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We wish to welcome you to the 2011 edition of SilviLaser. 

Over the past nine years the annual SilviLaser conferences 

have developed into a well-known meeting place for 

a rapidly expanding community of researchers, data 

providers and practitioners interested in the application 

of LiDAR technology towards the understanding and 

management of forest ecosystems. Many of you have 

travelled a long way to be here.

Invited speakers, researchers, authors, Organising and 

Scientifi c Committee members have worked hard to 

develop a strong program. The geographic, thematic 

and technological diversity of the talks, papers and 

posters demonstrates the continued vitality of the 

research, development and technology deployment 

taking place across the world. We invite you to listen 

to the ideas, discoveries and implementation success 

stories that will be presented to you over the next 

few days.

We also invite you to catch up with friends and 

colleagues, make new acquaintances, consolidate or start 

new collaborations. We hope the beautiful University 

campus and the city of Hobart will contribute to making 

this conference a rewarding one for you.

We thank conference and fi eld excursion Hosts, 

conference Partners, Sponsors and Supporters for the 

assistance that made this conference possible.

Have a good time!

Organising Committee

Conference Organising Committee

Jan Rombouts – ForestrySA (Conference Convenor)

John Armston – Department of Environment and 

Resource Management, Queensland

Mark Brown – University of Melbourne

Nicholas Coops – University of British Columbia, Canada

Darius Culvenor –CSIRO Land and Water, Victoria

Nicholas Goodwin – Department of Environment and 

Resource Management, Queensland

Andrew Haywood – Department of Sustainability and 

Environment, Victoria (Head of the Scientifi c Committee)

David Mannes – Forestry Tasmania

Jon Osborn – University of Tasmania

Russell Turner – Forests New South Wales

Conference Hosts

Conference Partners

 

Field Trip Sponsor

Name Badge Sponsor

Conference Supporters

Conference Secretariat

Conference Design Pty Ltd

228 Liverpool Street

Hobart Tasmania 7000 Australia

Email: info@cdesign.com.au 

Web: www.cdesign.com.au

Ph: 03 6231 2999

Fax: 03 6231 1522

International

Ph: +61 3 6231 2999

Fax: +61 3 6231 1522

W E L C O M E

O i i C i
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Andrew Haywood – Department of Sustainability and  

 Environment, Victoria

Yasumasa Hirata – Forestry and Forest Products Research  

 Institute, Japan

Erik Næsset – Norwegian University of Life Sciences, Norway

Matti Maltamo – University of Eastern Finland

Ross Nelson – NASA, USA

Ross Hill – Bournemouth University, UK

Sorin Popescu – Texas A&M, USA

Mike Wulder – Canadian Forest Service, Canada

Barbara Koch – Freiburg University, Germany

Benoit St-Onge – Quebec University, Canada

Chris Hopkinson – Applied Geomatics Research Group,  

 Canada

Nicholas Coops – University of British Columbia, Canada

Darius Culvenor – Commonwealth Scientifi c and Industrial  

 Research Organisation, Australia

Andrew Robinson – University of Melbourne, Australia

Nicholas Goodwin – Queensland Department of   

 Environment and Resource Management, Australia 

Ian Ferguson – University of Melbourne, Australia

Kim Lowell – University of Melbourne, Australia

Mathius Disney – University College London, England

Wolfgang Wagner – Vienna, University of Technology,  

 Austria

Svein Solberg – Norwegian Forest and Landscape Institute,  

 Norway

Hans-Erik Andersen – US Forest Service

Håkan Olsson – Swedish University of Agriculture

Johan Holmgren – Swedish University of Agriculture

Paul Treitz – Queens University, Canada

Felix Morsdorf – University of Zurich, Switzerland

Markus Hollaus – University of Technology, Austria

David Evans – Mississippi State University, USA

Terje Gobakken – Norwegian University of Life Sciences

Ralph Dubayah – University of Maryland, USA

Sanna Kaasalainen – Finnish Geodetic Institute

Cris Brack – Waiariki Institute of Technology, New Zealand

Scientifi c Committee Invited Speakers

P R O F E S S O R  M AT T I  M A LTA M O

University of Eastern Finland, Finland School of 

Forest Sciences

Presentation title: Airborne laser scanning based 

stand level management inventory in Finland

D R  I A I N  W O O D H O U S E

School of GeoSciences, University of Edinburgh

Presentation title: Looking forward to LiDAR’s 

colourful future

D R  M I K E  W U L D E R

Research Scientist, Forest Inventory and Analysis

Presentation title: LiDAR-plots: A new wide-area 

data collection opportunity

D R  D A V I D  J U P P

CSIRO Australia

Presentation title: Ground-based and airborne 

LiDAR - a natural combination

 C H R I S T I A N  W I T T E

Manager Remote Sensing Centre, Environment 

and Resource Sciences, Queensland 

Department of Environment and Resource 

Management

Presentation title: LiDAR in Australia - Progressing from digital 

elevation models to environmental monitoring
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Program

Sunday 16 October 2011

1700-1900 Icebreaker Reception

Bruni Room, Royal Yacht Club

Monday 17 October 2011

0800 Registration                     Uni Centre Foyer

Opening Session                      Stanley Burbury Theatre

0900-1000 Chair: Jan Rombouts, Conference Convenor

Opening Address: Gordon Duff , CEO of CRC Forestry
Welcome to UTAS: Professor Peter Rathjen, Vice-Chancellor
Address by Forestry Tasmania representative

1000-1030 Keynote Speaker: Professor Matti Maltamo
Airborne laser scanning based stand level management inventory system of Finland

Matti Maltamo*, Petteri Packalén, Eveliina Kallio, Jyrki Kangas, Janne Uuttera, Juho Heikkilä

1030-1100 Morning Tea

Session 1: Deploying LiDAR applications in organisations and business 

Chair: Jan van Aardt

1100-1115 A national review of airborne LiDAR application in Australian forest agencies

Russell Turner, Nicholas Goodwin, Jeremy Friend, David Mannes, Jan Rombouts, Andrew Haywood

1115-1130 Airborne LiDAR based forest inventory in Bangladesh for REDD plus MRV: scope and potentiality

Parvez Rana*, Hanna Holm, Tuomo Kauranne

1130-1145 Stand level inventory of eucalypt plantations using small footprint LiDAR in Tasmania, Australia

Robert Musk

1145-1200 Building a case for LiDAR-derived structure stratifi cation for Australian softwood plantations

Russell Turner*, Amrit Kathuria, Christine Stone

1200-1300 Lunch

1300-1330 Keynote Speaker: David Jupp
Ground based and airborne LiDAR – a natural combination

Chair: Nicholas Coops

Session 2: Wood resource assessment and value recovery
Chair: Nicholas Coops

1330-1345 Harvesting productivity analysis using LiDAR

Muhammad Alam*, Martin Strandgard, Mark Brown, Julian Fox

1345-1400 Scaling plot to stand-level LiDAR to province in a hierarchical approach to map forest biomass in Nova Scotia

Chris Hopkinson, David Colville*, Danik Bourdeau, Suzanne Monette, Robert Maher

1400-1415 Estimating stand volume from nonparametric distribution of airborne LiDAR data

Doo-Ahn Kwak*, Taejin Park, Jong Yeol Lee, Woo-Kyun Lee

1415-1430 A method for linking TLS- and ALS-derived trees

Andreas Fritz*, Holger Weinacker, Barbara Koch

1430-1445 Reducing extrapolation bias of area-based k-nearest neighbour predictions by using individual tree crown 

approaches in areas with high density airborne laser scanning data

Johannes Breidenbach*, Erik Næsset, Terje Gobakken

1445-1500 Stem detection and measuring DBH using terrestrial laser scanning

Martin Van Leeuwen* Nicholas Coops, Glenn Newnham, Thomas Hilker, Darius Culvenor, Michael Wulder

1500-1530 Afternoon Tea
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Session 3: Wood resource assessment and value recovery
Chair: Gero Becker

1530-1545 Tree biomass estimation using ALS features

Minna Räty*, Ville Kankare, Xiaowei Yu, Markus Holopainen, Mikko Vastaranta, Tuula Kantola, 
Juha Hyyppä, Risto Viitala

1545-1600 Stand level species classifi cation and biomass estimation using LiDAR height, intensity, and ratio parameters

Taejin Park*, Doo-Ahn Kwak, Woo-Kyun Lee, Jong-Yeol Lee

1600-1615 Eff ect of scan coverage on stem diameter measurement using terrestrial LiDAR

Akira Kato*, L. Monika Moskal, Tatsuaki Kobayashi

1615-1630 Stem curve measurement using terrestrial laser scanning

Xinlian Liang*, Juha Hyyppä, Ville Kankare, Markus Holopainen

1630-1645 Estimating single-tree branch biomass of Norway spruce by airborne laser scanning

Marius Hauglin*, Janka Dibdiakova, Terje Gobakken, Erik Næsset

1645-1700 Airborne laser scanning-based stem volume imputation in a managed, boreal forest area: a comparison of 

estimation units

Jari Vauhkonen*, Petteri Packalén, Juho Pitkänen

 Free Evening

 Tuesday 18 October 2011

 Registration                    Uni Centre Foyer

0820-0830 Housekeeping                       Stanley Burbury Theatre

0830-0900 Keynote Speaker: Christian Witte
LiDAR in Australia – Progressing from digital elevation models to environmental monitoring.

Chair: Darius Culvenor

Session 4: Bio-diversity forest health & environmental applications
Chair: Darius Culvenor

0900-0915 Applying terrestrial LiDAR to derive gap fraction distribution time series during bud break

Kim Calders*, Jan Verbesselt, Ham Bartholomeus, Martin Herold

0915-0930 Foliage profi les from ground based waveform and discrete point LiDAR

Jenny Lovell*, David Jupp, Eva van Gorsel, Jose Jimenez-Berni, Chris Hopkinson, Laura Chasmer

0930-0945 Generating an automated approach to optimize eff ective leaf area index by Canadian boreal forest species 

using airborne LiDAR

Heather Morrison*, Chris Hopkinson, Laura Chasmer, Natascha Kljun

0945-1000 Change detection of mountain vegetation using multi-temporal ALS point clouds

Mattias Nyström *, Johan Holmgren, Håkan Olsson

1000-1015 Stability of LiDAR-derived raster canopy attributes with changing pulse repetition frequency

Allyson Fox*, Chris Hopkinson, Laura Chasmer, Ashley Wile

1015-1030 Characterizing peat swamp forest environments with airborne LiDAR data in Central Kalimantan (Indonesia)

Hans-Dieter Viktor Boehm*, Veraldo Liesenberg, Juergen Frank, Suwido Limin

1030-1100 Morning Tea

Session 5: Bio-diversity forest health & environmental applications
Chair: Yasumasa Hirata

1100-1115 Comparison of the spatial pattern of trees obtained by ALS based forest inventory techniques

Petteri Packalén*, Jari Vauhkonen, Eveliina Kallio, Jussi Peuhkurinen, Juho Pitkänen, Inka Pippuri, 
Matti Maltamo
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1115-1130 Fusion of airborne LiDAR and WorldView-2 MS data for classifi cation of depth to permafrost within Canada’s 

sub-Arctic

Laura Chasmer*, Chris Hopkinson, Heather Morrison, Richard Petrone, William Quinton

1130-1145 Using high density ALS data in plot level estimation of the defoliation by the common pine sawfl y

Tuula Kantola*, Paivi Lyytikainen-Saarenmaa, Mikko Vastaranta, Ville Kankare, Xiaowei Yu, Markus 
Holopainen, Mervi Talvitie, Svein Solberg, Paula Puolakka, Juha Hyyppä

1145-1200 Assessing spatial variation for tree and non-tree objects in a forest-tundra ecotone in airborne laser scanning data

Nadja Thieme*, Ole Martin Bollandsås, Terje Gobakken, Erik Næsset

1200-1215 Exploring horizontal area-based metrics to discriminate the spatial pattern of trees using ALS

Inka Pippuri*, Eveliina Kallio, Matti Maltamo, Petteri Packalén, Heli Peltola

1215-1230 Comparison of discrete return and waveform airborne LiDAR derived estimates of fractional cover in an 

Australian savanna

John Armston*, Mattias Disney, Philip Lewis, Peter Scarth, Peter Bunting, Richard Lucas, Stuart Phinn, 
Nicholas Goodwin

1230-1330 Lunch

1330-1400 Keynote Speaker: Mike Wulder
LiDAR-plots: A new wide-area data collection opportunity

Session 6: Large area applications
Chair: Andrew Haywood

1400-1415 Airborne LiDAR sampling of the Canadian boreal forest: Planning, execution & initial processing

Chris Hopkinson, Laura Chasmer*, Michael Wulder, Nicholas Coops, Trevor Milne, Allyson Fox, 
Christopher Bater

1415-1430 Assessing the accuracy of GLAS topography estimation by using airborne Light Detection And Ranging (LiDAR) 

measurements

Han Meng*, Bernard Devereux, Gabriel Amable

1430-1445 Characteristics of satellite LiDAR waveform in tropical rain forests from the comparison with canopy condition 

derived from high resolution satellite data

Yasumasa Hirata

1445-1500 Model development for the estimation of aboveground biomass using a LiDAR-based sample of Canada’s boreal forest

Christopher Bater*, Michael Wulder, Nicholas Coops, Chris Hopkinson, Samuel Coggins, 
Erik Arsenault, André Beaudoin, Luc Guidon, R Hall, Philippe Villemaire

1500-1515 Biases in an airborne profi ling survey of Hedmark County, Norway

Ross Nelson, Erik Næsset, Liviu Ene, Göran Ståhl, Timothy Gregoire

1515-1545 Afternoon Tea

Session 7: Poster presentations
Chair: Johannes Breidenbach

1545-1550 Early assessment of industrial needs: harvesting and allocation decisions supported by ALS and TLS

Gero Becker*, Thomas Smaltschinski, Martin Opferkuch, Holger Weinacker

1550-1555 Remotely sensed crown structure as an indicator of wood quality: A comparison of metrics from aerial and 

terrestrial laser scanning

Thomas Adams*, David Pont, Jonathan Harrington

1555-1600 Developing LiDAR interpretation software for wood resource inventory in Forests NSW

Russell Turner*, A Farjad, J Trinder, S Lim

1600-1605 Towards automated and operational forest inventories with T-LiDAR

Othmani Ahlem*, Piboule Alexandre, Krebs Michael, Stolz Christophe, Lew-yan-voon Lew

1605-1610 3-D modelling of forest structure for parameterization of radiative transfer models

Martin Van Leeuwen*, Nicholas Coops, Glenn Newnham, Thomas Hilker, Darius Culvenor, Michael Wulder
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1610-1615 Evaluation of nonlinear equations for predicting diameter from tree height for Pinus radiata (D. Don) in an 

airborne laser scanning-based plantation inventory

Huiquan Bi*, Julian Fox, Yun Li, Yuancai Lei, Yong Pang

1615-1620 Revisiting the status of space-borne LiDAR missions for assessing structural and biophysical forest parameters in 

the context of sustainable management of Earth resources

Sylvie Durrieu*, Ross Nelson

1620-1625 Vegetation classifi cation in the Swedish sub-arctic using a combination of optical satellite images and airborne 

laser scanner data

Mattias Nyström*, Karin Nordkvist, Heather Reese, Johan Holmgren, Håkan Olsson

1625-1630 LiDAR data and cooperative research at Panther Creek, Oregon

James Flewelling*, George McFadden

1630-1635 LiDAR estimation of quadratic mean canopy height and stem density in native sclerophyll forests

Yadav Prasad Kandel*, Julian Fox, Stefan Arndt, Stephen Livesley

1635-1640 Using a fl ux footprint model and airborne LiDAR to characterize vegetation structure and topography frequently 

sampled by Eddy Covariance: Implications for MODIS product validation

Laura Chasmer*, N Kljun, Chris Hopkinson, S Brown, T Milne, K Giroux, A Barr, K Devito, I Creed, 
Richard Petrone

1640-1645 Satellite vs. airborne LiDAR estimates of aboveground biomass and forest structure metrics at footprint scale

Sorin Popescua, Kaiguang Zhaoa, Amy Neuenschwanderb, Chinsu Linc

1645-1650 The signifi cance of managed and natural vegetation on house survival during wildfi res

Anders Siggins* Glenn Newnham, Raphaele

1730 Coaches depart UTAS for MONA

1800-1900 Tour of Award-winning Museum of Old and New Art

1900-2300 Conference Dinner
Moorilla (coaches will return delegates to their accommodation venues)

 Wednesday 19 October 2011

0800 Registration

0845-0900 Housekeeping

0900-0930 Keynote Speaker: Iain Woodhouse
Looking forward to LiDAR’s colourful future

Chair: Jenny Lovell

Session 8: Emerging Technologies
Chair: Jenny Lovell

0930-0945 Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory

Luke Wallace*, Arko Lucieer, Darren Turner, Christopher Watson

0945-1000 A new photon counting LiDAR system for vegetation analysis

Jaqueline Rosette*, Christopher Field, Ross Nelson, Phil DeCola, Bruce Cook

1000-1015 Sorted Pulse Data (SPD) format: A new fi le structure for storing and processing LiDAR data

Peter Bunting*, John Armston, Daniel Clewley, Richard Lucas

1015-1030 Tree detection, delineation, and measurement from LiDAR point clouds using RANSAC

Peter Tittmann*, Sohail Shafi i*, Bruce Hartsough, Bernd Hamann

1030-1045 Mobile terrestrial laser scanning in urban tree inventory

Mikko Vastaranta, Tuula Kantola*, Markus Holopainen, Ville Kankare, Harri Kaartinen, Antero Kukko, 
Matti Vaaja, Juha Hyyppä, Hanna Hyyppä

1045-1115 Morning Tea
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Session 9: New Methods and Algorithms
Chair: Petteri Packalén

1115-1130 Another dimension from LiDAR - Obtaining foliage density from full waveform data

Thomas Adams*, Peter Beets, Christopher Parrish

1130-1145 The Sorted Pulse Data Software Library (SPDLib): Open source tools for processing LiDAR data

Peter Bunting*, John Armston, Daniel Clewley, Richard Lucas

1145-1200 Comparison of point cloud data reduction methods in single-scan TLS for fi nding tree stems in forest

Paula Litkey, Puttonen Eetu, Liang Xinlian*

1200-1215 Automated log counting: Proof of concept algorithm

Hamish Marshall

1215-1230 Optimal LiDAR gridding parameterization for eff ective leaf area estimation in the boreal forest Yukon 

Territory, Canada

Heather Morrison*, Chris Hopkinson, Michael Wulder

1230-1330 Lunch

Session 10: Fire and Water
Chair: Jacqueline Rosette

1330-1345 Developing a regional canopy fuels assessment strategy using multi-scale LiDAR

Birgit Peterson*, Kurtis Nelson

1345-1400 LiDAR-based estimation of forest fl oor fuel loads using a novel distributional approach

Jan van Aardt*, Mary Arthur, Gretchen Sovkoplas, Tyson Lee Swetnam

1400-1415 Using airborne survey to map stream form and riparian vegetation characteristics across Victoria

Nathan Quadros*, Rick Frisina, Paul Wilson

1415-1430 Full waveform LiDAR for assessment of river health

David Moore*, Alys Wall, Thomas Hollaus

1430-1500 Afternoon Tea

1500-1600 Panel Discussion
Moderator: Nicholas Coops

1600-1630 Wrap Up Session
Sorin Popescu

1630-1645 SilviLaser 2012 Handover “First Return”

1645 Conference Close

Free Evening

Exhibition

Allocation of Booths

01 ESRI     05 KEOPSYS – FIBRE LASER

02 FUGRO SPATIAL SOLUTIONS  06 AAM

03 TERRANEAN    07 PHOTOMAPPING

04 RIEGL

 
THE LIGHT TOUCHTHE LIGHT TOUCH
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Posters
LiDAR assisted wood resource
1  Early assessment of industrial needs: harvesting and allocation decisions supported by ALS and TLS

 Gero Becker*, Thomas Smaltschinski, Martin Opferkuch, Holger Weinacker
2  Remotely sensed crown structure as an indicator of wood quality: A comparison of metrics from aerial and terrestrial 

 laser scanning

 Thomas Adams*, David Pont, Jonathan Harrington
3  Developing LiDAR interpretation software for wood resource inventory in Forests NSW

 Russell Turner*, A Farjad, J Trinder, S Lim
Deploying LiDAR applications
4  Gearing toward the potential of LiDAR application in Malaysian forestry

 Mohd Hasmadi Ismail
5  Towards automated and operational forest inventories with T-LiDAR

 Othmani Ahlem*, Piboule Alexandre, Krebs Michael, Stolz Christophe, Lew-yan-voon Lew
6  Laser scanning by echo signal digitization and waveform processing

 Martin Pfennigbauer*, Andreas Ullrich*
New methods and algorithms
7  Crown coverage calculation based on ALS data

