ventic	Assisted natural regeneration	\$\$	Ø Ø	
Natur reger inter	Farmer managed natural regeneration	\$\$	>	
	Mixed species planting with native tree species	\$\$\$		
/pes ration ntions	Agroforestry systems	\$\$\$	Ø Ø	
Other ty of resto interver	Monoculture or plantations using few species	\$\$\$	#	
Human Health	Mean nutrient adequacy ratio	10 Dietary specie	15 20 s richness Lachat	Cameroon DR. Congo Ecuador Sri Lanka Vietnam Benin Kenya 25 t et al. 2017

TREES for ADAPTATION and MITIGATION

Products for food, health and income

food & nutrition firewood medicine income

sawn wood

fodder

Services for sustainability and resilience

ECOLOGY

Estimating the global conservation status of more than 15,000 Amazonian tree species

2015 © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). 10.1126/sciadv.1500936

Hans ter Steege,^{1,2}* Nigel C. A. Pitman,^{3,4} Timothy J. Killeen,⁵ William F. Laurance,⁶ Carlos A. Peres,⁷ Juan Ernesto Guevara,^{8,9} Rafael P. Salomão,¹⁰ Carolina V. Castilho,¹¹ lêda Leão Amaral,¹² Francisca Dionízia de Almeida Matos,¹² Luiz de Souza Coelho,¹² William E. Magnusson,¹³ Oliver L. Phillips,¹⁴ Diogenes de Andrade Lima Filho,¹² Marcelo de Jesus Veiga Carim,¹⁵ Mariana Victória Irume,¹² Maria Pires Martins,¹² Jean-François Molino,¹⁶ Daniel Sabatier,¹⁶ Florian Wittmann,¹⁷ Dairon Cárdenas López,¹⁸ José Renan da Silva Guimarães,¹⁵ Abel Monteagudo Mendoza.¹⁹

Percy Núñez Vargas,²⁰ Angelo Gilbe Juan Carlos Montero, 12,23 Ted R. Fel Charles Eugene Zartman,¹² Bonifacio Marcelo Fragomeni Simon,²⁹ Ana Ar Henrique Eduardo Mendonca Nascir Natalia Targhetta,28 Ima Célia Guima Hugo F. Mogollón,³⁴ Maria Teresa Fe Nállarett Dávila,³⁷ Roosevelt García-V Carolina Levis, ^{13,42} Juliana Schietti, ¹³ David Neill,44 Alejandro Araujo-Mura Dário Dantas do Amaral,¹⁰ Rogerio C Paul Fine,⁸ Marisol Toledo,²³ Chris Ba Paul Maas,⁵⁵ Maria Cristina Peñuela Juliana Stropp,^{58,59} Raquel Thomas-C Alfredo Fuentes,⁶³ Peter Møller Jørge Bruno Barcante Ladvocat Cintra,²⁸ Fe Tinde R. van Andel,¹ Patricio von Hil Deborah de Castro,²⁸ Emanuelle de Yadvinder Malhi,⁷⁴ Ires Paula de Andi César I.A. Vela, 78 Vincent A. Vos, 79,80 Alexandre A. Oliveira,⁸³ Hirma Ramir Maria Natalia Umaña Medina,⁸⁶ Geer Kenneth R. Young,⁸⁹ Claudia Baider,⁸ Casimiro Mendoza,^{92,93} Italo Mesone Roderick Zagt,⁹⁴ Miguel N. Alexiades William Milliken,⁹⁷ Walter Palacios Cu

We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened

Ter Stege et al 2016, Sci. Adv.

Adeilza Felipe Sampaio,⁹⁹ Elvis H. Valderrama Sandoval,^{101,102} Luis Valenzuela Gamarra¹⁰

Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world's >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century.