 Lothar Eysn*, Markus Hollaus, Klemens Schadauer, Andreas Roncat
8  3-D modelling of forest structure for parameterization of radiative transfer models

 Martin Van Leeuwen*, Nicholas Coops, Glenn Newnham, Thomas Hilker, Darius Culvenor, Michael Wulder
9  Evaluation of nonlinear equations for predicting diameter from tree height for Pinus radiata (D. Don) in an airborne   

 laser scanning-based plantation inventory

 Huiquan Bi*, Julian Fox, Yun Li, Yuancai Lei, Yong Pang
Large area mapping and assessment
10  Revisiting the status of space-borne LiDAR missions for assessing structural and biophysical forest parameters in the   

 context of sustainable management of Earth resources

 Sylvie Durrieu*, Ross Nelson
11  Vegetation classifi cation in the Swedish sub-arctic using a combination of optical satellite images and airborne    

 laser scanner data

 Mattias Nyström*, Karin Nordkvist, Heather Reese, Johan Holmgren, Håkan Olsson
12  LiDAR data and cooperative research at Panther Creek, Oregon

 James Flewelling*, George McFadden
13  Satellite vs. airborne LiDAR estimates of aboveground biomass and forest structure metrics at footprint scale

 Sorin Popescua, Kaiguang Zhaoa, Amy Neuenschwanderb, Chinsu Linc
Biodiversity, forest health & environmental applications
14  LiDAR estimation of quadratic mean canopy height and stem density in native sclerophyll forests

 Yadav Prasad Kandel*, Julian Fox, Stefan Arndt, Stephen Livesley
15  Modelling light conditions in forests using airborne laser scanning data

 Werner Mücke, Markus Hollaus
16  Using a fl ux footprint model and airborne LiDAR to characterize vegetation structure and topography frequently   

 sampled by Eddy Covariance: Implications for MODIS product validation

 Laura Chasmer*, N Kljun, Chris Hopkinson, S Brown, T Milne, K Giroux, A Barr, K Devito, I Creed, Richard Petrone
17  Estimation of Leaf Area Index based on airborne laser scanning and imaging spectroscopy

 Pyare Pueschel, Henning Buddenbaum, Joachim Hill
18  Satellite vs. airborne LiDAR estimates of aboveground biomass and forest structure metrics at footprint scale

 Sorin Popescua, Kaiguang Zhaoa, Amy Neuenschwanderb, Chinsu Linc
Fire Management
19  The signifi cance of managed and natural vegetation on house survival during wildfi res

 Anders Siggins* Glenn Newnham, Raphaele
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Airborne laser scanning based stand level management  
inventory in Finland 

 
Maltamo, M.,1 Packalén, P.,1 Kallio, E.,1 Kangas, J.,2 Uuttera, J.,3 and Heikkilä, J.4 

 
1 University of Eastern Finland, School of Forest Sciences, matti.maltamo@uef.fi, 

petteri.packalen@uef.fi, eveliina.kallio@uef.fi 
2 Metsähallitus, jyrki.kangas@metsa.fi  

3 UPM Kymmene Oyj, janne.uuttera@upm-kymmene.com  
3 Forestry Development Centre TAPIO, juho.heikkila@tapio.fi  

 
Abstract 
 
In Finland, a new ALS based stand level management inventory was developed during last few 
years. The system is based on area based approach of ALS data. Additionally, the spectral and 
texture features of the aerial images are utilized in order to improve the separation of the tree 
species. The species-specific stand attributes are simultaneously estimated with a nearest 
neighbour imputation. The new airborne laser scanning based stand level management 
inventory system has been successful. During just a few years almost all actors of practical 
forestry have modified their inventory and planning systems to be compatible with the new 
inventory procedure which will cover almost 3 000 000 hectares in 2011. This paper describes 
the background, development and practical application of this inventory system.  
 

Keywords: area based approach, nearest neighbor imputation, operational inventory, 
species-specific stand attributes 

 
1. Background  
 
In Finland two main forest inventories are sampling based National Forest Inventory (NFI) for 
large-scale and inventory by compartments for stand level management. When NFI data are 
combined with remote sensing data and other auxiliary information in multi-source NFI, reliable 
estimates for small areas can also be obtained (Tomppo 2006). However, the areas considered in 
multi-source NFI are still considerably larger than one stand and also the information needs of 
stand level management inventory are different. From the perspective of practical forestry the 
accuracy requirement for the stand level inventory is about 15–30% RMSE in stand volume 
(Uuttera et al. 2002).  
 
Traditionally, the information for stand level management has been collected with a stand-wise 
field inventory method, that is, inventory by compartments, in which species-specific forest 
characteristics are estimated using subjective angle count sampling and partly visual assessment 
(e.g. Koivuniemi and Korhonen, 2006). This method includes stand delineation from aerial 
photographs, field visits to each stand, and calculation of stand attributes of interest, mainly 
volume by tree species and timber assortments. The stand characteristics assessed in the field 
include age, basal area, mean diameter, and height. These data are used in forest planning, for 
example, to determine the need for silvicultural operations. In practical forestry the data 
acquisition costs are about 10 euro per hectare and the costs of the whole forest planning 
process are over 20 euro. However, in private forestry this process is highly subsidized by the 
state, which pays about 70% of the cost. Annually this method has been applied to over 1 000 
000 million hectares of private forests and additionally also to considerable areas of state and 
forest company forests.    
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Inventory by compartments has been applied since the 1950s, which means that practically the 
whole country has been inventoried several times. During the last decades the development of 
this inventory system was related to field measurements and calculation routines (e.g. Kilkki 
and Päivinen 1986; Kangas et al. 2004). During the last 15 years there has, however, been 
strong emphasis on modernizing this method completely. The main reasons for this 
development are the high costs, subjectivity, and inaccuracy of the basic method. In the 1990s 
there was already a lot of research concerning the development of this method towards remote 
sensing applications (e.g. Päivinen et al. 1993; Varjo 2002). However the accuracy demands and 
usability for operational purposes were not fulfilled by different optical imageries. Usually, the 
RMSE of the stand level RMSE of total volume exceeded 30% (Hyyppä et al. 2000; Uuttera et 
al. 2006). It was also difficult to separate tree species and the heterogeneity between images was 
an issue.                  
 
The situation concerning the usability of remote sensing data changed when airborne laser 
scanning (ALS) data became available. For example in Norway the first studies already showed 
the accuracy and indicated the usability of these data in the operational stage (Næsset 1997; 
2004) The method developed in Norway is based on the variables calculated from the height 
value distribution of the low pulse density ALS data over a certain area and is, therefore, called 
an area based approach (or canopy height distribution approach) (see Næsset 2004). In Finland 
the application of ALS data began with the single tree detection approach, where individual 
trees were recognized from the canopy height model constructed from high pulse density ALS 
data (Hyyppä and Inkinen 1999). The accuracy of this approach was also already promising in 
the first studies (Hyyppä and Inkinen 1999; Maltamo et al. 2004) but high data acquisition costs, 
a lack of algorithms to detect tree species, and considerable threat of bias of tree and stand 
attribute estimates restricted the development of this method towards the operational stage.  
 
 
2. Airborne laser scanning based stand level management inventory system of 
Finland 
 
2.1 System description  
 
Correspondingly, as in other Nordic countries (Næsset 2002; Holmgren 2004) and later in many 
other countries (Hudak et al. 2006; Jensen et al. 2006; Hollaus et al. 2007; Rombauts et al. 
2008; Latifi et al. 2010), the area based approach was also tested experimentally in Finland 
starting in 2004 (Suvanto et al. 2005; Maltamo et al. 2006). The accuracy obtained for stand 
total volume was superior compared to earlier studies based on either field measurements 
(Haara and Korhonen 2004) or other remote sensing data (see e.g. Uuttera et al. 2006). However, 
the requirement for estimated species-specific stand attributes was not fulfilled by this approach 
either.  
 
To overcome the tree species problem, Packalén and Maltamo (2006; 2007; 2008) combined 
ALS data with aerial images. As in the other applications, here also the independent variables of 
the system are those calculated from the height and the density distributions of the 
low-resolution (pulse density < 1 pulse·m-2) ALS data. Additionally, the spectral statistics and 
the texture metrics of the aerial images are utilized in order to improve the separation of the tree 
species. The fusion of ALS data and aerial images was further developed in Packalén et al. 
(2009) in order to improve the accuracy of species-specific predictions. The dependent variables 
of the system are the most essential stand sum and mean attributes, namely volume, basal area, 
number of stems, mean diameter, and mean height estimated separately for Scots pine, Norway 
spruce, and tree species group deciduous species.  
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Since the modelling phase is multivariate the stand attributes are simultaneously estimated with 
a nearest neighbour (NN) imputation (see Packalén and Maltamo 2007). However, other 
modelling alternatives such as the Bayesian approach are also possible (Junttila et al. 2008). The 
obtained results have indicated highly accurate results for the stand totals and also for main tree 
species whereas the accuracy is worse for minor tree species. The chosen non-parametric 
approach also allows the estimation of species-specific diameter distributions which are 
compatible with stand attribute estimates (Packalén and Maltamo 2008). These diameter 
distribution estimates are based on tree diameter measurements of reference plots and, thus, 
describe the local variability. Alternatively, it is also possible to predict parameters of some 
theoretical diameter distribution models by using ALS data or to utilize predicted stand 
attributes and existing parameter models of theoretical diameter distribution models.              
        
Accurate and georeferenced reference plot measurements are a keystone in the new stand level 
management inventory method (see e.g. Gobakken and Næsset 2009). Georeferencing enables 
the extraction of the aerial data from exactly the same point as where the field measurements 
were carried out. For now the number of field reference plots is about 500 plots within the area 
of each inventory campaign. The ALS based inventory concerns young, maturing, and mature 
forests but basically seedling stands have been out of the scope so far. The reference plot 
measurements should represent the existing variation within the inventory area. For the NN 
method, the limitation is that it is impossible to use it for extrapolation purposes: if the data are 
not representative, the lowest values of any distribution will be overestimated, while the highest 
estimates will be underestimated. The multivariate modelling task makes this even more 
complex since some of the attributes estimated are rare. To capture the true variation within the 
forest area, the placement of the reference plot measurements should be considered carefully. 
Usually, the field plot data are not a probability sample in Finland.  
 
When applying the constructed model the stand attributes are estimated by means of plot level 
reference measurements and aerial data metrics in a wall-to-wall manner. The independent 
variables are calculated for the field reference plots and for the cells of a 16 m × 16 m grid, 
which is laid over the inventory area. The cells of the grid are used as estimation units, for 
which the forest characteristics are imputed from the reference plots by means of aerial data. 
The use of a grid is corresponds with the Norwegian application (Næsset 2004) and more or less 
similar systematic approaches have been proposed for remote sensing applications in general for 
stand level inventories (e.g. Poso 1994). Stand level estimates are aggregated from the grid cells 
that fall inside the boundaries of each stand. Instead of using grids, micro-stands may be applied 
as well (e.g. van Aardt et al. 2006). The reasoning behind the use of micro-stands is that they 
divide the area into homogenous parts where the prediction of stand attributes may be more 
reliable. ALS data also provide excellent possibilities for segmentation. 
 
2.2 Practical arrangements 
 
Since scientific studies have shown that the species-specific estimation accuracy obtained with 
the ALS based inventory is comparable with the traditional field inventory method (Haara and 
Korhonen 2004; Maltamo et al. 2009; Packalén and Maltamo 2007), the actors in the Finnish 
forest sector were willing to adopt the new, accurate, and less fieldwork-intensive inventory 
procedure in the hope of reduced costs. In the case of private forestry it is assumed that a 60% 
cost saving would occur when compared to field inventory. The scientific basis for the new 
system was developed in the projects “The Use of Airborne Laser Scanning in the Estimation of 
Accurate Forest Resources” and “The Use of Airborne Laser Scanning and Aerial Photographs 
in the Inventory of Timber Sortiments by Tree Species” funded by TEKES, the National 
Technology Agency of Finland (Maltamo 2007; Maltamo and Kallio 2011). The practical 
forestry organizations were also involved in these projects.  
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The change from the old system to the new one was surprisingly fast. In Finland there is no 
similar tradition of using remote sensing data in stand level inventory as in other Nordic 
countries. In Finland the use of remote sensing data was earlier restricted to visual stand 
delineation. Usually there is also a conservative attitude towards changes but in this case the 
reason for the rapid movement might be twofold. Firstly, there was already a long history of 
finding new remote sensing based solutions, but suitable data were not found. Secondly, there 
was a close co-operation between researchers and actors of practical forestry when this system 
was developed.  
 
In practical applications the ALS and aerial data acquisition, processing of the raw ALS data 
and aerial images into the independent variables, stand attribute modelling, and calculation of 
inventory results are done by service providers but the process differs between organizations. In 
the following the practices of three different organizations are presented.   
 
The forest company UPM Kymmene Oyj started its pilot projects in 2004 and the first fully 
operational project was in 2008. Currently about half of its 900 000 hectares forest area in 
Finland has been inventoried by using an ALS application. In UPM Kymmene Oyj micro-stands 
are applied since their usability is better when planning silvicultural operations. Typically, 
service providers also collect field reference data as part of the campaign. The situation is 
almost similar in the state forests managed by Metsähallitus. ALS based forest inventory is 
already in the operational stage in forest planning systems. So far, about 1 200 000 hectares 
have been inventoried. There are also other purposes for the data, such as planning the cutting of 
the marked stands and the need for ditch cleaning.                   
 
In the case of private forestry the plan is that the total area to be inventoried with the new 
method in Finland is about 1.5 million hectares per year, which means that all the private forests 
will be inventoried during less than one decade. In the case of privately owned forests, the 
estimated stand level forest characteristics are often further processed to holding-specific forest 
plans and treatment schedules. The results of the inventory are also used for guidance of forest 
owners (so-called Metsaan.fi). Until now, the regional Forestry Centres, of which there are 13 
altogether, have been the major institution that offers forest planning services to the private 
forest owners. After some pilot studies conducted during the last five years the first practical 
forest inventories in privately owned forests with the new inventory method were done in 2010 
when local Forestry Centres organized bidding in order to conduct inventory of certain areas.  
 
The difference between other organizations and private forestry is that these centres measure the 
reference plot sample in the privately owned forests with the new inventory method. The 
reference measurements are carried out independently within the area of each regional Forestry 
Centre and the intention is that each centre would measure about 500–800 circular sample plots 
from the mature forests in their inventory area. A set of sample plots is also measured from the 
sapling and seedling stands. The forest planning experts who previously assessed stand level 
forest characteristics by means of angle count sampling now measure accurate information on 
georeferenced sample plots. They also concentrate more on planning, guidance, and service for 
forest owners. Besides the reference plot measurements, fieldwork is still needed for checking 
the treatment proposals for seedlings that cannot be estimated accurately enough with the new 
method. There is also a need for some forest classification information (site class, soil class, 
etc.) on age and biodiversity issues where information must be taken from old inventory data or 
must be field checked. 
 
The sample plot placement carried out by the Forestry Centres attempts to mimic the NFI with 
varying cluster and shorter plot distances, stratification, and subjectively allocated additional 
measurements. The stratification is performed on the basis of the old inventory data on the 
forest characteristics and the locations of different stands within the inventory area. The strata 
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are forest site type, dominating tree species, basal area, and mean diameter. This design aims to 
obtain a good non-probability sample of the forests of the inventory area that includes the true 
variations and also the extremes of all the variable distributions.  
 
 
2.3. Specific features  
 
Besides the basic work of the development of the new inventory system many other issues have 
been tested experimentally as well. Since the NFI also provides a systematic network of field 
plots, the question of whether this data would also be utilized in stand level management 
inventory was studied (Maltamo et al. 2009). Concerning NFI plots it must be remembered that 
the plots are angle count plots, which means that 100% coverage with remote sensing data is 
impossible. According to the results by Maltamo et al. (2009) the effect of using angle count 
samples on accuracy is, however, minor but the current georeferencing of the plots is not 
adequate and also the sampling design is not optimal for the stand level inventory purposes.  
 
The National Land Survey of Finland is using ALS data for national DTM production (Ahokas 
et al. 2008). The technical requirements for the ALS data in national terrain modelling are 
almost identical to the requirements of forestry applications but in terrain modelling the primary 
aim is to acquire leaf-off data. However, using the same (leaf-off) data in national terrain 
modelling and forestry applications would mean significant cost savings in both campaigns. The 
usability of leaf-off ALS data in stand level forest inventory was examined by Villikka (2010). 
The overall conclusion was that leaf-off ALS data are suitable for area based forest inventory in 
which deciduous and coniferous trees need to be separated. However, the narrow time window 
when leaf-off ALS data can be collected may restrict the applicability. Correspondingly, in 
DTM production the laser scanner used may change during one campaign, but this is a critical 
point for forestry applications (Næsset 2009). In general the results of Villikka (2010) were 
better with leaf-off than leaf-on data. In addition, leaf-off ALS data per se had the ability to 
discriminate between deciduous and coniferous trees, which may decrease the inventory costs if 
the acquisition of aerial images is therefore avoided entirely and if there is a possibility of joint 
ALS data acquisition between forestry and land survey organizations. Nowadays leaf-off data 
are already widely applied in private forestry data acquisition in Finland. Altogether about 1 000 
000 hectares will be inventoried by leaf-off data in 2011.   
 
One specific feature is also young sapling stands, which usually cover about 25% of the 
inventory area. Considerable savings of the costs of field checks which are currently a 
bottleneck in the system could be avoided if at least part of these stands could be covered by 
ALS inventory. The information needs of these stands differ. Instead of species-specific stand 
attributes it is more important to know the timing of the next silvicultural treatment. The 
developed ALS based inventory as such will not provide such information although it can be 
expanded to cover seedlings as well. There have been some efforts to predict characteristics of 
young stands or alternatively the need for treatments (Næsset and Bjerknes 2001; Korpela et al. 
2008; Närhi et al. 2008). Research concerning the inclusion of seedling stands as a part of ALS 
based stand level inventory is currently going on in Finland.    
 
One important issue is the bioenergy content of forests. Like volume, biomass can also be 
predicted by using ALS. If the ALS based characterization of a stand is at tree level, biomass 
components (stem, branches, stump) can also be calculated (Kotamaa et al. 2010). It is also 
possible to find stands with the possibility of bioenergy cutting or other silvicultural thinning 
and to characterize the amount of removed biomass or logging residues in thinnings (Kotamaa 
et al. 2010; Pyörälä 2010; Räsänen 2010; Vastaranta et al. 2011).  
 
3. The future  
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The new airborne laser scanning based stand level management inventory system has been 
successful in Finland. During just a few years almost all actors of practical forestry have 
modified their inventory and planning systems to work with ALS data and the inventory will 
cover almost 3 000 000 hectares in 2011. Nowadays the area based approach is applied but due 
to the use of diameter distribution models the characterization of tree stock can be transformed 
to tree level. Although this inventory system is still quite new there is already a lot of research 
work related to the development of this system or completely new systems.  
 
In relation to the current system, the most serious drawback is still the separation of tree species. 
Although the main tree species can usually be described, the error in the case of minor tree 
species can still be very high. If the estimated main tree species of a stand is wrong this is a 
severe error for a holding-specific forest plan. Development related to this issue might be 
related to improved algorithms or other data sources such as hyperspectral data, whose 
operational use is, however, still questionable. Other big issues are the characterization of 
multilayered and seedling stands as well as information on biodiversity aspects and site classes. 
 
The operational application of ALS data also still has many bottlenecks which are not directly 
related to the ALS technique. For example, co-operation between different organizations (e.g. 
ALS raw data processing and field measurements), rapid changes in established practices in 
organizations, restrictions of information systems, different local conditions in different parts of 
the country, and weather conditions for optical image acquisition cause difficulties in 
operational use. For example, the linkage of estimated stand attributes or diameter distributions 
and forest planning systems might need some improvement.        
 
If the whole inventory approach is changed in the near future one question might be whether 
single tree detection would be applicable for operational purposes. During the last five years the 
prices of ALS data have gone down and there has been development of the algorithms to predict 
tree species and stand attributes (e.g. Korpela et al. 2010; Vauhkonen et al. 2010). As a result of 
this development the differences in accuracy between these two approaches have more or less 
vanished (e.g. Packalén et al. 2008; Vastaranta et al. 2009; Peuhkurinen et al. 2011). One 
interesting alternative is the so-called semi-individual tree crown approach (Breidenbach et al. 
2010), where segments including zero, one, or several trees are imputed with non-parametric 
methods, thus avoiding bias in the resulting stand level estimates.  
 
If the possible change from an area based approach to single tree detection is discussed there are 
different views. Changing the inventory system from one remote sensing system to another 
might be easier now since the first remote sensing based inventory system is now in operational 
use. On the other hand, if no considerable improvement in the description of tree stock or in the 
accuracy were to be achieved, the change might be needless from an operational point of a view. 
There might also be some new difficulties related to information systems. Additionally, 
although single tree detection can, in principle, characterize each tree it is common for certain 
trees or tree groups not to be observed. This might happen especially in clustered stands where 
this kind of information is crucial from the silvicultural point of view, and if this information is 
not obtained the benefit of single tree detection is lost.                                 
 
The development of inventory systems is, of course, not only related to the choice between area 
based and single tree detection approaches. There are different types of ALS data, such as full 
waveform data, and even different platforms. Their usability in different types of inventory 
varies and in the case of stand level management inventory these issues are still an open 
question. It should also be remembered that to be applicable in practice their operational use 
should cover very large areas annually.  
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Abstract:  
 
This paper provides a narrative of airborne lidar application across Australian forest agencies. It 
includes a brief history of early lidar research and operational trials, as well as current programs 
and future directions on a state by state basis. This review demonstrates a diverse range of lidar 
applications and increasing adoption of lidar technology within state agencies across Australia.  
 
Keywords: Airborne lidar, remote sensing, national review, forestry 
 
1. Introduction  
 
It is now ten years since the first lidar trials were conducted in Australian forests and, assisted 
by the growing accessibility of lidar datasets and the development of new processing procedures 
and software tools, there has been a dramatic escalation in lidar use in forest agencies. Today 
most forest agencies have experienced a paradigm shift from explorative research to large scale 
operational programs. Lidar technology is having a significant impact on Australian forest 
management, and continues to revolutionise wood inventory programs and harvest planning 
processes. 
 
The lidar forestry community in Australia is relatively small but active; and with representatives 
in every state. Several national lidar forestry forums have been held across Australia to share 
ideas and experience. The first was held in Brisbane (Queensland) in 2002, the second was in 
Hobart (Tasmania) in 2007, and most recently another workshop was again held in Hobart in 
2010. A consistent issue raised at these workshops is the importance of disseminating 
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information on significant lidar research and potential operational applications to the general 
forestry community within Australia. The aim of this report is to provide a useful summary of 
past and present lidar work in each state forest agency. Of course, a comprehensive review of 
every research trial and operational program is well beyond the scope of this paper, however, a 
general overview will give a sense of the wealth of information and experience that has emerged 
over the past decade, and will serve to guide future research directions.  
 
2. State overview  
 
This overview concentrates on forest agencies within the six states of Australia (i.e. Queensland 
(QLD), New South Wales (NSW), Victoria (VIC), Tasmania (TAS), South Australia (SA) and 
Western Australia (WA)). As far as the authors are aware, airborne lidar has not yet been utilised 
for forestry purposes in the two territories; the Australian Capital Territory (ACT) and the 
Northern Territory (NT). This paper focuses on public commercial forests and plantations, but it 
should also be noted that lidar use in private plantations and public national parks and reserves 
has also increased significantly. A basic overview of lidar application is presented on a state by 
state basis. 
 
 
2.1 Queensland  
 
The remote sensing centre within the Queensland Department of Environment and Resource 
Management (DERM) has used lidar over the last decade for quantifying a range of biophysical 
attributes and to support the implementation of DERM's vegetation management policy and 
programs. The Injune Landscape Collaboration Project (ILCP) (Lucas et al. 2010a) has been an 
important lidar research site for Queensland since 2001. Injune is located in the Brigalow Belt 
of central Queensland and the vegetation consists mainly of open poplar box (Eucalyptus 
populnea) woodland with patches of denser white cypress pine (Callitris glaucophylla) 
regeneration. Lidar was used to evaluate its utilisation in estimating biomass and a set of forest 
structural attributes (Tickle et al. 2001, and Lucas et al. 2006) and results showed that 
stand-based lidar derived biomass models were highly correlated with field data (R2 = 0.92, SE 
= 12 Mg/ha). This site was reflown with lidar in 2009 and is now the focus of further research 
into detecting forest structural change over time. 
 
DERM has been involved in several research studies to better understand the relationship 
between field data, terrestrial laser scanning, sensor configuration, multi-temporal lidar, and 
forest structure. For example, a series of field monitoring plots throughout Queensland have had 
several repeat airborne lidar acquisitions between 2000 and 2009 (Lucas et al., 2010b) to better 
understand the impacts of drought and land management practices on forest structure and 
species composition. In 2005 DERM, in collaboration with the University of Newcastle, 
investigated the use of lidar intensity and crown transparency to distinguish between forest 
species in white cypress woodland (Moffiet et al. 2005). This study showed that vegetation 
types could be discriminated using the proportion of singular returns and a "porosity" index 
based on the proportion of lidar points penetrating the canopy.  
 
Forestry Plantations Queensland (FPQ), now owned by Hancock Queensland Plantations Pty 
Ltd, has incorporated lidar into their operational program. Over a three year period (2005 – 
2007) FPQ captured lidar data across their entire softwood plantation estate (188,000 ha) 
(http://www.fpq.net.au/). This information was used mostly for digital terrain model (DTM) 
derived products (e.g. slope, hillshade, and contours) to assist with classifying harvesting terrain 
classes in pre-harvest planning (e.g. above and below 24o slope). Lidar was also used to 
characterise forest structure including stratification of stands based on height (equivalent to site 
index) to assist pre-harvest inventory.  
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The largest airborne lidar acquisition to date has been the Protecting Our Coastal Communities 
(POCC) project which covers an area of around 60,000 km2 along the Queensland coast (see 
Figure 1). Commencing in 2009, this project, jointly funded by the state and local government, 
involved multiple providers/sensors for different regions. Data was captured with an average 
sampling density of 2 returns per sq.m. Although primarily intended for planning flood risk and 
urban development along the coastline, it also provided an excellent baseline for monitoring 
coastal forests and an opportunity for research such as the calibration/validation of spaceborne 
sensors, input for forest monitoring applications, as well as the extraction of many spatial 
products. 
 

 
 

Figure 1: Current lidar coverage (in black) within Queensland. Note: this is only 
the lidar data held by DERM with the total area exceeding 68000 km2. 

 
Lidar data has since been utilised in over 50 sites strategically located to capture the variability 
in forest structure and composition. In addition to developing new relationships between field 
data and lidar, this data has been used operationally to calibrate and validate statewide methods 
and products (Armston et al. 2009). For example, lidar derived layers have been used to validate 
foliage projective cover (FPC) and woody extent which were derived from Landsat (25m) and 
MODIS (250m) products and to explore the relationships between canopy variables (Armston et 
al., 2008; Gill et al. 2009; Scarth et al., 2008 and Witte et al. 2000). More recently, the southeast 
Queensland region of the coastal capture was used to produce a calibrated FPC layer using 20 
field sites located across the 8500 km2 area and results showed that field measurements of FPC 
were highly correlated with first return lidar data (R2=0.92, RMSE=5%). In addition to 
providing a baseline of FPC for southeast Queensland, it may help to improve the calibration of 
FPC using satellite imagery in forested areas with steep topography. 
 
2.1 New South Wales  
 
In NSW, around 2.2 million hectares of state-owned commercial forests are managed by Forests 
New South Wales (FNSW). With 230,000 ha of softwood plantation, FNSW is also the largest 
softwood plantation owner in Australia. The first lidar trial began in 2001 when 1,000 ha of 
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eucalypt forest were flown on the Central Coast. The focus of this trial was above-ground 
biomass assessment and an automated canopy segmentation process was developed (Turner 
2006). In the same year, the first large scale trial occurred as a spin-off from a much larger (1.8 
million hectare) catchment study by the Murray Darling Basin Commission (Liu et al. 2003). 
This project provided data across 90,000 ha of river red gum forests (Eucalyptus camaldulensis) 
along the southern border. The data was used to remap road and drainage networks, identify and 
estimate thinning resources, and plan harvesting events. In addition, a small (450ha) wood 
inventory trial showed it was possible to predict maximum height (R2 = 0.9), mean dominant 
height (R2 = 0.76), basal area (R2 = 0.72) and gross volume (R2 = 0.79) (Turner & Webster 2005, 
and Turner 2007). 
 
In 2004 a study funded by the Commonwealth Scientific and Industrial Research Organisation 
(CSIRO) acquired lidar data across 1,813 ha of native forest near Coffs Harbour on the North 
Coast. The project investigated the influence of scanning at different altitudes (1000, 2000, and 
3000 m), footprint sizes (0.2, 0.4, and 0.6 m), scan angles (10° and 15° angle off nadir) and 
point sampling densities (0.18 to 1.9 m) on forest structure assessment (Goodwin et al. 2006). 
By 2006, another regrowth forest site, covering an area of 12,800 ha, had been flown on the 
Central Coast. The Jilliby Catchment Area (JCA) was a multiagency collaborative research 
project and data was used for two studies running simultaneously. The first focused on the 
application of airborne lidar for spatially mapping forest fuel characteristics (Roff et al 2006 and 
Turner 2007), while the other study explored the potential for forest health monitoring by 
mapping Bell Miner Associated Dieback (BMAD), (Haywood & Stone, 2011). 
 
Another 6,000 ha trial in coastal eucalypt forests was completed in 2008. A number of 
compartments were selected to investigate the benefits of lidar data in harvest planning and field 
supervision (Turner 2007 & 2008). It was estimated that lidar data reduced the planning effort 
by 2 to 3 person days per compartment plan and provided a 10% time saving in field 
supervision during harvesting, with less walking required to locate exclusion zones and 
merchantable trees. Automated drainage maps from lidar-derived DTMs were also tested. 
Precision surveys along two creek lines indicated an excellent correlation between survey and 
DTM elevation (R2 = 0.99) with a mean elevation error of 0.6 m, while automated drainage 
networks had a centreline mean error of 1.65 m.  
 
A second large scale study was implemented in early 2008 when 240,000 ha of native forest 
were flown in North Central NSW near the town of Baradine. The Pilliga Remote Sensing 
(PILRES) project covered cypress pine/eucalypt woodland on predominantly flat terrain. A 
wood resource inventory utilised airborne lidar (to provide height and stocking) and 
multispectral digital photography (to define stands of commercial forest types). Lidar-derived 
canopy height models (CHMs) were used for a strategic thinning program and the high 
resolution DTMs assisted the update of road and drainage networks. The project was expanded 
by another 129,000 ha during 2009 across 93 state forests scattered throughout western NSW. 
This was also the first time that simultaneous lidar and digital photography (colour infra-red) 
was acquired, making it easier to combine attributes at crown level from both sensors (i.e. data 
fusion).  
 
The first case study in a NSW softwood plantation was initiated in July 2008. The Plantation 
Airborne Resource Inventory Appraisal (PARIA) project was undertaken in a 5,000 ha Pinus 
radiata plantation in south-central NSW. The study evaluated airborne lidar and digital 
multispectral aerial photography for wood resource inventory, structure stratification and forest 
health monitoring (Stone et al. 2008, Stone et al. 2010 and Turner et al 2011). A remote sensing 
guide for softwood plantation managers (Turner and Stone 2010) was also produced as well as a 
new in-house ArcGIS lidar toolbox.   
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In late 2009, FNSW and the University of New South Wales (UNSW) obtained an Australian 
Research Council (ARC) grant to investigate full-waveform lidar applications and to develop a 
commercial software package for on-screen interpretation. In 2010, full-waveform lidar was 
acquired at three sampling densities (i.e. 2, 5 and 10 pulses per sq.m) over a 140 ha pine 
plantation west of Sydney.  The data is being used to develop a new waveform processing 
technique to minimise lidar negative tree height bias (Park et al. 2011) and to model 3D 
structure with both airborne and terrestrial laser scanner (TLS) data (Park et al. 2010). 
Development of the lidar interpretation software is well underway and a working prototype 
should be ready for field testing by December 2011.  
 
FNSW’s largest operational program is currently in progress throughout the northern tablelands 
and mid-north coast of NSW. The project is capturing almost 296,000 ha of state forest, 
including around 17,500 ha of pine plantation. The data will be used for general forest 
management, forest inventory, stand structure assessment and drainage mapping.  
 
Increasingly, lidar data is becoming more accessible from other sources. Local shire councils are 
acquiring lidar for flood mitigation and urban planning, and data covering around 198,000 ha of 
state forest has been made available. In 2008, the NSW State Government also purchased a 
Leica ALS50-II laser scanner that is operated by the Land and Property Management Authority 
(LPMA) based in Bathurst. LPMA has an ongoing lidar acquisition program for their state 
mapping needs and where data is captured over state forests it is also provided to FNSW. Since 
2001, the accumulative total of all airborne lidar coverage in NSW state forests has reached 
943,000 ha, which represents 43% of the total native forest estate. In addition, around 22,000 
hectares of softwood plantation have been captured covering almost 10% of the total plantation 
area.  Figure 2 illustrates the widespread coverage of this data across NSW.  
 

 
Figure 2. NSW map showing the location of lidar coverage in state forests (in black). 

 
 
 
2.3 Victoria  
 
The Victorian Department of Sustainability and Environment (DSE) is responsible for the 
sustainable management of 7.8 million hectares of public native forests (DSE 2008). DSE has 
been investigating the use of lidar as a land management tool since 2001 (Choma et al., 2005). 
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Data capture started predominantly for DEM construction (Choma et al., 2005) but has 
expanded to include forest structural inventory (Haywood and Sutton 2009), forest stand 
delineation (Haywood and Stone, 2009), biomass estimation (Kandel et al., 2009), fuel load 
mapping (Haywood et al, 2010). DSE have recently developed a method to assess riparian 
vegetation health using lidar in conjunction with aerial imagery (Johannsen et al., 2010). This 
has included the recent acquisition of 26,000 km of lidar acquisition across Victoria’s stream 
network (see Figure 3).  
 
All of the lidar data used in DSE’s projects has been acquired through the Victorian Coordinated 
Imagery and Elevation Program's (http://www.land.vic.gov.au/Land/). The Program’s mission is 
to develop an efficient and effective service and cost sharing model for the acquisition of spatial 
imagery and elevation products for the State of Victoria and the Program Purchase Partners. 
 
The Program coordinates the purchase of aerial imagery and elevation products across Victoria 
for a range of government and non-government organisations. It is designed to facilitate uses, 
imagery needs, reduce costs, avoid duplication and to contract manage projects. It streamlines 
the acquisition, storage and access to aerial images and elevation products for end users. 
 
Instead of having to purchase images for a specific purpose, Purchase Partners can share images 
and use them again for a range of different purposes, from urban growth area planning, property 
searches and asset management, through to tracking native vegetation. This has enabled the 
Victorian land management community to leverage off a coordinated investment. 
 

 
Figure 3: Map showing extent of lidar coverage in Victoria. 

 
 

 
2.4 Tasmania  
 
Forestry Tasmania (FT) has been investigating the use of lidar as a forest management tool since 
2004 when several small areas were captured to evaluate a variety of applications, including 
operational planning and forest inventory.  Although data capture for this exercise was 
designed primarily with a research focus, the early investigations showed promise for 
operational use but at the time the application of the technology was considered too expensive 
(Bennett 2005). 
 
A fresh look at the results from the 2004 trial concluded that it may be possible to make a 
financial case for lidar if savings could be realised from across a wider range of applications.  
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To investigate this further, a large scale operational trial was established in north-east Tasmania 
in 2007 with the acquisition of 32,000 ha. The study covered a diverse range of forest types and 
carefully monitored and evaluated the benefits of lidar on forest management and operational 
planning. To compare lidar with traditional approaches, many coupes were “double planned” 
(i.e. with and without the availability of lidar data) by different forest planners. This provided a 
direct estimate of savings that could be realised across the forest management spectrum. Results 
from the operational trial were sufficiently encouraging for FT to commence the 
operationalisation of lidar in 2009 (Mannes & Stone 2009). Lidar capture has since been 
progressively rolled out and to date over 700,000 ha of data has now been acquired mainly over 
State Forest and surrounding lands including private forests (see Figure 4). Lidar derived data is 
being used in Tasmania across the spectrum of forest management activities, ranging from 
engineering, forest harvest management, and resource inventory, to plantation management and 
general mapping. Where lidar data exists, it is fully integrated into day to day forest 
management activities.   
.   

 
Figure 4. Tasmania map showing the location of lidar coverage (in grey). 

 
Research into lidar continues to have a strong operational focus. Most research activity is in the 
forest inventory sphere, and involves investigation of better metrics and methodologies for the 
prediction and projection of timber variables (timber volume, specifically eucalyptus volume, 
stem size distribution, basal area and stocking levels) from lidar. Active investigation of image 
analysis techniques to assist with mapping and forest characterisation is ongoing and is 
beginning to yield positive results.  Research is also underway to develop better ways to 
display lidar derived data to increase its utility for field foresters. Ongoing monitoring of the 
operational effectiveness of lidar continues, to determine whether operational results are being 
achieved in ‘real’ forest management. 
 
2.5 South Australia  
 
The first forestry related airborne lidar campaign was undertaken by the South Australian Forest 
Corporation (ForestrySA) in 2002. The objective of the trial was to capture data over radiata 
pine plantations covering a range of age classes to gain an understanding of their potential for 
applications such as terrain mapping, forest inventory and site quality assessment. The CSIRO 
utilised some of these early data (with funding from the now Forest and Wood Products 
Australia) and results from this initial research were reported in Lovell et al. ( 2003) and Lovell 
et al. (2005). 
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The work by CSIRO demonstrated that lidar data effectively showed spatial variation in stand 
height and density, suggesting potential application for site quality (SQ) assessment. This lead 
to further work by ForestrySA (Rombouts, 2006) and triggered two more research oriented lidar 
campaigns in 2006 and 2007 to demonstrate and refine lidar-based SQ assessment across a 
range of sites. In 2007, ForestrySA also participated in a regional project involving several 
government departments to build a Digital Elevation Model (DEM) for the lower south-east of 
the state, and mainly for hydrological modelling purposes. As a result ForestrySA acquired low 
density data over its entire south-eastern pine plantation estate (105,000 ha). Figure 5 provides a 
map of the geographic extent of lidar coverage in South Australia. These data were also 
successfully utilised to demonstrate that SQ could be accurately assessed with relatively sparse 
lidar sampling density acquired at high altitude (Rombouts et al, 2010).  
 

 
Figure 5: Map showing lidar extent within South Australia. 

 
In late 2007, ForestrySA made the decision to take lidar-based SQ assessment into operational 
use and conventional SQ assessment was discontinued. The first operational SQ lidar campaign 
took place in December 2008 and the first SQ maps were uploaded in corporate databases in 
July 2009. The outcome of the project, in particular the efficiency of the field sampling design, 
was evaluated and possible improvements identified (Rombouts et al, 2010). A second 
operational survey is scheduled for the summer of 2012. Having successfully implemented 
lidar-based SQ assessment, ForestrySA is now turning its attention to product oriented 
pre-harvest inventory.    
 
In addition to work with airborne lidar systems, ForestrySA has also investigated Terrestrial 
Laser Scanners (TLS) from 2003 to 2006 as an industry partner with CSIRO validating the 
Echidna full-waveform laser scanning system (Lovell et al. 2003; Culvenor et al. 2006). 
Commencing in 2008, ForestrySA was also involved with the Collaborative Research Centre for 
Forestry in testing commercial TLS for pre-harvest inventory purposes (Murphy et al., 2010). A 
follow-up project in collaboration with Treemetrics from Ireland is currently underway. The 
objective is to capture detailed information on tree stems and defects, enabling optimisation of 
cutting patterns for each tree and stand, within the constraints imposed by prevailing market 
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conditions. Another objective is to explore the integration of ground and airborne lidar data to 
take advantage of the complementary qualities of both sensor types. 
 
 
2.6 Western Australia  
 
Aerial lidar for forestry applications is still in its infancy within Western Australia. Although a 
number of agencies within WA are utilising lidar for DTM purposes, there had been limited 
application within the forestry sector. The first forestry related application was completed in 
2007 by the Department of Environment and Conservation (DEC). This was a trial conducted in 
four native forest sites, totalling 1,288 ha, but no further lidar trials or projects have been 
undertaken by DEC.     
 
In 2010, the Forest Products Commission (FPC) began a major resource assessment of its 
40,000 ha radiata pine plantation estate. Due to limitations in staffing resources and strict 
project deadlines, a purely traditional ground-based assessment program was not considered 
feasible, whereas lidar technology offered the potential to capture broad scale plantation 
resource information in a more timely and efficient manner.   
 
FPC began its first aerial lidar program in February, 2011 acquiring data across 13,500 ha of 
pine plantation within a region known as the Blackwood Valley, located 50km south-east of 
Bunbury (see Figure 6). This region was considered suitable for a trial as it contains a 
significant area of steep terrain, has limited access for ground-based assessment teams and it is 
relatively spatially compact compared to the majority of the FPC estate. 
 

 
Figure 6. Map showing the extent of lidar coverage (black) in WA softwood plantations. 