INTRODUCTION

Amazonian forests have lost ~12% of their original extent and are projected to lose another 9 to 28% by 2050 (1, 2). The consequences of ongoing forest loss in Amazonia (here all rainforests of the Amazon basin and Guiana Shield) are relatively well understood at the ecosystem

level, where they include soil erosion (3, 4), diminished ecosystem services (5-8), altered climatic patterns (5, 7, 9-11), and habitat degradation. By contrast, little is known about how historical forest loss has affected the population sizes of plant and animal species in the basin and how ongoing deforestation will affect these populations in the future. Specific challenges with respect to planting material

- The resource of diversity is under threat
- The demand is huge
- Innovations in field testing to address multiplicity of species and functions
- Link between domestication/breeding and delivery – unimproved material – challenge to establish markets and scaling up
- Efficiency of delivery systems (knowledge, standards, trust and traceability)

Many project design documents pay insufficient attention to the choice, sourcing and delivery of planting material, which is likely to impact on the quality of the trees planted Rosehtko et al 2018

Our results indicate that lack of sufficiently diverse tree seed is a widespread problem in FLR projects and programmes worldwide, commonly causing delays and increasing project costs – and above all, constraining the achievement of restoration objectives. Jalonen et al 2018

The benefits: Livelihoods

World Agroforestry

Trees account for an average of 17% of total annual gross income for tree-growing households Miller, D.C., et al., Forest Policy and Economics (2019),

Beyond timber: perennial crops in Africa, last 5 years for which data are available in FAOSTAT

	Gross Pro	duction	Value (c	onstant 20	04-2006	million US\$)
		Value	Value		Value	Mean value
Сгор	Value 2012	2013	2014	Value 2015	2016	2012-2016
Bananas [486]	3,657	4,294	4,100	3,932	3,880	3,973
Plantains and others [489]	3,452	3,518	3,604	3,703	3,766	3,609
Grapes [560]	2,935	3,122	3,072	3,230	3,217	3,115
Cocoa, beans [661]	2,440	2,345	2,265	2,273	2,323	2,329
Dates [577]	2,019	2,102	2,279	2,465	2,572	2,287
Oil palm fruit [254]	2,045	2,032	2,050	2,061	2,056	2,049
Olives [260]	1,493	1,568	1,362	1,945	1,593	1,592
Apples [515]	1,349	1,562	1,491	1,645	1,541	1,518
Mangoes, mangosteens, guavas [571]	978	935	1,079	1,241	1,297	1,106
Cashew nuts, with shell [217]	791	911	888	906	967	893
Coffee, green [656]	710	838	878	927	938	858
Tea [667]	726	843	868	793	922	830
Tangerines, mandarins, clementines,						
satsumas [495]	718	676	851	831	849	785
Papayas [600]	431	446	476	481	467	460
Coconuts [249]	450	443	445	455	463	451
Rubber, natural [836]	403	12.			445	430
Pears [521]	2-					-12
Karite nuts (sheanuts) [263]						
Peaches and nectarines [534]						
Apricots [526]						
Lemons and limes [497]						
Kola nuts [224]						
Avocados [572]	210					186
Palm kernels [256]	159	161	193	199	199	183
Grapefruit (inc. pomelos) [507]	108	131	128	124	121	122
Cashewapple [591]	47	26	42	39	41	39
Cherries [531]	31	37	38	43	31	36
Cloves [698]	20	22	27	28	27	25
Pistachios [223]	17	21	22	23	26	22
Total value (millions of USD)	26,988	28,467	28,636	29,896	29,733	28,744

Tree species domestication by country / region (130 tree species) focus was mostly participatory domestication

NYHET

coro

Flora

800 Food tree species in Africa that we know of!!

¹⁾ A Afroalpine vegetation; Bd Somalia-Masai Acacia-Commiphora deciduous bushland and thicket; Bds Acacia-Commiphora stunted bushland; D Desert; E Montane Ericaceous belt; Fa Afromontane rain forest; Fb/wd Afromontane undifferentiated forest/

Research in Development

CONSERVATION; FOOD SECURITY; WATER SHED MANAGEMENT; SOIL EROSION; BREEDING; DELIVERY SYSTEMS; RESTORATION

Food and Nutritional Insecurity and the Changing Climate

27% of Africans malnourished

27 million children go to school hungry in Africa

Malnutrition, in all its forms, include:

- Undernutrition (wasting, stunting, underweight),
- Overweight & obesity,
- Inadequate vitamins or minerals, (Hidden Hunger)

Key Vulnerability to food insecurity

LOW

HIGH

- Forests, Trees and Landscapes for Food Security and Nutrition
- Understanding the Roles of ٠ Forests and Tree-based Systems in Food Provision

IUFRO A Global Assessment Report

ELSEVIER Encyclopedia of Food Security and Sustainability Pasquale Ferranti Elliot M. Berry Jock R. Anderson

McMullin et al. 2019. Fresh Fruit and Vegetables: Contributions to Food and Nutrition Security. Encyclopedia of Food Security and Sustainability

Todd S. Rosenstock · Andreea Nowak Evan Girvetz Editors

The Climate-Smart Agriculture Papers

Investigating the Business of a Productive, Resilient and Low Emission Future

Der Open

Dawson, I.K., et al. 2018. Integrating perennial new and orphan crops into climate-smart African agricultural systems to support nutrition. The Climate-Smart Agriculture Papers.

components of foods including protein, carbohydrate fat, vitamins and minerals. It also includies other production and food systems, diets, food habits and loactive compounds and anti-nutritional factors lifestyles as well as population health, there is need to Tables (FCTs) are an important constantly review FCTs as an essential tool in driving tool that can be applied in many fields These include sound nutrition and health agendas. The first Kenyan epidemiological research, nutrition and clinical practice, Food composition tables were developed in 1997 nutrition and health policy making, public health and (Sehmi, 1993). The KFCT 2018 has been revised with

Nutritional value of indigenous & underutilised food tree and crop species

Nutritional value of underutilised food species

	Food	Vitamin C (mg/100 g EP)	Vitamin A* (RE) (mcg/100 g EP)	Iron (mg/100 g EP)	Folate (mcg/100g EP)
Q	Oranges, raw (Citrus sinensis)	53	22	0.1	30
	Baobab, fruit pulp, raw (Adansonia digitata)	273		2.7	
	Marula, fruit, raw (Sclerocarya birrea)	167		3.4	
	Amaranth leaves, raw (Amaranthus gangeticus)	77	652	6.8	64

Vitamin A retinol equivalent (RE)*: mcg retinol + 1/6 beta-carotene + 1/12 alpha-carotene + 1/12 beta cryptoxanthin

FAO (2012) West African Food Composition Table. FAO Rome. FAO/Government of Kenya. 2018. Kenya Food Composition Tables. Nairobi, 254 pp. Nutrient composition of selected indigenous fruits from sub-Saharan Africa. Journal of the Science of food and Agriculture. Pictures © i Stock; © CIFOR.

Source: Barbara Stadimayr

Food tree and crop portfolios to target harvest and nutrient gaps (addressing seasonality and nutritional gaps)

PRODUCTIVE RESTORATION

Targeting food production and consumption diversity for healthier diets scaled across 16 sites in East Africa (Kenya, Uganda, Ethiopia) McMullin et al. 2018