 
The primary focus of the project is to use lidar data, in conjunction with multispectral imagery, 
to establish estimates of current plantation characteristics such as stocking, height and stand 
volume. Once these derivatives have been attained, they will be used to assist in long-term 
wood supply modelling applications. Data will also be used to derive additional value added 
products, such as DTM’s and slope maps. This information will then be passed to planning and 
operational staff where it can be used to assist making on-ground operations more efficient. The 
project will also undertake a cost/benefit analysis of the process to compare it with conventional 
ground-based inventory methods. Moreover, the economics and practicality of collecting lidar 
data across less spatially compact plantation resource areas will be investigated. If significant 
benefit can be demonstrated then it is likely that airborne lidar technology will become an 
integral part of the FPC inventory assessment program. 
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3. Summary 
 
Airborne lidar forestry applications in Australia have rapidly advanced over the past decade. 
Today every state has at least trialled lidar over their native forests or plantations, and most 
forest agencies have shifted from researching potential lidar applications to a larger and more 
ambitious operational phase. The state summaries have illustrated the wide range of forestry 
applications that are either under investigation or already operational. Applications include 
wood resource inventory, harvest planning and supervision, site quality assessment, road and 
drainage mapping, forest classification, strategic thinning evaluation, forest fuel assessment, 
canopy health monitoring and biomass estimation. This report clearly demonstrates the high 
level of state agency support and commitment to developing lidar forestry applications. It 
follows that lidar technology will continue to create inroads into mainstream operational and 
planning activities and make a significant contribution to forest management in Australia. 
 
Acknowledgements  
 
The authors wish to thank the following people for their kind assistance in collating information 
for this national overview. 
  

Christine Stone (Dept. Primary Industries, NSW) 
Tony Brown, Paul McBain and Morgan Roche (Forests NSW) 
Glenn Jones (Land and Property Management Authority, NSW) 
John Armston (Dept. of Environment and Resource Management, Qld) 
Paul Rampant (Dept. of Environment & Conservation, WA) 
Colin Reugebrink and Michelle McAndrew (formerly Forestry Plantations Queensland) 
Andrew Yates (Parks and Conservation, ACT) 

 
References:  
 
Armston, J.D., Denham, R.J., Danaher, T.J., Scarth, P.F., and Moffiet, T., (2009). Prediction and 

validation of foliage projective cover from Landsat-5TM and Landsat-7TM ETM+ 
imagery for Queensland, Australia,  Journal of Applied Remote Sensing, vol. 3, no.1, 
033540-28. 

 
Armston, J. et al. (2008). A first look at integrating ALOS PALSAR and Landsat data for 

assessing woody vegetation in Queensland, Proceedings of the 14th Australasian Remote 
Sensing and Photogrammetry Conference, Darwin, Australia, October 2008. (Eds 
Edwards, E., and Bartolo, R.)  

 
Bennett (2005) – Prospects for Lidar at Forestry Tasmania , Forestry Tasmania internal report. 
 
Choma, A., Ratcliff, C. and Frisina, R. (2005). Evaluation of Remote Sensing Technologies for 

High-resolution Terrain Mapping. Proceedings of SSC 2005 Spatial Intelligence, 
Innovation and Praxis: The national biennial Conference of the Spatial Sciences Institute, 
September, 2005. Melbourne: Spatial Sciences Institute. ISBN 0-9581366-2-9 

 
Culvenor, D., Newnham, G., Rombouts, J., Jupp, D. and Lovell, J., (2006). Pre-harvest Forest 

Inventory from Ground-based Laser Scanning, USDA Forest Service 8th Annual Forest 
Inventory and Analysis Symposium, Monterey, October 2006. 

 
Department of Sustainability and Environment (2008) Victoria’s State of the Forests Report. 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, TAS, AU 

 11

Department of Sustainability and Environment, Melbourne, Australia. 
www.dse.vic.gov.au/sfm. 

 
Gill, T. K., Phinn, S.P., Armston, J.D., and Pailthorpe, B.A., (2009). Estimating tree-cover 

change in Australia: challenges of using the MODIS vegetation index product, 
International Journal of Remote Sensing, vol. 30, no.6, pp. 1547-1565. 

 
Goodwin, N., Coops, N. & Culvenor, D.S. (2006). Assessment of forest structure with airborne 

Lidar and the effects of platform altitude, Remote Sensing of Environment. 103:140-152. 
 
Haywood, A., Mellor A., and Siggens, A. (2010). Fuel Hazard Mapping of the Victorian Central 

Highlands Using Lidar Data. 5th Australian Remote Sensing & Photogrammetry 
Conference, 13th – 17th September, 2010. Alice Springs Northern Territory, Australia. 

 
Haywood, A. and Stone, C. (2009). Object-based analysis of forest stand delineation on high 

spatial resolution imagery using open source software. In: Forestry: a climate of change, 
Thistlethwaite, R., Lamb, D. and Haines, R. (eds). pp. 142–150. Proc. IFA Conf., 
Caloundra, Queensland, Australia, 6 – 10. September 2009. 

 
Haywood, A. and Stone, C. (2011). Mapping eucalypt forest susceptible to dieback associated 

with bell miners (Manorina melanophys) using laser scanning, SPOT 5 and ancillary 
topographical data. Ecological Modelling, 222, 1174–1184. 

 
Haywood, A and Sutton, M. (2009). Estimating forest characteristics in young Victorian ash 

regrowth forests using field plots and airborne laser scanning data. In: Forestry: a climate 
of change, Thistlethwaite, R., Lamb, D. and Haines, R. (eds). pp. 131–141. Proc. IFA 
Conf., Caloundra, Queensland, Australia, 6 – 10 September 2009. 

 
Johannsen, K., Grove, J., Hoffman, C. Kollar,S., and Phinn, A. (2010). Object-based image 

analysis of bank condition using airborne lidar and high spatial resolution image data. In 
Victoria, Australia.” 5th Australian Remote Sensing & Photogrammetry Conference, 13th 
– 17th September, 2010. Alice Springs Northern Territory, Australia. 

 
Kandel, Y.P., Fox, J. C., Culvenor, D., Arndt, S. K., and Livesely, S. J. (2009). Estimating 

aboveground biomass of native sclerophyll forest using airborne LiDAR. IUFRO 
Division 4.01 Conference: “Meeting multiple demands for forest information: New 
technologies in forest data gathering”, 17 – 20 August 2009, Mount Gambier- South 
Australia 

 
Liu, G., Choma, A., Clark, S. and Tierney, G. (2003). Extracting fine resolution hydrographical 

features from located airborne laser scanning point clouds for hydraulic modelling. 
Proceedings of the Spatial Sciences Conference, Canberra, Australia. 

 
Lovell J.L., Jupp D.L.B., Culvenor D.S. and Coops N.C.C. (2003). Using airborne and ground 

based ranging Lidar to measure canopy structure in Australian forests. Canadian Journal 
of Remote Sensing 29:607-622. 

 
Lovell J.L., Jupp D.L.B., Newnham G.J., Coops N.C. and Culvenor D.S. (2005). Simulation 

study for finding optimal lidar acquisition parameters for forest height retrieval, Forest 
Ecology and Management, 214(1-3): 398-412. 

 
Lucas, R., Bunting, P., Armston, J., Lee, A., and Campbell, G, (2010a), The Injune Landscape  



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, TAS, AU 

 12

Collaborative Project: An update on research activities. In: Proceedings of the 
Australasian Remote Sensing and Photogrammetry Conference, Alice Springs, Australia, 
13-17 September 2010. 

 
Lucas, R., Lee, A., Armston, J., Carreiras, J.M.B., Viergever, K.M., Bunting, P., Clewley, D., 

Moghaddam, M., Siqueira, P. and Woodhouse I. (2010b). Quantifying Carbon in Wooded 
Savannas: The Role of Active Sensors in Measurements of Structure and Biomass. In:  
Ecosystem Function in Savannas:  Measurement and Modelling at Landscape to Global 
Scales, Eds. M.J. Hill and N.P. Hanan, Taylor and Francis. 

 
Lucas, R.M., Cronin, N., Lee, A., Moghaddam, M., Witte, C. and Tickle, P., (2006). Empirical 

relationships between AIRSAR backscatter and Lidar-derived forest biomass, Queensland, 
Australia. Remote Sensing of the Environment, vol. 100, pp. 407 – 425. 

 
Mannes. D., and Stone, M. (2009). Operational Trial to Operational Reality. In: Proceedings of 

ForestTECH 2009 conference, Albury, NSW, Australia. pp 94-107. 
 
Moffiet, T., Mengersen, K., Witte, C., King, R., and Denham, R. (2005) Airborne laser 

scanning: Exploratory data analysis indicates potential variables for classification of 
individual trees or forest stands according to species. ISPRS Journal of Photogrammetry 
& Remote Sensing. Vol 59(5): 289-309. 

 
Murphy, G. E., Acuna, M. A. & Dumbrell, I. (2011). Tree value and log product yield 

determination in Radiata pine plantations in Australia: Comparisons of terrestrial laser 
scanning with a forest inventory system and manual measurements. Canadian Journal 
Forest Research, 40:2223-2233 

 
Park, H., Lim, S., Trinder, J. and Turner, R. (2010). 3D surface reconstruction of terrestrial laser 

scanner data for forestry. In: Proceedings of IGARSS  
 
Park, H., Turner, R., Lim, S., Trinder, J. and Moore, D. (2011). Analysis of pine tree height 

estimation using full waveform lidar. In: Proceedings of the 34th International Symposium 
for Remote Sensing of the Environment (ISRSE), Sydney, Australia, 10-15 April 2011. 

 
Roff, A., Taylor, G., Turner, R., Day, M., Mitchell, A. and Merton, R. (2006). Hyperspectral and 

lidar remote sensing of forest fuel loads in Jilliby State Conservation Area. In: 
Proceedings of the 13th ARSPC conference. 

 
Rombouts, J. H. (2006). Exploring the potential of airborne Lidar for site quality assessment of 

radiata pine plantations in South Australia: initial results. Paper presented to Research 
Working Group 2, Forest Measurement and Information Systems, Biennial meeting, 21-24 
November 2006, Woodend, Australia. 

 
Rombouts, J. H., Ferguson, I. S. and Leech, J. W. (2010). Campaign and Site effects in Lidar 

prediction models for Site Quality assessment of radiata pine plantations in South 
Australia. International Journal of Remote Sensing, 31, 1155-1173. 

 
Rombouts, J. H., Ferguson, I. S., Leech, J. W. and Culvenor, D. S. (2010). An evaluation of the 

field sampling design of the first operational Lidar based site quality survey of radiata 
pine plantations in South Australia. Conference Proceedings Silvilaser 2010, 14-17 
September 2010, Freiburg Germany. 

 
Scarth, P., Armston, J., and Danaher, T. (2008). On the Relationship between Crown Cover, 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, TAS, AU 

 13

Foliage Cover and Leaf Area Index. In: Proceedings of the 14th Australasian Remote 
Sensing and Photogrammetry Conference, Darwin, Australia, October 2008. (Eds 
Edwards, E., and Bartolo, R.)  

 
Stone, C., Turner, R., Kathuria, A., Carney, C., Worsley, P., Penman, T., Bi, H., Fox, J. & Watt, 

D. (2010). Adoption of new airborne technologies for improving efficiencies and 
accuracy of estimating standing volume and yield modelling in Pinus radiata plantations 
(PNC058-0809). Final Report for the Forest & Wood Products Australia Project 
PNC0-0809. Available on the FWPA website www.fwpa.com.au 

 
Stone, C., Turner, R., and Verbesselt, J. (2008) Integrating plant health surveillance and wood 

resource inventory systems using remote sensing. Australian Forestry, Vol. 71, No.3, pp 
245-253. 

 
Tickle, P.K., Lee, A., Witte, C., Lucas, R.M., Jones, K., Austin, J., Denham, R. & Good, N.M. 

(2001). The Operational Use of Airborne Scanning Lidar and Large Scale Photography 
within a Strategic Forest Inventory and Monitoring Framework. Geoscience and Remote 
Sensing Symposium, 2001, IGARSS '01, IEEE 2001 International Vol 3: 1000-1003. 

 
Turner, R. (2006). An airborne lidar canopy segmentation approach for estimating above-ground 

biomass in coastal eucalypt forests. PhD Thesis. School of Biological, Earth and 
Environmental Sciences, University of New South Wales, NSW. July 2006., 373 pp. 

 
Turner, R (2007). An overview of Airborne lidar applications in New South Wales state forests. 

Proceedings of the ANZIF Conference, June 2007, Coffs Harbour, NSW, Australia. 
 
Turner, R. (2008). Applications for remote sensing tools in forestry operations. Proceedings of 

the Australian ForestTECH Conference – April 2008, Albury, NSW, Australia.  
 
Turner, R. & Stone, C. (2010). Guide to acquisition and processing of remote sensing data for 

softwood plantations.  Document prepared for Forest & Wood Products Australia and a 
deliverable associated with FWPA Project PN058-0809.  Available on the FWPA 
website www.fwpa.com.au 

 
Turner, R., Stone, C., Kathuria, A. and Penman, T. (2011). Towards an operational lidar resource 

inventory process in Australian softwood plantations. Proceedings of the 34th 
International Symposium for Remote Sensing of the Environment (ISRSE), Sydney, 
Australia, 10-15 April 2011. 

 
Turner, R. & Webster, M. (2005). Estimating wood volumes in Australian River Red Gum 

(Eucalyptus camaldulensis) forest by combining airborne Lidar and a digital mapping 
camera.  Proceedings of Spatial Science Conference. September 2005. Melbourne: SSI. 
ISBN 0-9581366-2-9 

 
Witte, C., Denham, R., Turton, D., Jonas, D., Tickle, P. and Norman, P. (2000). Airborne laser 

scanning: A tool for monitoring and assessing the forests and woodlands of Australia. In: 
Proceedings, 10th Australasian Remote Sensing Conference, 21-23 August 2000, Adelaide, 
Australia. Paper No. 166, pp 348-362. 



1 
 

Airborne LiDAR based forest inventory in Bangladesh for REDD plus 
MRV: scope and potentiality 

 
Md. Parvez Rana1,2 *, Timo Tokola1, Hanna Holm3, and Tuomo Kauranne3  

1School of Forest Sciences, University of Eastern Finland, P.O.Box - 111, FI – 80101, 
Joensuu, Finland. Email: parvezra@student.uef.fi 

2Department of Forest Resource Management, Swedish University of Agricultural Sciences, 
901 83 Umeå, Sweden, Email: parvez_200207@yahoo.com 

3Arbonaut Ltd. Kauppakatu 21, 80100 Joensuu, Finland (firstname.lastname@arbonaut.com) 
 
Abstract 
Nowadays, the accurate measurements of carbon stock for carbon trading in REDD plus (Reducing 
Emissions from Deforestation and Forest Degradation in Developing Countries) countries are going 
highly demanding. IPCC (Intergovernmental Panel on Climate Change) Tier 3 level accuracy for 
estimation of emissions from deforestation and forest degradation requires detailed national inventory 
of key carbon stocks, repeated measurements and modeling. Present study has been carried out to 
know scope and potentiality of the airborne LiDAR based forest inventory in Bangladesh for REDD 
plus MRV (monitoring, reporting and verification). Here we supposed a hybrid method where the 
integration of airborne LiDAR data with satellite imagery and ground truth data based forest 
inventory in Bangladesh. As the forest of Bangladesh is highly dynamic and inaccessible due to hilly 
and mountainous area, this method will give an accountable and transparent report of carbon stock. 
We also highlighted the limitation of this approach in a developing country like Bangladesh due to 
poor economic and technical condition. Till now there is no record of application of airborne LiDAR 
system for forest inventory in Bangladesh. Finally, we recommended that the Forest Department of 
Bangladesh with financial and technical help from international organization can do a pilot project in 
Sundarban Mangrove Forest.  
  
Keywords: LiDAR, REDD, remote sensing, Bangladesh, Forest inventory 
 
1. Principle of airborne laser scanning (ALS) system 
Airborne laser scanning, LiDAR (Light Detection and Ranging) is an optical remote sensing 
technology which measures the properties of scattered light radiating from of a distant target. An 
airplane or helicopter-mounted sensor sends laser pulses towards ground and records the elapsed time 
between beam launch and return signal registration. A typical LiDAR system consists of three main 
components: a Global Positioning System (GPS) to provide position information, an Inertial 
Navigation System (INS) for attitude determination and a laser scanner to provide the range from the 
laser-beam firing point to its footprint (Bang et al. 2008). Some of the LiDAR pulses are reflected 
from tree canopy, trunks, branches, leaves or lower vegetation, but they also penetrate through the 
canopy layer reaching the ground, thereby profiling a three-dimensional point cloud image of the 
forest (Gautam and Kandel 2010). In addition, by varying the wavelength of the light transmitted, 
pulse frequency and duration, and other factors, LiDAR can be used in a variety of applications to 
detect numerous substances. 
 
There are two main categories of airborne LiDAR systems: small-footprint discrete-return LiDAR and 
large-footprint, waveform-recording LiDAR. Small-footprint discrete-return LiDAR devices measure 
either one (single-return systems) or a small number (multiple-return systems) of heights by 
identifying, in the return signal, major peaks that represent discrete objects in the path of the laser 
illumination. Large-footprint waveform-recording devices record the time-varying intensity of the 
returned energy from each laser pulse, providing a record of the height distribution of the surfaces 
illuminated by the laser pulse (Li 2009). Slender than 1 meter is usually categorized as small footprint 
and suitable for estimation of forest attributes at stand or single tree level, whereas large footprint 
reaching dozens of meters are normally designed for topographical survey of planet. 
 



2 
 

Airborne LiDAR based forest inventory is two types such as Individual Tree Detection (ITD) and 
Area Based method. The area based method is considered the more cost-efficient approach due to its 
lower pulse density (<1/m2), although it needs large amounts of expensive fieldwork, compared with 
the individual tree detection (pulse density >5/m2) to perform accurately. Area based method also 
called as distribution-based method that uses the canopy height or vertical distribution of laser echoes 
for estimating area-based forest inventory parameters (e.g. mean height, stem number, basal area, and 
volume) by statistical means (Naesset 2004). 
 
2. LiDAR technology for REDD plus Monitoring, Reporting and Verification  
REDD, Reducing Emissions from Deforestation and Forest Degradation in Developing Countries, 
refers to “an effort to create a financial value for the carbon stored in forests, offering incentives for 
developing countries to reduce emissions from forested lands and invest in low-carbon paths to 
sustainable development” (UNREDD 2010). The reason for including REDD in the carbon market is 
to allow developing countries to earn money simply by conserving their forests. The participating 
developing countries will receive a dual benefit from REDD. They can reduce their own country-
specific emissions on the one hand, as well as earn money on the other by selling credits thus 
achieved to rich countries, helping the latter meet their own emission-reduction targets. Within the 
mechanism of REDD, rich countries are allowed to pay for protecting tropical forests as a cost-
effective alternative to cutting their own GHG. Developed nations can buy credits from developing 
nations that are backed by reliably measured carbon stored in tree growth, thereby offsetting the 
higher cost of achieving corresponding reductions by cutting their own emissions. 
 
The significance of estimation of accurate carbon stock in the tropical forest has been growing 
radically. However, due to topographical complexity with lake of up-to-date data has been a 
challenging task to get a cost-effective, efficient and equitable approach to meet the carbon 
monitoring, reporting and verification. In addition, the conventional remote sensing technique with 
incorrect field measurement has made it difficult to gain accurate estimations of the biomass of 
tropical forests. Therefore, a hybrid approach, wherein airborne laser scanning is used with satellite 
image and sample field measurement, is a viable solution that can increase accuracy as well as reduce 
cost. Such an approach is feasible because wall-to-wall LiDAR meets even higher accuracy standards 
that are needed in operational forest management. When followed by adaptive statistical estimation, 
LiDAR is able to “teach” automatic satellite data interpretation to achieve almost the same level of 
accuracy, even when the area covered by LiDAR is just ten percent of the total. 
 
LiDAR, an emerging remote sensing technology, can improve the assessment of forests and make 
determinations of the amount of carbon stocks in a particular forest much more reliable. In addition, 
LiDAR technology is especially well-suited for use in the tropics, as it is less sensitive to weather 
conditions and sun angles than satellite imaging technology. The IPCC has proposed different levels 
of methodology for estimating greenhouse gas (GHG) emissions. These options are specified at 
different Tiers, which relate to methodological complexity. Moving from Tier 1 to Tier 3, the 
estimation of eligible forest carbon content requires steadily increasing accuracy, whereas the 
feasibility of estimation methods increases in the opposite direction. At Tier 3, higher accuracy—if it 
can be verified—is rewarded by a much higher compensation level per ton of carbon, due to better 
reliability of the assessed amount of carbon captured in forests. As well, Tier 3 estimates can be 
achieved and verified by adopting a LiDAR-based biomass and carbon assessment method. LiDAR-
based forest inventory has become the method of choice in operational forest management. 
 
In August 2010, Bangladesh joined in UN-REDD (The UN-REDD Programme is the United Nations 
Collaborative initiative on Reducing Emissions from Deforestation and forest Degradation in 
developing countries) as a partner country. Bangladesh Forest Department has been furnished a 
carbon stock inventory project for Sundarban Mangrove Forest and Eight Protected Areas.  In 
addition, 'Sundarbans Forest Carbon Inventory-2009' conducted by Forest Department (FD) of 
Bangladesh under assistance from USDA Forest Service, USAID and other collaborators. The 16th 
UNFCCC Conference of Parties (2009) in Mexico emphasizes on the integration of indigenous 
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knowledge (IK) and collaboration of indigenous people to the role of conservation, sustainable 
management of forest and enhancement of forest carbon stock. For the successful implementation of 
REDD plus mechanism relies on the accurate estimation of forest carbon stock that requires that there 
is an effective monitoring, reporting and verification system in operation. According to the 
Intergovernmental Panel on Climate Change (IPCC), moving from Tier 1 to Tier 3 requires higher 
accuracy and Tier 3 will be rewarded by a much higher compensation level per ton of carbon, due to 
better reliability of the assessed amount of carbon captured in forests. 
 
3. An overview of Bangladesh Forest  
Bangladesh occupies a unique geographic location (20ο34′N – 26ο38′N latitude to 88ο01′E – 92ο41′E 
longitude) – spanning a relatively short stretch of land between the mighty Himalayan mountain chain 
and open ocean. According to Forest Department and some other sources (Rana et al. 2009) forest 
cover is nearly about 2.53 million ha representing approximately 17.5% of the country’s total surface 
area (Figure 1, Table 1). Officially, Bangladesh Forest Department manages 1.53 million hectares of 
forest land of the country. Besides, 0.73 million ha of unclassed state forests (USF) are under the 
jurisdiction of district administration (Roy 2005). The annual deforestation rate in Bangladesh is 3.3% 
which is highest among the south-east Asian countries (Poffenberger 2000). Contribution of the 
forestry sector to Bangladesh GDP is 3.3% at current prices and about 2% of the country’s labor 
forces are employed in this sector (Siddiqi 2001). 
 

Table 1 Forest types and areas in Bangladesh 

            
            Forest type  
 

 
        Location 

Area 
(million 
ha) 

 
       Remarks 

 
 
 
 
  Hill forest 

Managed 
reserved forest 
(evergreen to 
semi-evergreen) 

Eastern part of the 
country(Chittagong, 
Chittagong Hill 
Tracts and Sylhet) 

0.67 Highly degraded and 
managed by the Forest 
Department. 

Unclassed state 
forest (USF) 

Chittagong Hill Tracts 0.73 Under the control of district 
administration and denuded 
mainly due to faulty 
management and shifting 
cultivation. Mainly scrub 
forest. 

 
 Plain land   
  forest 

Tropical moist 
deciduous 
Forest 

Central and north-
western region (Dhaka, 
Mymensingh, 
Tangail etc.) 

0.12 Mainly Sal forest but now 
converting to exotic short 
rotation plantations. 
Managed by the Forest 
Department. 

 
 
 
 Mangrove 

Sundarbans Southwest (Khulna, 
Satkhira) 

0.57 World’s largest continuous 
mangrove forest and 
including 0.17 million ha of 
water. 

Coastal forest Along the shoreline of 
twelve districts 

0.10 Mangrove plantations along 
the shoreline of 12 districts. 
Managed by Forest 
Department. 

 
 
   Village forest 

Homestead Forests all 
over the 
Country 

0.27 Diversified productive 
system. Fulfill majority of 
country’s domestic timber, 
fuelwood and bamboo 
requirements. 

  Plantation in tea and 
   rubber gardens 

Chittagong Hill Tracts 
and 

0.07 Plantations of various short 
rotation species (mainly 
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Sylhet exotics). 
   Total forest  2.53 17.49 % of country’s total 

landmass 
Source: Mukul et al. (2008)  
 

 
Figure 1: Map showing the distribution of forest in Bangladesh (Bangladesh Forest Department 2008) 
 
5. Sampling design followed for forest inventory in Bangladesh 
The last National Forest Inventory (NFI) in Bangladesh has been carried out in 2005-2007 by 
following systemic sampling method with technical suggestion from FAO Forest Resources 
Development Service (FOMR). “Tract” was regarded as a sampling unit for ground truth data 
measurement. 299 tracts or samples site was the result for field measurement after following 
systematically distribution of sample sites with an interval of 15 minutes latitude and 10 minutes 
longitude where the sample coordinates represent the South-West corner of the tracts (NFTRA 2007). 
Each tract represents a square of 1km*1km (1km2) contains 4 plots (the dimension of 20m*20m or 
0.5ha). The plot orientation in each tract was such as Plot # 1 North-ward, Plot # 2 East-ward, Plot # 3 
South-ward and Plot # 4 West-ward. If the plots are in the land use class of “Forest”, circular subplots 
was established to collect data on tree regeneration. As tree diversity is very high with respect to wide 
variety of size, age and species composition, it was recommended that Concentric Circular Sample 
Plots (CCSPS) are used to tallying trees (NFTRA 2007; van Laar and Akcal 1997). A circular plot 
that was regarded as subplot  with radii of 3.99 m (50m2) that was placed with their center at 5m, 
125m and 245m from the plot starting point along the plot central axis (see Figure 2). In addition, the 
CCSP is easy to locate in a rugged and fragile topography like in Bangladesh and it has less edge 
effect as compared to square/rectangular plot. All the living trees above the diameter of 5cm was 
tallied and measured within the radius of the circular plot.  
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wax, fish, crab etc which are also of high value. Considering the importance of preserving 
biodiversity of the Sundarbans, the UNESCO had on December 6, 1997, declared the forest as the 
798th ‘World Heritage Site’. It is also one of the two RAMSAR sites of the country. 
 
However, mangrove forest is facing severe problem including over exploitation of forest resources, 
conversion of forest stand to shrimp pond. In addition, nowadays, salinity intrusion due to declining 
fresh water flows is also going a big issue. Furthermore, tree mortality especially top dying of Sundri 
tree makes an uncertain future of mangrove forest. Poor forest management strategy with weak law 
enforcement reducing the productivity of mangrove forest.  
 
A good forest management plan is necessary for Sundarban mangrove forest which is ecologically 
suitable, economically feasible, and socially acceptable that achieves the core objectives of 
sustainable forest management. Till now there is no record of application of airborne LiDAR system 
for forest inventory in Bangladesh. Therefore, an integrated approach like as LiDAR mapping in this 
forest is recommended.  Area based LiDAR inventory is recommended in Sundarban mangrove forest 
for accurate carbon estimation for REDD plus monitoring, reporting and verification. The strength of 
area based method lies in their robustness, relative simplicity, lower computational requirements and 
proven ability to generate unbiased estimates of dynamic and inaccessible Sundarban mangrove forest 
attributes including, carbon stock, basal area, volume, mean diameter and mean height.  
 
6. Potentiality and advantage of LiDAR application for forest inventory in Bangladesh 
Forest inventory in tropical countries like Bangladesh is quite difficult and challenging. Due to 
heterogeneous characteristics of forest, it takes long time and more costly for measurement of forest 
resources. In addition, the access to the forest area is also difficult due to steep terrain and hilly area. 
Remote sensing technique is a important way to measure the forest resources without entering the 
forest. However, conventional remote sensing technique is not efficient for measurement of forest 
resources in hill forest of Bangladesh. Airborne laser scanning is an active remote sensing technique 
that permits observation of the vertical structure of forest. LiDAR data has a great advantage 
compared to conventional optical remote sensing data/imagery, which suffers from saturation and 
only shows the topmost layer of the vegetation, while laser pulses penetrate through even a dense 
canopy. 
 
LiDAR is able to meet the demanding accuracy requirements of operations planning better than any 
previous technology, also in large-scale forest inventory. As species diversity is very high in 
Bangladesh, the accurate measurements of carbon stock in each type of forests are very necessary. 
Therefore, the greatest advantage and potentiality of LiDAR is that it is highly capable of monitoring 
three-dimensional forest structure. Forest carbon content can be measured very accurately from 
LiDAR pulse with describing estimated tree height, above-ground biomass, timber volume and crown 
parameters. LiDAR can also measure forest biomass from individual trees to vegetation on a local, 
regional and national level. 
 
LiDAR technology will be well-suited for forest inventory in Bangladesh as it is less sensitive to 
weather conditions and sun angles than satellite imaging technology. In addition, the integration of 
Airborne Laser Scanning (LiDAR), satellite image and field measurement with advanced statistical 
models on sample plots, it becomes most powerful tool for sustainable forest resource management. 
Finally it is already proved that the LiDAR based carbon stock measurement is more reliable in 
tropical, temporal and other regions (Figure 3) (Næsset 2009) 
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indigenous people has significant prospect in Bangladesh. The Forest Department and Government of 
Bangladesh with financial or technical help from international organization can make a prosperous 
and effective management of forest resources.  For Tier 3 level REDD plus monitoring, reporting and 
verification of forest resources, this hybrid method (LiDAR with satellite imagery and ground truth 
data) will be very effective in Bangladesh. This integrated system will be able to produce consistent 
reports and a source of verification for any geographic area in Bangladesh.  
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Abstract 
Models derived using Brieman’s Random Forests algorithm have been identified in past studies 
as having greater predictive accuracies than those derived using nearest neighbour imputation 
approaches. This is attributed to the algorithms ability to model complex interactions among 
predictor variables and its resistance to overfitting. These two properties are of particular value 
in modelling LiDAR-derived variables where strong colinearity is a common feature. In this 
study, the random forest algorithm is applied to a large inventory dataset to generate mapped 
estimates of forest stand structure. The ability of the algorithm to identify an optimal set of 
candidate variables is assessed by means of an iterative model fitting procedure. The study area 
comprises a eucalypt hardwood plantation estate in northern Tasmania, Australia. Model pseudo 
R2 values were 74.6% for basal area, 96.0% for mean dominant height, 64.2% for stocking and 
83.9% for merchantable stand volume respectively. 

1. Introduction 
Forestry Tasmania is the agency responsible for the management of Tasmanian state forests. 
This estate is managed for a variety of outcomes, including conservation and timber production. 
Embedded within the estate is a plantation resource of Eucalyptus nitens and E. globulus 
covering 42 000 Hectares that is predominantly managed for a high value sawlog yield. Most of 
this plantation comprises first rotation plantings on sites formerly carrying native forest. The 
spatial variability in stand condition and woody weed load is very high, as is the demand for 
precise wood inventory. Until recently, field-based inventory techniques have been the sole 
source of the necessary planning information. Consequently, management options have been 
constrained by the poor spatial resolution of information that field-based inventory can provide. 
In the past 18 months the agency has commenced acquisition of small footprint discrete return 
LiDAR data over the entire estate. Amongst several other objectives, the organisation seeks to 
improve the precision of its wood inventory using this dataset. The approach taken to realise 
this objective follows that of numerous other workers (e.g. Evans et al., 2006; Lim et al., 2003; 
Magnussen & Boudewyn, 1998; Næsset, 1997a; Næsset, 1997b; Nelson et al., 1988; Reutebuch 
et al., 2005; Ritchie et al., 1993) and involves the derivation of raster-based LiDAR variables, 
such as height quantiles and proportion of returns from within, or below, specific height classes, 
which are then used to develop models to predict and map stand-level metrics of forest 
structure. 

An important strand of research within the field of LiDAR-based forest inventory has focussed 
upon identifying optimal statistical approaches to model development and application. Early 
research utilised traditional parametric approaches, such as stepwise least squares regression, as 
statistical inference tools (e.g. hypothesis testing, confidence limits etc.) were central to 
fulfilling the objective of establishing the validity of LiDAR as an inventory data source. More 
recently, research has focussed on identifying modelling approaches that can be used to extract 
the maximum information content from the LiDAR data. The Random Forests (RF) algorithm 
(Breiman 2001) has been identified as the most accurate in a number of forest remote sensing 
applications when compared against nearest neighbour imputation approaches (Falkowski et al., 
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points were recorded at each plot. These were differentially corrected in a post processing step 
that ensured sub-metre planimetric (X, Y) standard errors for all plots. On each field plot, the 
magnetic bearing and horizontal distance to all trees with stem overbark diameter at 1.3 metres 
above ground (DBH) over 5cm was recorded. The tree species, total height and DBH of all trees 
over 5cm was recorded. Potential stem product at harvest was also assessed and recorded using 
Forestry Tasmania inventory standards. All tree DBHs were measured using diameter tapes. All 
tree total heights and distances were measured using a Vertex ultrasonic hypsometer. Ocular 
estimates of average canopy height and percentage canopy cover for all understory species with 
estimated canopy cover over 10% were also recorded. Three photos were taken from the plot 
centre providing a qualitative record of field plot conditions. These were taken facing north, 
south and vertically.  

The following response variables were calculated using the commercial tree species data:  

1. BA: Basal area 
2. MDH: Mean dominant height (the average height of the 50 tallest trees per hectare) 
3. N: Stocking 
4. V: Merchantable stand volume (calculated using unpublished tree-level stem volume 

models developed by Forestry Tasmania). 

2.3 LiDAR data and processing 

AMM acquired the LiDAR data during the summer of 2009-2010 using an Optech Gemini 
discrete-return scanner. The maximum scan angle was set at 25° from nadir and the minimum 
point density was 200 points per 10 square meters. Up to four returns were recorded per pulse. 
The data were classified as ground or non-ground using proprietary algorithms and delivered in 
LAS 1.2 format. Each LAS file comprised a 600×600 metre tile with a 50 metre overlap to tiles 
adjacent. Vegetation height was calculated after interpolating a 1 metre resolution digital terrain 
model from the ground-classified returns using a multi-level B-spline (Lee et al. 1997).  

LiDAR returns with a 5 metre buffer that were spatially coincident to the field plots were 
extracted from the delivered data. Rasters of interpolated LiDAR returns and 3D graphs for each 
plot were produced. A particularly striking feature of the data was the high degree of 
discrimination between the eucalypt and non-eucalypt returns based on the return intensity. 
Eucalypt canopy elements typically displayed return intensities less than 18, while non-eucalypt 
canopy elements typically displayed return intensities greater than 15. The most common non-
eucalypt elements were species of the Acacia genus. 

A range of candidate predictor variables were extracted from the LiDAR data by means of two 
separate processes. In the first process, the returns were clipped to the extents of the field plot 
boundaries and numerous grid-based candidate predictor variables were then extracted. These 
comprised percentiles and moments of both vegetation height and intensity, proportions of 
returns within vegetation height and intensity strata defined in both absolute and relative terms 
and two measures of scan angle incidence: the average scan angle and the scan angle range (the 
latter, a metric that identifies whether the points arise from one or more flight paths). In the 
second process, a 0.5 metre resolution canopy height model (CHM) was interpolated from the 
vegetation height data for each field plot. These CHMs were Gaussian filtered with a 3×3 cell 
kernel. A simple min-max filter was then applied to identify high points in the data. The CHMs 
were then clipped to the extents of the field plot boundaries and a numerous grid-based 
candidate predictor variables were then extracted. These comprised total cover (the proportion 
of pixels with vegetation height > 2 metres), total volume (the sum vegetation height), the 
number of height maxima identified using the min-max filter, and the moments of the CHM 
grid cells. 
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A complete list of the candidate predictor variables derived through these two processing steps 
appears in Table 1. It includes the age and the species of the commercial crop as derived from 
the operations database. Several other potential predictors were not used in this study. In 
particular, the timing and intensity of any pruning and/or thinning operations was ignored since 
the spatial accuracy of operational boundaries is not sufficient for high resolution mapping 
purposes. In total, 75 candidate predictor variables were available for modelling. 

Table 1: Candidate predictor variables derived from the LiDAR data 

Variable(s) Number of 
variables Variable description 

hp10, hp20, ... , hp100 10 Height percentiles (10%, 20%, ... , 100%) 

rhp10, rhp20, ... , rhp90 9 
Height density (proportion of returns with height 
greater than: 10%, 20%, ...:, 90% of maximum 
height) 

hs10, hs20, ... , hs50 5 Height strata (hp90 – hp80, hp90 – hp70, ... , hp90 – 
hp40) 

rhs10, rhs20, ... , rhs50 5 Canopy density strata (rhp90 – rhp80, rhp90 – 
rhp70, ... , rhp90 – rhp40) 

hvar, hskew, hkurt 3 Height moments (variance, skewness, kurtosis) 

ip10, ip20, ... , ip100 10 Intensity percentiles (10%, 20%, ... , 100%) 

rip10, rip20, ... , rip90 9 
Intensity density (proportion of returns with 
intensity higher than: 10%, 20%, ...:, 90% of 
maximum intensity) 

is10, is20, ... , is50 5 Intensity strata (ip90 – ip80, ip90 – ip70, ... , ip90 – 
ip40) 

ris10, ris20, ... , ris50 5 Intensity density strata (rip90 – rip80, rip90 – rip70, 
... , rip90 – rip40) 

ivar, iskew, ikurt 3 Intensity moments (variance, skewness, kurtosis) 

hsurfcov, hsurfvol, hsurftree, 
hsurfvar, hskew, hkurt 6 

Height surface metrics (total cover, total volume, 
number of height maxima, variance, skewness, 
kurtosis) 

meanscan, rangescan 3 Scan angle (mean, range)  

eucAge, eucSPP 2 Commercial crop age and species 

2.4 Modelling approach 

While the random forests algorithm is generally considered to be robust to overfitting and 
capable of generating highly accurate predictions in the presence of spurious predictor variables 
(Cutler, et al., 2007) it was thought necessary to assess this. Of particular interest was the 
predictive accuracy of the RF model in the presence of a large number of candidate predictor 
variables. In order to investigate this, a two-stage iterative approach was taken.  
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In the first stage, RF models were constructed using the all potential predictor variables. The 
least important predictor variable was then identified as that which caused the least decrease in 
model psueudo-R2 upon removal. This predictor variable was then removed from the list of 
candidate predictor variables and the process repeated until no variables were available for 
model fitting. As the RF algorithm relies upon bootstrap sampling of the data, the result of this 
iterative model construction is conflated with the bootstrap sampling error. In order to identify 
the relative importance of candidate predictor variable removal and the bootstrap sampling 
error, this iterative process was run 25 times. Upon completion, the results were inspected and 
the optimal number of candidate predictor variables identified for each response variable.  

In the second stage, a similar iterative process was then run 50 times. In each iteration, the 
process was stopped when the model contained the number of candidate predictor variables 
identified as optimal in the first stage. At the completion of each iteration the resulting 
identified predictor variables were recorded. Final model building was undertaken using the list 
of candidate predictor variables identified in this second stage.  

In all cases, RF models were constructed from 500 CARTs. The number of predictor variables 
randomly sampled as candidates at each split in each CART was set to the total available 
candidate predictor variables divided by 3. All bootstrap sampling was done with replacement. 
The minimum size of terminal nodes in each CART was set to 5. 

All predictor variables identified in the final RF models were derived over the study area at a 4 
meter cell resolution. The chosen random forests models were then used to generate predictions 
for the response variables across the plantation compartments within the study area.  

All LiDAR processing and modelling work was undertaken using open-source software. The 
principle software tool used was the R language and environment (R Development Core Team 
2011) with the additional packages: sp (Pebesma and Bivand, 2005; Bivand, Pebesma and 
Gomez-Rubio, 2008), MBA (Finley and Banerjee, 2010), data.table (Dowle and Short, 2011), 
moments (Komsta and Novomestky, 2007), rgdal (Keitt et al., 2010), foreach (Revolution 
Analytics, 2011) and Rmpi (Hao Yu, 2010). The high computing load involved in generating 
large area rasters was accommodated using 30 Xeon cores in a virtual machine cluster that was 
managed using openMPI (Gabriel et al., 2004) on an openSUSE 11.0 Linux-based operating 
system. The processing time using this cluster averaged 0.43 seconds per hectare. 

3. Results 

3.1 Field data 

Scatterplots of the four response variables (BA, MDH, N, V) and two candidate predictor 
variables (eucAge and eucSPP) appear in Figure 2. Strong relationships are apparent between 
merchantable stand volume, basal area and mean dominant height. Weaker relationships appear 
between age and stocking, and other variables. Stocking varies widely and is quite high is some 
plots, reflecting the presence of double leader stems in many areas. Basal area, stocking and 
merchantable stand volume all show skew that is typical in these stands. Most of the plots 
comprise plantings of Eucalyptus nitens (eucSPP = 1). There are no substantial response 
variables differences between crop species. 