					_															
Food Type	Food Name	Food description	Scientific Name	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Iron	Vitamin A*	Folate	Vitamin C	
	Pawpaw/Papaya	pulp, raw	Carica papaya * ²													~	++	~	+++	
	Banana	pulp, raw	Musa spp.															~	~	
	Passion fruit	purple, raw	Passiflora edulis													~	++		++	
	Mango	pulp, ripe, raw	Mangifera indica ** ¹													~	+++	~	++	
	Bird cherry	raw	Berchemia discolor ** ²													++			+++	
	Tamarind	pulp, ripe, raw	Tamarindus indica ** ³ , * ¹													++				
6	Grewia/Mallow raisin	raw	Grewia villosa													~		~	~	
cruits	Ntuuka	raw	Tennantia sennii																	
	Guava	pulp, raw	Psidium guajava													~	~		+++	
	Desert date	fresh, raw	Balanites aegyptiaca													~			+++	
	Desert date	dried, raw	Balanites aegyptiaca													+++		~		
	Common wild medlar	raw	Vangueria madagascariensis																	
	Mobola plum	raw	Parinari curatellifolia													++			+++	
	Moringa	seeds, raw	Moringa oleifera																	
	Moringa	leaves, boiled	Moringa oleifera													++	+++	~	+++	
, les	Pumpkin	leaves, boiled	Cucurbita maxima													++	++	~		
retal	Cowpea	leaves, boiled	Vigna unguiculata													CO			ГСО	
100	Amaranth	leaves, boiled	Amaranthus spp.													CUr	NLIKIN	IIING	ECUI	
15	Bean	mature, whole, water-soaked, boiled	Phaseolus vulgaris ** ²														СШТ			
* ⁴ / ³ / ³	Green gram/ Mung bean	mature, whole, water-soaked, boiled	Vigna radiata ** ³ , * ¹														2011	ABIL	I I Y I S	UF
NG65	Cowpea	mature, whole, water-soaked, boiled	Vigna unguiculata * ²													16.4				
8 m	Groundnut/peanut	raw	Arachis hypogaea														PURI	ANCI	C 188	
6	Maize	sweet, yellow, boiled	Zea mays **1													СП			тис	DICUT
apes	Millet/Pearl millet	whole grain, boiled	Pennisetum glaucum *3				1									3 P	CUES			RIGHI
Su	Sorghum	whole grain, boiled	Sorghum bicolor													DI	ACE	soils	and	watar
	Notes:* Vitamin A (cale	culations based on Vitamin A retinol eq	uivalent = retinol + 1/6 beta-car	otene	+ 1/12	2 alpha	a-caro	tene +	- 1/12	beta-	crypto	xanthi	n),			PL.	ALE (20112	anu	water
		Data are expressed per 100 g fres	h weight of edible portion, ** = n	nost c	onsur	med *	= mos	st sold												

Future changes in habitat (2050s for RCP4.5)

A species was mapped to be suitable in the future if it was predicted to be present for 66% of models (IPCC Likelihood scale; Mastrandea et al. 2011)

Habitat changes

no change (not suitable) new habitat lost habitat no change (suitable)

Habitat changes in km²

	no new		lost
Species	change	habitat	habitat
Adansonia digitata	346,853	64,628	34,909
Afrocarpus falcatus	280,963	0	184,849
Balanites aegyptiaca	735,881	100,435	590
Cordia africana	570,645	42	59,834
Faidherbia albida	562,248	10,070	178,200
Hagenia abyssinica	73,219	0	107,197
Juniperus procera	527,188	167	89,233
Tamarindus indica	800,725	49,955	1,184
Ziziphus jujuba	692,944	122,546	2,018

African Orphan Crops Consortium Translational Agri-genomics

World Agroforestry

Five orphan crop genomes were published in *GigaScience* as a first step to develop genomics resources

del: 18.1093/gipsecience/gip152 Advance Access Publication Date: 7 December 2018

SanScience 8 2018 1-14

DATA NOTE

The draft genomes of five agriculturally important African orphan crops

Yue Chang ^{(1,2,1}, Huan Liu ^{(1,2,3,1}, Min Liu ^{(1,2,3,1})</sup>, Xuezhu Liao^{1,2,3}, Sunil Kumar Sahu ^(1,2,3), Yuan Fu^{1,2}, Bo Song^{1,2}, Shifeng Cheng^{1,2}, Robert Kariba⁴, Samuel Muthemba⁴, Prasad S. Hendre⁴, Sean Mayes^{5,4,7}, Wai Kuan Ho^{6,7}, Anna E.J. Yssel¹¹, Presidor Kendabie⁵, Sibo Wang^{1,2}, Linzhou Li^{1,2}, Alice Muchugi⁴, Ramni Jamnadass⁴, Haorong Lu^{1,2}, Shufeng Peng^{1,2}, Allen Van Deynze^{4,8}, Anthony Simons⁴, Howard Yana-Shapiro^{4,8}, Yves Van de Peer^{4,0,0,1,1}, Xun Xu ^{(0,1,2}, Huanming Yang^{1,2}, Jian Wang^{1,2} and Yin Liu ^(0,1,2,3,1,2)