3.2 Random Forest modelling 

Figure 3 present the results of the stage one iterative process in which candidate predictor 
variables identified as the least important in the RF model built in the first step were removed 
from the candidate list in the second step. Each coloured line represents the results of a single 
run with iterative removal of candidate predictor variables. The scatter between the lines about 
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Figure 2: Scatterplots matrices of field plot data: the four response variables (BA, MDH, N, V) and two 

candidate predictor variables (eucAge and eucSPP). Eucalyptus nitens is coded eucSPP = 1. E. globulus is 
coded eucSPP = 2. 

the model pseudo R2 values reflects bootstrap error. In each case, model pseudo R2 increases 
slightly with iterative removal, with the smallest increases observed for the mean dominant 
height model and the largest increases for the stocking model. Evident from these plots is the 
degree to which model accuracy is impacted by the presence of spurious predictor variables. In 
particular, the stocking model performs poorly when all candidates are available for fitting and 
shows a marked improvement with candidate removal. The relationship does not appear to be 
solely a function of model pseudo R2 as the merchantable stand volume model shows a larger 
improvement than does the basal area model, yet also has a larger model pseudo R2 across the 
number of available candidate predictor variables. The bootstrap sampling error is a substantial 
component of the signal in all cases. 

Viewing Figure 3, it is evident that approximately 15 predictor variables are required to 
construct RF models for these forest metrics with maximum predictive accuracy. In stage two of 
the modelling process, the iterative procedure was rerun 50 times until only 15 predictor 
variables were left in each model. The list of predictor variables by the number of times each 
appeared in the final models appears in Figure 4. From the original list of 75 candidate predictor 
variables, 50 remain. Of these, 39 appear in 10 or more of the 50 models constructed for one or 
more of the response variables. Of note is the strong degree of separation in predictor variables. 
Of the 23 variables used to predict stocking, 9 predict nothing else. Of the 21 variables used to 
predict basal area, 2 predict nothing else. Of the 27 variables used to predict mean dominant 
height, 12 predict nothing else. Only those 23 variables used to predict merchantable stand 
volume are shared with other models, reflecting the fact that merchantable stand volume largely 
integrates the other stand metrics. Also of note is the large number of return intensity derived 
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Figure 3: Stage one results. RF model pseudo R2 versus the number of candidate predictor variable 

available for RF modelling. Each coloured line represents the results of a single run with iterative removal 
of candidate predictor variables.  

 
Figure 4: Stage two results. Candidate predictor variables versus the number of iterations in which they 

are identified in the list of final 15 predictor variables for each of the four response variables 
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metrics amongst the identified predictor variables indicative of the importance of return 
intensity in discriminating between eucalypt and non-eucalypt species.  

In the final step, the predictor variables identified as candidates in the two stage iterative process 
were used to construct RF models to be applied across the estate. Figure 5 presents scatterplots 
of observed versus predicted response variables. Model performance is generally good, with 
pseudo R2 values of 74.6% for basal area, 96.0% for mean dominant height, 64.2% for stocking 
and 83.9% for merchantable stand volume respectively; and root mean square error values of 
5.109m2ha-1 for basal area, 1.490m for mean dominant height, 215.6 stems ha-1 for stocking and 
48.83m3ha-1 for merchantable stand volume. Both basal area and merchantable stand volume 
display some positive bias in the lowest quartile and one or more outliers are present for all 
models. The very low error in mean dominant height prediction provides some comfort that 
field data acquisition standards are well implemented as this value approaches the measurement 
error rate expected in this forest type. 

 
Figure 5 Observed response variables versus those predicted using the RF models derived using the final 

list of candidate predictor variables. Eucalyptus nitens is blue. E. globulus is red. 

4. Discussion 
The random forests algorithm was used to build predictive models that displayed accuracies 
broadly similar to those published elsewhere (e.g. Lefsky et al., 1999; Magnussen and 
Boudewyn, 1998; Maltamo et al., 2004; Næsset, E., 2002; Næsset and Økland, 2002). The 
iterative procedure used to eliminate spurious candidate predictor variables improved the 
prediction accuracy of the stocking and merchantable stand volume models, but not the basal 
area or mean dominant height models. Some researchers have considered LiDAR-based 
estimates of tree and stand height be more accurate than field-based measurements (Næsset and 
Økland, 2002; Coops et al., 2007). The mean dominant height model presented in this study 
displayed a predictive accuracy similar to the measurement precision expected of Forestry 
Tasmania field crews, so these results do not contradict that view. The capacity of LiDAR to 
accurately measure forest vertical structure leads to models of forest attributes such as basal area 
that display predictive accuracies somewhat greater than one might expect given the 
characteristic allometric relationships between stand metrics observed in these forests. The 
degree to which separate models utilised separate sets of LiDAR-derived metrics is likely to 
explain this discrepancy. An example of this separation was seen in the return intensity metrics 
in particular, where the distinctive intensity signature of the eucalypt crop species was exploited 
to predict stocking. 

Future work with this dataset will focus on two areas. Firstly, an appropriate nearest neighbour 
imputation approach will be identified that can be used to assign field inventory derived stem 
quality data to raster surfaces and more accurately represent the stand level metric covariance 
structure. While recognising this will sacrifice predictive accuracy of individual stand level 
metrics, it will allow the LiDAR data to be used in Forestry Tasmania’s growth and yield 
system to project stand conditions through time and inform strategic planning decisions. 
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Second, alternative approaches to single tree identification will be investigated to improve the 
predictive performance of the stocking model in older, more valuable stands. 

5. Conclusions 
LiDAR data was evaluated for its efficacy in mapping stand-level inventory metrics in 
Tasmanian eucalypt plantations. The study found model performances were broadly in 
accordance with other LiDAR studies, with model pseudo R2 values of 74.6% for basal area, 
96.0% for mean dominant height, 64.2% for stocking and 83.9% for merchantable stand volume 
respectively. An iterative procedure was used to eliminate spurious candidate predictor 
variables. This process improved the prediction accuracy of the stocking and merchantable 
stand volume models, but not the basal area or mean dominant height models. LiDAR return 
intensity was an important predictor variable in all models, reflecting the differences observed 
in return intensity between eucalypt, and non-eucalypt species. 
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Abstract:  
 
Conventional resource inventories in Australian softwood plantations usually utilise Geographic 
Information System (GIS) thematic layers to stratify the resource prior to field sampling. 
Airborne lidar can offer a viable alternative for stratification but there are no standardised 
methods for plantation managers. This paper explores issues with current thematic stratification 
approaches and argues that relatively basic metrics extracted from a lidar-derived canopy height 
model (CHM) are suitable for constructing better stratification options. The case is supported 
with findings from an airborne lidar inventory undertaken in a pine plantation in New South 
Wales (NSW), Australia. Lidar stand level metrics including mean height, mean above mean 
height, mean dominant height, predicted stocking, canopy cover percentage, occupied volume 
and height variance were tested as surrogates for plantation structure. The study demonstrated 
that lidar metrics can predict stand attributes such as age class (R2 = 0.91, RMSE 1.9), thinning 
treatment (89% accuracy), mean height, (R2 = 0.95, RMSE 4%), stocking (R2 = 0.82, RMSE 
26%), basal area (R2 = 0.67, RMSE 19%) and total stand volume (R2 = 0.8, RMSE 19%) across 
a range of stand structures. Since the metrics tested were highly correlated with survey data it is 
argued that they could provide a valid basis for a developing a new structure stratification 
approach to improve sampling design in future plantation resource inventories.  
 
Keywords: Airborne lidar, softwood plantation, stratification and wood resource inventory. 
 
1. Introduction  
 
Australian plantation managers are moving toward the adoption of airborne lidar technology for 
operational resource assessment. One area of interest to plantation managers is how to use lidar 
metrics to improve plantation stratification and field sample design. Ground survey costs often 
represent the greatest expenditure in wood inventory programs and lidar has the potential to 
significantly improve the cost-efficiency of resource inventories (Maltamo et al. 2011). 
 
This paper presents a subset of results from a two year project called the Plantation Airborne 
Resource Inventory Appraisal (PARIA) sponsored by the Forest & Wood Products Australia 
(FWPA) and Forest New South Wales (FNSW) (www.fwpa.com.au). The PARIA project 
explored the use of airborne lidar and multispectral aerial photography for a range of 
applications (Stone et al. 2011; Turner et al. 2011) and produced a guide for plantation 
managers who may not be familiar with remote sensing technology (Turner and Stone 2010).  
  
1.1 Conventional thematic stratification  
 
The main purpose of resource inventory surveys is to collect plantation statistics that are 
representative of the population. A common traditional approach involves subdividing a 
plantation into relatively homogenous groups (strata units) and then allocating plots in a 
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systematic grid to achieve a suitable plot to area ratio (e.g. 1 plot per 4 hectares). Circular plots 
(0.05 to 0.1 hectares in area) are then field located, measured and later processed to derive a 
range of plot level attributes expressed on a per hectare basis. Plot estimates are multiplied by 
the area they represent and then results are aggregated for each stratum and plantation estate.  
 
A successful stratification should ideally meet two important criteria. Firstly the structural 
variation within each stratum should be as small as possible (i.e. very uniform). Secondly, there 
should be considerable difference between strata with minimal overlap in structure parameters.  
In FNSW, resource units are the smallest unit of management and are typically spatially defined 
with existing GIS thematic layers such as road, compartment, net stocked area, age class and 
silvicultural treatment boundaries. However, in reality, there are a number of issues regarding 
the use of thematic layers as a means of stratifying a plantation. For example: 
 

• Subtle variation in structure can still occur within a resource unit, even within the same age 
and thinning status, hence they can be a coarse predictor of actual plantation variation.  

• GIS thematic line-work or categorical labels can sometimes be outdated and consequently 
any error in these layers also affects the stratification results. 

• Age class is unambiguous, but thinning treatment classes are not always consistent between 
sites and can mean different things in different regions and at different times. This makes it 
difficult to assume a standardised structure for a given silvicultural event.  

• Silvicultural treatment classes are not static over time. For example, two stands may be 
classed as first thinning (T1), but one may be a recent event while another may have 
occurred several years earlier. Although both are classed as T1, the older thinning will have 
fewer canopy gaps and hence a different structure. 

• Other factors that affect stand structure are often unaccounted for in GIS thematic layers 
(e.g. localised storm damage, losses due to drought, pests and diseases, genetic variation in 
seed sources etc), and this weakens the assumption of stand uniformity.  

 
1.1 Stratification with airborne lidar 
 
In contrast, airborne lidar can provide rapid wall-to-wall continuous variables that are more 
sensitive to subtle changes in plantation structural variation. Various studies have investigated 
lidar stratification options. Antonarakis et al. (2008) developed a landcover classification 
approach using lidar metrics including elevation and intensity values. Hawbaker et al. (2009) 
found lidar stratification superior to conventional systematic sampling in mixed forest in 
Wisconsin, USA. While Maltamo et al. (2011) found lidar stratification provided the most 
accurate results for estimating stand volume and stocking in mixed conifer forests in Norway. 
 
Some studies have utilised an object-based image analysis (OBIA) approach to delineate stands 
with similar charateristics. Pascual et al. (2008) used a two stage approach for classification in 
Pinus sylestris stands in Spain. They initially grouped similar stands using Definiens 
eCognition® (www.ecognition.com) with a lidar CHM, and then used a k-means algorithm to 
classify them into structure types. Stone et al. (2011) successfully applied eCognition rule-sets 
based on a lidar CHM to classify landcover and thinning status in pine plantations in Australia. 
Other studies have used Size-Constrained Region Merging (SCRM) software (Castilla et al. 
2008; Chen and Hay 2011) to achieve similar results. Although object-based approaches can be 
effective in segmenting stand polygons, these units can still contain considerable internal 
variation which has implications for field sampling. Furthermore, Castilla et al. (2008) note that 
OBIA methods require the setting of parameters which are non-intuitive to the user.  
 
Lidar technology offers considerable flexibility when quantifying forest structure. For example, 
various studies have investigated a wide range of lidar structure attributes including height 
percentiles (Andersen et al. 2005; Hilker et al. 2010; Maltamo et al. 2011), canopy cover 
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percentiles (Jochem et al. 2011; Vastaranta et al. 2011), Weibull distribution (Gobakken & 
Naesset 2005), height skewness (Antonarakis et al. 2008; Latifi et al. 2010) and canopy volume 
as three-dimensional grid cells or voxels (Lefsky et al. 1999; Coops et al. 2007). However, 
many lidar metrics can be very complex and computationally problematic when processing 
large areas of plantation. Moreover, they can require specialist skills and software. For this study, 
the focus was on utilising lidar metrics that can be readily calculated using commercial software 
available to most Australian plantation managers. ArcGIS, for example, is used extensively and 
most foresters are familiar with its operation. In addition, airborne lidar datasets are 
predominantly supplied as CHMs in raster format which are suitable for analysis in ArcGIS. 
The lidar metrics presented later in this paper are currently being incorporated into a new 
ArcGIS lidar toolbox under development at the Forest Science Centre (Department of Primary 
Industries NSW) specifically designed for plantation managers.  
 
1.3 Objectives  
 
The objectives of this study were to: 
 

1. quantify structural variation in a traditional thematic-based stratification approach 
used by FNSW, and 

2. demonstrate that basic lidar metrics can predict both thematic attributes and survey 
stand attributes. 

 
An evaluation of results will help to postulate a strategy for developing a lidar stratification 
approach in softwood plantations.  
 
2. Study area  
 
The study area was situated within Green Hills State Forest (SF), located near the town of 
Batlow in the Southern Tablelands of NSW, Australia (see Stone et al. 2011 for details). The 
5,000 ha Pinus Radiata plantation has undulating hilly topography and a mean elevation of 
750m. The site contains a full representation of age classes, silvicultural treatments and terrain 
steepness categories. 

 
3. Methodology  
 
3.1 Lidar acquisition and processing 
 
Airborne lidar data was acquired in July 2008 using a Lite Mapper LMS-Q560 ALS system 
(Riegl, Austria) mounted in a fixed-wing aircraft. The mission specifications included a mean 
footprint diameter of 60 cm, maximum scan angle of 15o (off vertical), and a mean point density 
of 2 pulses/m2 (based on the non-overlap portion of the swath). Lidar data was provided in LAS 
format and processed to generate a Digital Terrain Model (DTM) at both 1.0m and 0.5m pixel 
resolution using a standard linear triangulation surface modelling technique in Environment for 
Visualizing Images (ENVI) software (Research Systems Incorporated, USA). In addition, a 
Vegetation Elevation Model (VEM) was generated from all laser points and the DTM was then 
subtracted from the VEM to derive CHMs at 1.0 m and 0.5 m pixel resolution. 
 
3.2 Sampling design and field surveys 
 
To cover the structural variation within the plantation the site was initially stratified by three 
thematic factors (i.e. age class, thinning treatment and ground slope categories) into 16 strata 
classes (Stone et al. 2011). Each stratum was randomly allocated four circular plots (except for 
one) bringing the total to 63 field plots. With known differences in stocking between strata 
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classes, variable sized plots (with radii ranging from 7 m – 20 m) were utilised to achieve at 
least 15 trees per plot. 
 
Each individual tree and plot centre was accurately surveyed using a laser theodolite (Leica 
T1100 total station) and a Differential Global Positioning System (DGPS). Trees were allocated 
a unique ID number and then measured for stem diameter and tree height (measured twice using 
a Vertex hypsometer). A localised equation based on stem diameter and height values was then 
applied to derive gross volume estimates. Individual tree data was then aggregated to generate 
plot level estimates (stand attributes – SA) including: 
 

• mean height (MH),  
• stocking (STK),  
• basal area (BA) and 
• total standing volume (TSV). 

 
In addition to the 63 research plots, 100 conventional forest inventory plots were measured 
independently within the same study area at around the same time. Twenty five plots were 
established in four strata: an unthinned (UT) 1998 age class (AC), a UT 1983 AC, a second 
thinning (T2) 1983 AC and a T2 1979 AC. Plots were located in the field using a Scout Pak GPS 
(Juniper Systems) with post-processing differential correction. Plots were measured in 
accordance with standard FNSW inventory procedures and plot level estimates were derived for 
stocking, basal area, mean tree height and volume. 
 
3.3 Extraction of lidar metrics 
 
As a surrogate for structural variation, several focal-based stand level metrics were extracted 
from the 1m CHM using a 0.1 ha circular search windows with a series of Interactive Data 
Language (IDL) scripts. Within the focal window the following lidar metrics were calculated: 
 

• Mean height (MH): the mean height of all pixels in the focal search window, 
• Mean above mean (MAM): the mean height of pixels above MH, 
• Mean Dominant Height (MDH): the mean height of pixels found using a 5x5 pixel 

local maxima search, 
• Predicted Stocking (PSTK): The count of pixels found using a 3x3 pixel local 

maxima search, expressed as stems per hectare, 
• Canopy cover percentage (CC): the percentage of pixels above 3m in height,  
• Occupied volume (OV): the sum of all pixel heights (i.e. the space occupied from 

the upper canopy to the ground), and  
• Height variance (Var): a measure of how the pixel height values are distributed 

around the mean height.  
 
The focal statistics above are all derived from a 1m CHM which means they are less sensitive to 
subtle variations in the original sampling density (e.g. 1 to 5 pulses per m2), or scan angle 
variations, compared to point statistics. All calculated raster surfaces were generated at 1m pixel 
resolution. A pixel resolution of 0.5m was also considered but later rejected as it was visibly 
affected by lidar scan overlap issues. In addition, the processing time for a 1m CHM is 
considerable shorter. Although processing scripts used in this study were written in IDL they are 
currently being scripted for ArcGIS through a series of multistage processing steps. 
 
To extract the lidar metrics the survey centre points were initially buffered up to a radius of 35m. 
Because the field survey plots had variable radii a separate raster indicating the distance of each 
plot pixel from the centre point was also generated so statistics could be calculated for any 
nominated plot radius. Plot pixels were converted to a Region of Interest (ROI) and 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, AU 

 5

subsequently used to export the original CHM pixel values and each lidar metric. 
 
3.4 Statistical analysis 
 
The extracted pixel data was imported into the open-source R-statistical package v.2.11.1 
(R-Development Core Team 2010) for statistical analysis.  Data analysis was conducted in 
three stages. Firstly, the structural variation within traditional thematic-based strata was 
quantified to set a performance benchmark. Secondly, the capacity to predict thematic layers 
with lidar metrics was explored. Lastly, the analysis focused on predicting survey stand 
attributes with lidar metrics. 
 
3.4.1 Analysis of structural variation within thematic strata 
 
It is not possible to field survey every combination of structural parameters within a pine 
plantation and consequently strategic inventories typically divide the estate into a smaller 
number of broad strata classes. For this analysis thematic strata were defined as six different 
combinations of age and thinning class (table 1). 
 

Table 1: Sample thematic stratification 
 

Stratum Treatment Age class Code 
1 Unthinned - UT Small 10-20 SUT 
2 “ Medium 20-30 MUT 
3 1st thinning – T1 Small 10-20 ST1 
4 “ Medium 20-30 MT1 
5 2nd thinning – T2 Medium 20-30 MT2 
6 “ Tall > 30 TT2 

 
Mean and confidence interval for the stand attribute mean values were calculated for each strata 
class.  Box-and-whisker plots, created by John W. Tukey (Cleveland, 1993), were used to 
visually compare the location and spread values of the strand attributes. 

 
3.4.2 Predicting thematic strata with lidar metrics 
 
The conventional stratification approach in FNSW is based on age class and thinning treatment. 
Because age class is a continuous variable and thinning treatment is a categorical variable, the 
investigation into the capacity of lidar to predict these attributes was undertaken in two ways.  
 
Age class was modelled using Ordinary Least Square (OLS) regression with the lidar metrics as 
explanatory variables.  Some of these metrics were highly correlated and to avoid 
multi-collinearity, variables that had a Spearman’s correlation coefficient more that 0.7 were not 
included together in the model (Chatterjee & Hadi, 2006).  The final predictor variables were 
selected manually by comparing alternative models constructed from the initial set of variables.  
The comparisons were based on the significance of the regression coefficients and adjusted 
R-square values, which takes into account the number of variables and the model residuals.  
Model assumptions were checked by looking at the residual plots (Draper & Smith, 1998). 
 
Thinning treatment was predicted using classification and regression tree (CART) analysis with 
lidar metrics used as explanatory variables for the decision tree algorithm (Breiman et al., 1984). 
In comparison to most other multivariate statistical techniques (Biermann et al., 2011) CART 
handles both categorical and metric data without data transformation. The explanatory variable 
showing the highest statistical association to the response variable is chosen for the split. Initial 
CART analysis resulted in a very large tree, which was pruned back to an optimal size by 
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minimising the cross validation error.  The Kappa statistic (Cohen 1968) was used as an 
evaluation of model reliability. The analysis was done using rpart (Therneau et al., 2010). 
 