Species	Estimated genome size (Gb) and coverage	Gene completeness (BUSCO)				
Faidherbia albida	0.65, 98.9%	85.5%				
Moringa oleifera	0.22, 77.9%	88.8%				
Sclerocarya birrea	0.33, 92.9%	93.9%				
Vigna subterranea	0.54, 97.3%	86.4%				
Lablab purpureus	0.4, 93.5%	87.4%				

- Five high quality genomes were published and made publicly available- 3 trees and 2 annual crops
- A thorough genome composition and gene content analysis indicated conserved pathways, which can be used for identification of candidate genes and development of targeted gene markers
- A very significant first step towards development of genomics tools and resources

COLAR

foreststreesagroforestry.org

African Plant

Breeding

Academy

Agroforestry Tree Field Genebanks

Central America Climate Change Atlas was published in 2017

Suitability of key Central American agroforestry species under future climates: an atlas

Kaué de Sousa, Maarten van Zonneve

Pablo Imbech, Fernando Casanoves Roeland Kindt and Jenny C. Ordofe

http://www.worldagroforestry.org/atlas-central-america

Recorded livestream from launch @ Global Landscape Forum, Bonn, December 2017

The need for Land Restoration in Drylands

"Despite their importance, drylands are being degraded through a complex combination of climatic and human stresses" IFAD, 2016

Map on the left, developed by ICRAF GeoScience Lab, using field data collected with the Land Degradation Surveillance Framework (LDSF) and remote sensing data, shows spatially explicit patterns of root depth restrictions as an indicator of land degradation.

Vågen, Tor-G., Winowiecki, L., Tondoh, J.E., Desta, L.T. and Gumbricht, T. 2016. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma. <u>http://www.sciencedirect.com/science/article/pii/S0016706115300082</u>

Summary and conclusions

Africa is large with area equal to USA, China, India, Japan and most of Europe combined EASTERN http://kai.sub.blue/en/africa.html

- First phase of model calibrations and projections for African Climate Atlas are well underway for 150 species. We need to go beyond trees to include complementary crops.
- Healthy food-tree/crops/fuel/fodder/etc species portfolios...really context specific with complementary plant, soils, water management packages
- Sustainable timber: On farm timber? ; short rotation timber?;
- Improving productivity (upstream and downstream breeding approaches)
- Overcome the bottle neck for planting material... PATSPO model addresses conservation, breeding, seed supply and delivery systems.... Great possibilities in GCF!!
- It is urgent !! The resource of diversity that we depend on to adapt is under threat. Most of the world's >40,000 tropical tree species now seem to qualify as globally threatened.
- Strategic investments to protect and mobilize this resource is critical for our future

ICRAF-CIFOR as the support service and the technical arm of development programs in Africa!

Thank you!

Ramni Jamnadass r.jamnadass@cgiar.org

CGIAR 2017-2022 Research Programme : Forests, Trees and Agroforestry (FTA) Tree Genetic Resources (TGR) to bridge production gaps and promote resilience

World

Seed Delivery Systems: domesticated, and other planting material from seed sources placed in context with FPs on 'livelihoods' and 'landscapes'

Realizing Ecological and Economic value from Tree Genetic Resources The right tree for the right place for the right purpose World Agroforestry (ICRAF),

United Nations Avenue, Gigiri, P.O Box 30677-00100, Nairobi, Kenya Phone: +254 20 722 4000

Fax: +254 20 722 4001

Email: <u>icraf@cgiar.org</u>

Website: www.worldagroforestry.org

RESEARCH PROGRAM ON Forests, Trees and Agroforestry