3.4.2 Predicting stand attributes with lidar metrics 
 
Predictive models for stand attributes (MH, STK, BA and TSV) were developed using the lidar 
metrics (MH, MAM, MDH, PSTK, CC, OV and Var).  Multi-collinearity was avoided by using 
only one variable from a group of highly correlated variables. Log transformation was used to 
stabilise the variance in the BA and TSV. Model selection was based on adjusted R-square 
criterion with residuals diagnostics done to check for the model assumptions. The estimation 
accuracies of the stand attributes were compared using the root mean square error (RMSE). 
RMSE and bias were calculated in relative terms (RMSE% and bias%), i.e. the RMSE and bias 
values for the stand attribute y divided by their observed mean values.    
 
4. Results and discussion  
 
4.1   Structural variation within thematic strata 
 
When using a thematic stratification approach, an assumption is made that the structural 
variation within a stratum is much less than the variation across all strata. However, when the 
four stand attributes of interest were plotted as box plots (see Figure 1) results showed that there 
are common overlaps of the SA values between strata.  In fact, the variability within stratum 
groups is almost as much as the variability between strata groups.  For example, mean height 
(MH) values for medium size trees in the stratum 2 (MUT) share an overlapping range in values 
with five other strata. Other variables show similar variability. 

 
Figure 1: Box plot showing SA variation and overlap for each stratum. The box represents the first 
and the third quantiles while the whiskers show minimum and maximum values. 
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Mean stand attribute values, along with their lower and upper confidence limits, are presented in 
Table 2. Results again indicate that there is considerable variation within stratum and the values 
in the different classes are overlapping. 
 

Table 2: Mean value of stand attributes by strata class. Upper 
and lower confidence limits are in parenthesis.   

 
Strat. MH STK BA TSV 

SUT 16.2 
(14.7,17.8) 

1043 
(880,1206) 

29.1 
(25.9,32.3) 

185 
(156,214) 

MUT 23.6 
(21.4, 25.8) 

884 
(705,942) 

49.8 
(44.6,54.9) 

442 
(367,517) 

ST1 20.5 
(26.7,32) 

701 
(520,882) 

26.7 
(21.3,32) 

204 
(154,255) 

MT1 27.3 
(25.2,29.5) 

342 
(212,472) 

31.6 
(25.4,37.8) 

305 
(240,370) 

MT2 27.3 
(25.2,29.4) 

212 
(145,279) 

25.2 
(21,29.4) 

238 
(200,276) 

TT2 31.4 
(30.5, 32.4) 

274 
(241,308) 

38.8 
(34.9,42.8) 

413 
(374,451) 

 
 
Results reveal that there is sizeable variation within strata classes and they are not as internally 
uniform as we would wish. In this example, thematic stratification can be considered a course 
predictor of variation in the key stand attributes of interest (MH, STK, BA and TSV) and 
consequently there is an increased chance that any stratified plot sampling will not cover the full 
range in structural variation within the plantation.  
 
However, as a general rule, FNSW usually selects only one age class to sample at any given 
operational inventory event, although the age class may sometimes be divided into one or two 
thinning treatment substrata. But even in monoculture single aged stands with one thinning 
treatment the variation in stand attributes can still be highly variable. To demonstrate this, data 
from four operational inventories within the study area were analysed (see Figure 2). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, AU 

 8

 
 
 
Figure 2 is the box plot of tree heights. Separate plot is done for each age/thinning treatment 
combination. The plot shows that the plots within an age/thinning treatment class are highly 
variable. 
 
 
4.2   Predicting thematic strata with lidar metrics  
 
Plantation managers have traditionally used thematic stratification (related to their management 
units) for routine wood resource inventory and are most comfortable with this concept. To instil 
more confidence in an alternative lidar stratification approach, there is merit in demonstrating a 
link between conventional thematic strata and lidar metrics. 
 
4.2.1 Predicting age class 
 
Normally it would not be necessary to predict the age class of a stand as spatial records should 
already contain this data. However, in cases where spatial datasets may be out-of-date or 
non-existent this could potentially be a useful attribute to predict. Furthermore, if lidar can 
predict stand age it would strengthen the case for the robustness of lidar-derived stratification. 
Age class was modelled using OLS regression with the lidar independent variables (MH, MAM, 
MDH, PSTK, CC, OV and Var).  Results indicated that two variables (MAM and CC) were 
significant for modelling age class.  Figure 3 shows a graph of the multiple regression 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, AU 

 9

relationship. The fitted model had an R2 of 0.91 and an RMSE value of 1.9 years. 

 
 

Figure 3: Bivariate plot of the observed age versus the fitted values of the age using the multiple 
regression model with MAM, CC and IND (a dummy variable to fit segmented regression to data 
with MAM values of 18 or less and another to MAM values over 18) . 

 
4.2.2 Predicting thinning treatment 
 
As a categorical variable, thinning treatment was predicted using CART analysis with the lidar 
metrics MH, MAM, MDH, PSTK, CC, OV and Var as input variables.  The tree was fully 
grown and then pruned based on the cost complexity value of 0.02.  After pruning, the 
remaining lidar metrics were CC and MAM. Figure 4 presents the final pruned decision tree.   
 

 
Figure 4: Decision tree classification model for predicting thinning treatment (UT-unthinned, 
T1-1st thinning and T2-2nd thinning) based on lidar metrics (CC and MAM). 

 
The decision tree had a classification accuracy of 89% (i.e. only 7 plots were misclassified), and 
a kappa coefficient 0.86. CC proved to be a robust metric for detecting unthinned stands, while 
T1 and T2 stands were separated using a combination of CC and MAM.  The CART analysis 
results confirm that basic lidar metrics derived from a CHM can be used to predict thinning 
status, which is an important variable in many field sampling designs.  
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4.3   Predicting stand attributes with lidar metrics  
 
OLS regression models using lidar metrics, fitted to MH, STK, MH and TSV are presented in 
Table 3.   
 

Table 3: Results of regression analysis. 
 

Depend. 
Variable 

Model Adj  R2 RMSE 
(%) 

Bias 
(%) 

MH 3.715 + ( 0.826 x MAM) + 
(0.047xVar) 

0.95 1.298 
(4.3) 

0    
(0) 

STK -485.6 + (1.967xPSTK) 0.82 154 
(25.6) 

0    
(0) 

Log(BA) 2.64 – (0.0026xVar) + 
(0.00027xOV) 

0.67 6.6 
(19.1) 

0.58 
(1.7) 

Log(TSV) 4.47 + (0.000469xOV) + 
(0.00067xPSTK) – (0.012xCC) 

0.8 58.8 
(19.4) 

4.2 
(1.4) 

 
Results confirm that the prime stand attributes of interest (i.e. MH, STK, BA and TSV) can be 
predicted with simple lidar metrics extracted only from a 1m resolution CHM. 
 
5. Conclusion 
 
This study has shown that conventional GIS-based thematic stratification based on age class and 
thinning status can result in strata with a high degree of internal structural variation and 
considerable overlap with other strata classes. This affirms that even-aged softwood plantations 
can still exhibit a high degree of spatial variation within a single age/thinning class. As an 
alternative, lidar offers a high resolution, rapid and objective tool for stratification that is 
independent of the inherent issues with conventional thematic layers. 
 
The basic lidar metrics tested in this study (i.e. mean height, mean above mean height, mean 
dominant height, predicted stocking, canopy cover percentage, occupied volume and height 
variance) were shown to be useful in predicting stand attributes such as age class, thinning 
treatment, stocking, mean height and total stand volume, which are all important variables in 
most plantation inventory programs. These relatively simple lidar metrics can be extracted from 
a CHM (which is a standard lidar product) using commercial software already available to most 
plantation managers (e.g ArcGIS) and are also suitable for existing inventory software systems. 
Moreover, such an approach would be independent of existing GIS thematic layers and 
therefore have wider application where up-to-date spatial records are not available. Such basic 
metrics could be used to develop new sampling approaches to improve ground survey efficiency. 
Future research from the Forest Science Centre will explore a range of probability (design) and 
model based approaches (McRoberts 2010) to select the most efficient sampling design to 
support ground-based inventories 
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Ground based and airborne lidar – a 
natural combination
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Airborne and Ground Based Lidar for forest mapping

• Airborne Lidar for forest mapping (even dual 
wavelength) has been around for more than 30 years

• Ground based activity maybe half that but is making 
up ground very fast

• They use similar technology so it is attractive to try 
and combine them in vegetation mapping

• How well is that being done? Perhaps not as well as 
it could be.



(eg) A Ground(eg) A Ground--Based Based LidarLidar (Echidna(Echidna®®))

• Echidna® is a ground-based lidar apparatus plus methods designed and 
patented by CSIRO specifically for forest and vegetation assessment

• The Echidna® and its prototype — the Echidna® Validation Instrument (or “EVI”) 
has the following characteristics:

– Digitizes the full waveform
– Has variable beam divergence
– Uses no-gaps hemispherical scanning and beyond
– Linear response and calibration

Wavelength—1064 nm



EVI (The EchidnaEVI (The Echidna®® Validation Instrument)Validation Instrument)

A real Echidna—
in the forest Scan motion



Present Status

• At this time, the EVI is not working / (But)
• Two new instruments are now being built. One is 

to work from USA and one from Australia
• It is the Dual-Wavelength Echidna LIDAR (aka 

DWEL)
• Construction is at Boston University managed by 

Alan Strahler and Supriya Chakrabarti
• Funding is by US NSF Grant DBI-0923389 in 

USA and CSIRO and TERN in Australia
• The EVI will soon be mended ☺

 
to obtain “hand 

over” calibration and even more valuable data



Dual-Wavelength Echidna LIDAR (DWEL)

• Critical Design Requirements:
– Meeting the primary Echidna design goals
– Two wavelengths (1064 nm and 1540 nm) + green 

marker, simultaneous superimposed pulses 
– Return pulse full waveform digitized as accurately as 

EVI with aim to be better
– 1, 2, or 4 mrad scan resolutions, with normal 

operation at 2 mrad
– Advanced calibration options
– Battery operated and ~30 minute scan time
– Wireless communication with computer
– Portable (low mass and volume)



Dual Wavelength Identifies Leaves
NOT leaves

Leaves

NIR and SWIR are better than NIR and Red – not only for eye safe
but also for green versus dry and clearer decisions



What an EVI scan (or an artist) “sees” in the 
forest

Williams F. (1971). Springbrook, Queensland III

Which artist uses Lidar?

Echidna, E. (2005). Larundal, NSW, MNF



Basic reflectance and Pgap models

• The basic model of (calibrated) apparent reflectance
• （Jupp et al.，2001, 2005；Strahler et al.，2008）：

• The basic model for Pgap (used for both cube and point cloud modelling) 
• ( Ni-Meister et al.，2001; Jupp et al.，2001, 2005）：
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Hard (single) & Soft (multiple) ReturnsHard (single) & Soft (multiple) Returns

Tree Trunk Foliage

• Pulse characteristics
– Length: 2.4 m (FWHM), strong sharp peak for identification
– Beam divergence: 5 mrad scanned on 4 mrad centres 

(standard operation, 2-10 mrad available) 
– Digitized every 7.5 cm to 140 m range



Options for ground based mapping

• Single station scan of multiple angles (objective 
to scan more sites and spend least time at each 
and accept higher variance at each site to 
sample spatial variation of the forest)

• Multiple scans at a site with different positions 
(may or may not scan same volume). Much 
lower variances at a site and better - if it can be 
afforded

• Tomographic scanning aims to sound the same 
volume from different directions. It produces the 
best site results but costs the maximum time 
and effort per site



Examples using BU Experiment DesignsExamples using BU Experiment Designs
• 1 ha site (100 m x 100 m)
• 5–9 EVI scans (about 60 m radius) centered within the hectare
• Validation area: All stems mapped and DBH measured; heights and crown shapes 

sampled
• Partial validation area: some height and DBH measurements made
• LAI-2000 + Hemispherical photos for LAI comparisons

100 m

2007 (NE) 2008 (Sierras) 2009 (NE)

EVI scan point Validation area Partial validation area

100 m100 m



EVI Single Scan ProcessingEVI Single Scan Processing——““Find TrunksFind Trunks”” 
((YaoYao TianTian))

 

• Field measurements at 
each scan point

– Distance and azimuth to all 
tree stems, DBH

• Out to 10 m: All trees >3 
cm DBH

• Out to 20 m: All trees >10 
cm DBH

– Noted occlusion of each 
stem (not obscured, partly 
obscured, fully obscured) to 
compare with EVI scan

Trees found by EVI
“Visible” trees
“Partly occluded” trees
“Occluded” trees



Diameter Retrievals, New England, 2007Diameter Retrievals, New England, 2007 
((YaoYao TianTian))

�� Slope is not different from 1 Slope is not different from 1 
with power of 0.99 so overall with power of 0.99 so overall 
bias is smallbias is small

� R2=0.936, site level (6 plots, 5 
scans per plot)

� Variance is high due to both 
spatial variance and angle 
resolution at farther ranges

� Variance is single scan 
variance and reduced by 
obtaining more sites
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z The complete model (Jupp D., 2008) for the number of trees “apparently” within radius 
R for full circle and all trees is:

where                    is the number of trees “apparently” within radius R, given a true 
tree count density of λ

 

and an effective tree diameter DE . 

z DE is the effective occluding diameter,                   .        , where DE is the mean 
of tree diameter. DE depends on the stem density and distribution in the sample plot.
As a default, we may use                               , where  is the squared coefficient of 
variation for tree diameters.

The overall attenuation (λ

 

DE ) in this model can be estimated from the horizontal 
attenuation in the Pgap output. EVI “relaskop” can also be used with account for 
occlusion to obtain basal area. 
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Stem Count Density (stems/area) Stem Count Density (stems/area) 
((YaoYao TianTian))

Stem count density with increasing plot radius

D
en

si
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Distance

Distance

Bartlett B2 Center



Biomass Estimation, New England, 2007 Biomass Estimation, New England, 2007 
((YaoYao TianTian))

• With EVI-derived mean diameter 
and stem count density, we can 
estimate biomass using allometric 
equations

• Since EVI can’t identify species, 
we used a pooled allometric 
equation for the leading one or two 
dominant tree species in the plot

• R2 = 0.840 at the plot level (30 
scans)

• R2 = 0.975 at the site level (6 
plots, 5 scans per plot)



EVI Foliage Profiles, New England, 2007 EVI Foliage Profiles, New England, 2007 
(Zhao (Zhao FengFeng))

Red spruce stand

(Howland Tower)

Mature hardwoods

(Bartlett B2)

Regression method retrieval (uses 5°–60° zenith rings)

H
ei

gh
t

H
ei

gh
t

Foliage area volume density Foliage area volume density

Narrow upper canopy 
layer, little understory

Broad upper 
canopy layer, 
significant 
understory

LAI = 4.80 ± 0.69 LAI = 4.95 ± 0.29



Leaf Area Index Comparisons, Leaf Area Index Comparisons, 
Sierra Nevada, 2008 (Zhao Sierra Nevada, 2008 (Zhao FengFeng))

Hemispherical photos

E
V

I r
et

rie
va

l Leaf Area Index 
R2 = 0.97

Six sites, 5 scans/site



Merged Data processing

• Tomographic sounding with merged data is 
better done in (x,y,z) than polar coordinates as 
there is a single origin and you need Euclidean 
transformations to co-register and analyse

• The data can be reduced to a “point cloud” by 
filtering and a discrete model for the data

• This is a form of data compression and most of 
the previous results can also be obtained by 
using these data rather than a polar “cube” of 
data – but for a single scan image processing 
has advantages.



Point Cloud Model

• Model obtained by filtering with the pulse function separating signal and 
noise and finding peaks

• Multiple scattering and close hits can be modelled by using an increased 
FWHM where needed

• The sets (ρj ,rj ) form a point cloud with (θφr) converted to (x,y,z) (plus 
FWHM in advanced models)

• Original geometry and relationships MUST be recorded
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Point Cloud for a Single Scan 
(Yang Xiaoyuan)

• Site 305 (center scan), a high-elevation red fir stand
• Shade of color shows apparent reflectance at the point



Point Cloud Registration 
(Yang Xiaoyuan)

• Combine multiple EVI scans
– Use peg-to-peg position 

information from field 
records

• 3D matching procedure
– X, Y, Z translation 
– X, Y, Z rotation angles

EVI scan design for 2008 Sierra 
Nevada field sites



Point Cloud Merge & Classification ResultPoint Cloud Merge & Classification Result 
(Yang (Yang XiaoyuanXiaoyuan))

• Merged point cloud classified into leaf, trunk, and ground 
returns

• Three trees (2 right, 1 left) are Giant Sequoia with DBH of 
3-4 m.



• Canopy parameters taken from reconstructions
– Canopy height

• Tree height measured from the ground to 
the top of the tree

– Crown size
• Measured both along and across slope 

and then averaged 
– Height to Crown

• Height measured from ground to the 
bottom of the tree crown

– DBH (Diameter at Breast Height)
• Measured at 1.4 m from ground

• Retrievals compared to field records

Canopy Parameter Extraction from “Measure Trees”



LVIS vs. EVI system (Zhao Feng) 
LVIS System Specifications

• Wavelength: 1064 nm             

•Maximum Altitude:  >10km ; ~ 6km for 305 site   

•Detector FOV: 8 mrad.

•Maximum Off nadir angle: 12 mrad, nominal diameter of 

20meter

•Near nadir view

•Slope is dependent on forest site condition

EVI System Specifications

•Wavelength: 1064 nm           

•Altitude: 1.7 m above ground 

•Detector FOV: 5 mrad

 

with an initial expanded  

diameter of 23 cm

•Footprint size vary with range

•Full hemispherical view

•Slope can be well characterized 23 Press 305 Press



Slope Effect on EVI Full Waveform 
(Zhao Feng)

'cos cos .cos sin .sin .cos( )γ θ β θ β ϕ ϕ= + −

27
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30 m                                    40m                     50 m                               60m 

Note: Local topography corrected
70 m                                    80m                     90 m                               100m 

Foliage Profiles (w Slope Removal) (Yang & Zhao)



How to fully integrate data from ground and air?

• When the calibration is right, EVI profiles with 
LAI and height outputs agree in magnitude with 
ground data and in form with LVIS (LVIS needs 
scaling to LAI) in the overstorey.

• LVIS  “sees” less understorey in most cases.

• To bring airborne data like LVIS and ground 
based like EVI together, you could use models – 
but it may also need the airborne data to be 
calibrated.



Steps to modelling forest and Lidar data

• Work reported here originates with Li Xiaowen (Li and 
Strahler, 1988) and his work on Pgap for GO model 
canopies;

• Results from Nilson (1999), GORT (Ni-Meister et al. 2001; 
2010) and variants using GO modelling (Newnham 2005, 
Haverd et al., 2011; Lovell et al., 2011) are consistent;

• Two or more layers used, variable heights, trees with 
trunks and spheroidal crowns filled with leaves. Models 
developed adjusted to fit the EVI observed Pgap profile;

• Most work to date has explored forward models based on 
direct EVI “measure tree” data and parameter sensitivity.



The Geometric Optics (GO) Canopy Model

Pgap model schematic. Allometric relations and GB data can guide
Relations between DBH, crown size, height etc. All parameters
Can have random distributions.



GO Model for Canopy 
(Haverd et al, 2011)

( )( , ) 1 ( , ) ( , )( , ) c wc tA z P z A z
gapP z e eλ θ θ λ θθ − − −=

For tree (and trunk) density λ the projections of canopy elements
On plane at z m at zenith angle θ is approx by a Boolean Model:

projected area of a crown element( , )cA zθ

( , )wcP zθ

( , )tA zθ projected area of a trunk element

gap probability through the crown element



Gap Probability Profiles - Mixed Eucalypt 
(Jenny Lovell, 2011)



How can models “calibrate” airborne?

• If airborne are calibrated it may also be possible to “invert” 
model aspects that are allowed to vary from those 
identified at EVI sites using allometry and assuming some 
basic properties;

• More simply, the relationship between common direct 
LVIS measures such as RH50 etc may be calibrated 
against models based on EVI sites and assumed 
variations incorporating allometry etc. In this case, 
airborne does not need to be calibrated in the physical 
measurement sense;

• But it still needs to be done – if it can be done. But if it can 
be done for LVIS – satellite is possible too



Final Summary

• Field work with GB Lidar has the same trade- 
offs as all forest measurement;

• Number and extent of sites versus effort at each 
and cost versus value of information;

• Maybe a few detailed sites with measure trees 
and many more fast scan (advanced cruising) 
sites is the best design?

• GB data can be direct and comprehensive, and 
modelling is possible;

• The potential to “calibrate” airborne and also 
space borne exists and is waiting to be taken up.
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Abstract 
Mechanised harvesting operations are common in Australia because of their increased 
productivity and efficiency, improved worker safety and reduced cost of operations. Most 
research has found that the productivity and efficiency of a mechanised harvesting system is 
affected by a number of factors including forest stand characteristics (tree size or piece size, 
stand density, undergrowth), terrain variables (slope, rocks, woody debris), operators’ skill and 
machinery limitations. The purpose of the study was to use remote sensing technology to 
quantify these forest stand and terrain factors (particularly slope) and hence derive relationships 
to predict harvester productivity from remote sensing data. 
 
A case study was conducted in mature radiata pine (Pinus radiata) plantation at Mount Burr 
Reserve Forest, South Australia (37.61° S, 140.44° E). LiDAR (Light Detection And Ranging) 
flown in 2007 was used to identify and quantify stand and terrain factors (particularly tree size). 
A time and motion study conducted during final harvest was used to estimate the impact of each 
factor (tree size and slope) on harvester productivity. Tree size estimates derived from the 
LiDAR data were grown to the point of harvest using empirical growth models. The point of 
harvest tree size estimates were ground-truthed against harvester measurements of the same 
trees. Empirical models were then developed to enable the LiDAR-derived estimates of tree size 
to be used to estimate productivity of harvesting equipment. The robustness of these 
relationships will be tested by applying the model to areas not used in the development process. 
 
Key words: Harvesting system, Remote sensing, LiDAR, Productivity, Harvester, Radiata pine 
 
1. Introduction 

Productivity (m3 per Productive Machine Hours (PMH)) and efficiency of a harvesting machine 
and/or system is affected by the characteristics of the forestry machinery, stand condition (i.e. 
tree shape, tree size, crown size, tree volume and the type and density of trees), extraction rate, 
(i.e. the ratio between basal area harvested and basal area before harvest), terrain conditions (i.e. 
slope, ground roughness, ground strength, water course, roads etc.), and the skill of operator 
(Brunberg et al. 1989; Lageson 1997; Visser et al. 2009). Many studies have demonstrated ‘tree 
size’ to be the most influential factor in harvesting and extraction productivity, with 
productivity increasing and costs decreasing with increasing tree size (Kellogg and Bettinger 
1994; Nakagawa et al. 2007; Visser et al. 2009). However, the rate of increase in harvesting 
productivity is less for larger trees and, beyond a “sweet spot”, further increases in tree size 
reduce productivity as the extra time to cut and process the stem outweighs the volume gain 
(Visser et al. 2009). This study will evaluate only ‘tree size’ (tree volume) as an influential 
factor affecting harvester productivity for the study area. 

Time study is a common practice to measure work or productivity of a system. For machines 
and equipment, time consumption is calculated for every work element which in turn is used to 
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estimate its productivity. Work elements of time study in a harvesting system include moving of 
the machine and/or its boom, felling, delimbing, crosscutting, and bunching (Nakagawa et al. 
2007). 

Early time study methods involved using stopwatches and paper to measure and record time for 
each machine activity (Howard 1989). This method is tedious, expensive and error prone (Olsen 
and Kellogg 1983). Another method uses a video camera to capture the harvesting operation 
activities and record time simultaneously (Wang et al. 2003). This method requires field 
measurements, so extra time and resources are also required. However, such traditional methods 
are being replaced by computer-based time study methods. In this method, the computer 
program records time with the built-in clock and collects volume information at the same time. 
Other studies developed an automated time study of felling and skidding (McDonald 1999; 
McDonald and Rummer 2000) which recorded machine movement with a GPS and provided 
gross time study data but not detailed elemental times. 

This study used computer-based time study to collect tree volume information including tree 
Diameter at Breast Height (DBH) and processed length with their GPS (Global Positioning 
System) locations. Time elements were recorded using Timer Pro Professional software 2010 
instead of using computer generated tree-wise time elements in order to achieve time elements 
for each work element including moving / positioning of the machine, tree felling, processing of 
each log (cut-to-length), stacking / bunching, travel time, delay time etc. 

Time study-based regression equations are generated to express equipment productivity 
(Gardner 1982). In this study, regression models will be developed which in turn will be used to 
develop models that will predict the productivity of a harvesting system based on LiDAR (Light 
Detection And Ranging)-derived estimates of tree size.  

LiDAR has been used to detect individual trees, predict tree heights and volume (e.g. 
Brandtberg 1999; Hyyppa and Inkinen 1999; Lim et al. 2003a; Naesset 2004; Woods et al. 
2008) and diameter distributions (e.g. Gobakkenn and Næsset 2005; Thomas et al. 2008). It can 
also accurately and cost-effectively derive DTM (Digital Terrain Model) or DEM (Digital 
Elevation Model) compared with conventional photogrammetry especially where the ground 
surface is not visible in dense forest or in low relief areas such as wetlands or flat plains 
(Baltsavias 1999; Lefsky et al. 2002; Younan et al. 2002; Patenaude et al. 2004). 

Construction of LiDAR-derived Canopy Height Models (CHMs) with distinguishable tree 
crowns  is the prerequisite in order to apply any method for individual tree detection (Holmgren 
and Persson 2004). The canopy height models (CHMs) are obtained by subtracting the DTMs 
from corresponding DSMs (Digital Surface Models).   

Estimation of tree-level productivity requires the measurements of a large number of trees 
which is time consuming, laborious, tedious and expensive. However, LiDAR is widely used to 
derive tree characteristics at the individual or stand level.  

The aim of this paper is to (i) Examine the effect of tree size on productivity of a harvester 
(Valmet 475), for a plantation forest in clear felling operation using a Cut-to-Length (CTL) 
harvesting method, (ii) Undertake statistical analysis of time elements and productivity of the 
harvester, (iii) Develop predictive models for the harvester (iv) Evaluate the ability of LiDAR to 
estimate tree volumes and (v) Develop a productivity model based on LiDAR-derived tree 
volume. 
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2. Material and methods 
2.1 Study area 
A 35-year old radiata pine plantation with a density of 230 trees ha-1 was selected at Mount Burr 
Reserve Forest (37.61° S, 140.44° E), Brennans locality, South Australia. Trees were planted at 
4m X 2m spacing. However, it had been thinned three times prior to the final harvest.   Heights 
and DBHs of the trees ranged from 20 to 35m and 26.4 to 53.5cm respectively. Forest soil 
comprised of aeolian sands. The site was almost flat with slopes less than 11° (approximately). 
 
2.2 LiDAR Data   
LiDAR data was collected for the study area using an ALTM (Airborne Laser Terrain Mapping) 
3100 LiDAR system and an inertia measurement unit (IMU) on 20th July, 2007. The scanner 
system transmitted laser pulses at 1064 nm (near-infrared) and received multiple returns of each 
pulse. First return density was 2.6m-2 and returns per pulse were 1 to 4. First and last return 
pulses were acquired to characterize forest tree structure and terrain surface respectively. The 
flying altitude was 1100 meter Above Sea Level (mASL), pulse repetition rate was 33000 s-1, 
maximum scanning angle was 12.5°, beam divergence was 0.20 (mradians) and footprint 
diameter was 22cm. The horizontal and vertical accuracy of data were 0.55m and 0.20m, 
respectively.  
 
Processed LiDAR data was supplied by Forestry South Australia in LAS file format with 
average point spacing of 0.52 points m-2. Ground and Non-ground returns were classified by the 
data provider.  
 
Ground and non-ground LiDAR points were used to construct a digital elevation model (DEM) 
and a digital surface model (DSM) with a 2m cell size for the study area. A slope class map was 
derived from the DEM. Slope classes were within a range of approximately 0-11 degree where 
the trees were felled and processed. There were some small areas with more than 11° slope that 
would not have affected the operation of the harvester. Since LiDAR points provide GPS 
(Global Positioning System) locations, DSM was used to match field measured tree locations 
(GPS). The DEM was subtracted from DSM in order to acquire tree heights. 
 
2.3 Time study data  
2.3.1 Harvester selection 
A harvester (Valmet 475 with a Rosin 997 harvesting head) fitted with DASA Control Systems 
computer was used to carry out the harvesting operation. The harvester head was properly 
calibrated at the beginning of the operation in order to accurately record tree measurements. The 
harvester is designed to perform harvesting operation up to 20° slope and to efficiently handle 
trees with DBH up to 80cm.  
 
2.3.2 Harvesting operation recording 
The harvesting operation carried out by an experienced operator was recorded by a video 
camera from approximately 20m distance under normal and sunny weather condition on 03 
February, 2011 between 11:05:40 am to 12:55:30pm. One hundred and one trees were felled 
and processed in the operation. Data on time elements and tree characteristics were collected for 
all trees. 
 
2.3.3 Time elements extraction 
The video was played with MS Windows media player and time in centi-second for each work 
element was recorded with PDA (Personal Digital Assistant, also known as hand-held 
computer)-based Timer Pro Professional software. Moving / Positioning of the machine, Tree 
felling, Processing of each log, Stacking / Bunching, Travel Time, Brushing and Clearing were 
considered as work elements.  
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Description of time elements: 
Moving: Begins when the harvester starts to move and when it stops moving to perform some 
activity.  
Positioning: This is the time between the boom starting to swing toward a tree and machine 
head is clamped on the tree. 
Tree Felling: This is the time between when the felling starts and the tree touches the ground.  
Tree Processing: This is the time between the harvester head starts to run and the last 
processed log is dropped onto the ground.  
Stacking / Bunching: This is the time between when the harvester grabs a log and drops it onto 
the pile.  
Brushing/ Clearing: This is the time taken to process unmerchantable trees and clear 
undergrowth.  
Travel time: This is the time to travel to and from where the harvesting took. 
Delay time (Mechanical): This is the time that occurs due to mechanical failure. 
Delay time (Personal): This is the time that occurs due to operator’s personal activity. 
 
2.3.4 Tree characteristics extraction 
The DASA onboard computer system, fitted to the harvester was used to measure tree 
characteristics including tree DBH, log length and volume of processed logs and GPS tree 
location. Merchantable tree length (m) and volume (m3) for each tree were estimated by 
summing lengths and volumes of all logs of the relevant trees respectively. Unmerchantable top 
end of each tree was ocularly measured (average length, 1.75m) and added to the merchantable 
tree length of the same tree in order to estimate whole tree height (m) of each tree. 
 
2.3.5 Productivity model development 
Productivity was calculated individually for each tree using the following formula- 
Productivity (m3)/ PMH0 = tree volume (m3) / cycle time (PHM0) * 60 
 
 
Where tree volume was extracted from the DASA computer system and cycle time is the time 
spent by the harvester to completely process an individual tree. 
 
Linear regression [Y = a + b(X)] analysis was performed to predict productivity of the harvester 
where X is the independent variable, tree volumes (m3); Y is the dependent variable, 
productivity (m3/PMH0) and a & b are the coefficients. Statistical software Minitab16 was used 
to derive the productivity model. In the analysis natural log (LN) of volume was used to fit the 
data. 
 
2.3.6 Volume model development 
The same software package and linear regression equation [Y = a + b(X)] was used to predict 
individual tree volume  with the exception that X is the independent variable, tree heights (m); 
Y is the dependent variable, tree volume (m3) and a & b are the coefficients. 
 
3. Results and Discussion 
 
3.1. Productivity prediction 
No relationship was found between tree volume and harvesting time elements other than felling 
and processing. Therefore these time elements (moving / positioning of the machine, stacking / 
bunching of logs, travel and brushing and clearing) were averaged separately and added to 
measured felling, and processing time for all trees to estimate pro rata harvesting cycle times 
(Nurminen et al. 2006). Productive time was defined as machine operating hours excluding 
delay time (PMH0). 
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Summary statistics of tree characteristics and cycle time are presented in Table 1 and Table 2 
respectively: 

Table 1: Tree characteristics of the study area 
 

Attribute Mean Std. Dev. Min. Max. 
Tree height(m) 27.96 2.85 20.71 35.02
DBH(cm) 38.31 5.29 26.40 53.50
Tree vol.(m3) 1.73 0.50 0.78 3.13 

 
Table 2: Pro rata cycle time statistics 

 
Pro Rata Cycle Time (min.) 

Mean 0.941
Standard Deviation 0.187
Minimum 0.672
Maximum 1.740

 
 
Figure 1 represents the productivity model for tree volume (m3) vs productivity (m3/PMH0): 
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Figure 1: Productivity (m3/PMH0) (pro rata time) against tree volume (m3) 
 
Linear regression based productivity model describes a good fit to the data (R2= 61.0%) (Figure 
1) and RMSE (Root Mean Squared Error) of 15.46. The general trend of the model shows that 
productivity increases with the increase of tree volume. This result is consistent with other 
studies (e.g. Jirousek et al. 2007; Nakagawa et al. 2007).  
 
The study was confined to tree volumes from 0.78m3 to 3.13m3. Therefore, the model may not 
be suitable to predict productivity beyond this volume range (e.g. greater than 3.5m3). In 
addition, this model is based on a single data set. To achieve predictability for larger trees 
(volume) further study is required which would be based on a wider range of tree volumes and 
more study sites. 
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3.2. Volume prediction  
The model predicting volume from field measured height was developed to predict volume from 
LiDAR-derived height, because LiDAR can directly derive only height. Figure 2 represents the 
model predicting volume (m3) from field measured height: 

 
 
 
 
 
 

  
 

 
 
 
 

 
 
 

Figure 2: Volume (m3) prediction from height (m) 
 
The model shows that volume increases with increasing height. However, the model describes 
only 29.4 % of the variability in the data (R2 = 29.4%) of the data. Thus the model indicates that 
tree height alone may not be a good predictor of volume. However, Holmgren et al.(2003) 
estimated stem volume with somewhat lower accuracy from LiDAR-derived tree height and 
stem number as predicting variables. 
 
This model is limited to a tree height range of 20 to 36m (approximately) and volume range 
0.78 to 3.15m3. This model may not be suitable for tree sizes out of this range. Because, the rate 
of increase in machine productivity decreases with increasing tree size with Visser et al. (2009) 
finding that beyond a “sweet spot” further increases in tree size reduce productivity as the extra 
time to cut and process the stem outweighs the volume gain. 
 
4. Data validation 
This model [Volume (m3) = - 0.8985 + 0.09400 Height (m)] would be used to predict volume 
(m3) from LiDAR-derived height. In order to check the accuracy of LiDAR-derived height, 
LiDAR-height class was compared with field height class. LiDAR-derived tree heights were 
measured from the LiDAR points surrounding field measured trees. Figure 3 represents the 
distribution of height from field measurements and LiDAR: 
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Figure 3: Field and LiDAR-tree distribution (raster format) 
 
Lidar was taken in 2007 and this height has been adjusted at the time of harvesting operation 
(2011) using the yield table produced for the study area (Lewis et al. 1976). It was found that 
the predominant height increased by 1-1.5m.  
 
The result shows that the mean LiDAR height range (approximately 20-34m, including 
adjustment) is similar to field measured height (20-35m). Underestimation of LiDAR-derived 
mean heights is consistent with other studies as LiDAR pulses rarely hit the tip of the tree (e.g. 
Magnussen and Boudewyn 1998; Heurich 2008). 
 
LiDAR-derived tree height or crown height may not be a reliable predictor for volume 
estimation (Figure 2). LiDAR-derived tree height and crown diameter can used to predict 
individual tree stem diameter and then tree height and stem diameter can be used to calculate 
stem volume (e.g. Persson et al. 2002). LiDAR-derived crown width (Hyyppa and Inkinen 
1999; Hyyppa et al. 2001) may enhance its ability to estimate tree volume, because crown width 
or crown height is highly correlated to DBH (Jakobsons 1970; Sprinz and Burkhart 1987; Gill et 
al. 2000; Peper et al. 2001). DBH is a function of tree height and tree height can be derived 
from LiDAR,  thus volume of gross-merchantable timber can indirectly be modelled from 
LiDAR tree heights (Lim et al. 2003b). 
 
5. Conclusion 
The methods for estimating productivity based on field measured volume data showed greater 
predictability. Therefore, LiDAR-derived tree volume may be used to estimate productivity. 
Volume prediction from height alone shows poor predictability. Therefore it is suggested that 
DBH and / or crown width functions combined with height should be established for more 
accurate tree volume prediction and hence better estimation of harvester productivity from 
LiDAR data.  
 
Acknowledgements 
The authors would like to thank Cooperative Research Centre for Forestry (CRC for Forestry) 
for providing fund for the project and other supports. We also would like to thank Forestry 
South Australia for organizing harvest operation and providing LiDAR data. 
 
References 
1. Baltsavias, E.P., 1999. A comparison between photogrammetry and laser scanning. 
Photogrammetry and Remote Sensing, 54, 83-94. 



8 
 

2. Brandtberg, T., 1999. Automatic individual tree-based analysis of high spatial resolution 
remotely sensed data. Doctoral Thesis, Swedish University of Agricultural Sciences, Silvestria 
118, Uppsala, Sweden. 

3. Brunberg, T., Thelin, A. and Westerling, S., 1989. Basic data for productivity standards for 
single-grip harvesters in thinning operations. Report No 3, The Forest Operations Institute of 
Sweden: 21. 

4. Gardner, R.B., 1982. Estimating production rates and operating costs of timber harvesting 
equipment in the northern Rockies. General technical report INT: 118, United States 
Deptartment. of Agriculture, Forest Service, Intermountain Forest and Range Experiment 
Station Odgen, Utah: 26. 

5. Gill, S.J., Biging, G.S. and Murphy, E.C., 2000. Modeling conifer tree crown radius and 
estimating canopy cover. Forest Ecology and Management, 126, 405-416. 

6. Gobakkenn, T. and Næsset, E., 2005. Weibull and percentile models for lidar-based 
estimation of basal area distribution. Scandinavian Journal of Forest Research, 20, 490-502. 

7. Heurich, M., 2008. Automatic recognition and measurement of single trees based on data 
from airborne laser scanning over the richly structured natural forests of the Bavarian Forest 
National Park. Forest Ecology and Management, 255, 2416– 2433. 

8. Holmgren, J., Nilsson, M. and Olsson, H., 2003. Estimation of tree height and stem volume 
on plots-using airborne laser scanning. Forest Science, 49, 419-428. 

9. Holmgren, J. and Persson, A., 2004. Identifying species of individual trees using airborne 
laser scanner. Remote Sensing of Environment, 90, 415-423. 

10. Howard, A.F., 1989. A sequential approach to sampling design for time studies of cable 
yarding operations. Canadian Journal of Forest Research, 19, 973-980. 

11. Hyyppa, J. and Inkinen, M., 1999. Detecting and estimating attributes for single trees using 
laser scanner. Photogrammetric Journal of Finland, 16, 27–42. 

12. Hyyppa, J., Kelle, O., Lehikoinen, M. and Inkinen, M., 2001. A segmentation-based method 
to retrieve stem volume estimates from 3-dimensional tree height models produced by laser 
scanner. IEEE Transactions on Geoscience and Remote Sensing, 39, 969– 975. 

13. Jakobsons, A., 1970. The correlation between the diameter of the tree crown and other tree 
factors - mainly the breast-height diameter. Analysis based on sample trees from the National 
Forest Survey. Report 14, Department of Forest Survey, Royal College of Forestry Stockholm, 
Sweden: 75. 

14. Jirousek, R., Klvac, R. and Skoupy, A., 2007. Productivity and Costs of the mechanised cut-
tolength wood harvesting system in clear-felling operations. Journal of Forest Science, 53, 476-
482. 

15. Kellogg, L.D. and Bettinger, P., 1994. Thinning productivity and cost for mechanized cut-
to- length system in the Northwest pacific coast region of the USA. International Journal of 
Forest Engineering, 5, 43-54. 



9 
 

16. Lageson, H., 1997. Effects of thinning type on the harvester productivity and on the residual 
stand. Journal of Forest Engineering, 8, 7-14. 

17. Lefsky, M.A., Cohen, W.B., Parker, G.G. and Harding, D.J., 2002. Lidar remote sensing for 
ecosystem studies. Bioscience, 52, 19-30. 

18. Lewis, N.B., Keeves, A. and Leech, J.W., 1976. Yield regulation in South Australiaa Pinus 
Radiata plantations. Woods and Forest Department, South Australia, Bulletin No.23, A.B. 
JAMES. 

19. Lim, K., Treitz, P., Baldwin, K., Morrison, I. and Green, J., 2003a. Lidar remote sensing of 
biophysical properties of tolerant northern hardwood forests. Canadian Journal of Remote 
Sensing, 29, 658-678. 

20. Lim, K., Treitz, P., Wulder, M., St-Onge, B. and Flood, M., 2003b. LiDAR remote sensing 
of forest structure. Progress in Physical Geography, 27, 88-106. 

21. Magnussen, S. and Boudewyn, P., 1998. Derivations of stand heights from airborne laser 
scanner data with canopy-based quantile estimators. Canadian Journal of Forest Research, 28, 
1016–1031. 

22. McDonald, T., 1999. Time study of harvesting equipment using GPS-derived positional 
data, Forestry engineering for tomorrow, GIS technical papers, Edinburgh University, 
Edinburgh, Scotland. 

23. McDonald, T. and Rummer, B., 2000. Automatic time study of feller-buncher, The 23rd 
annual meeting of council on forest engineering, COFE,Corvillis, OR. 

24. Naesset, E., 2004. Accuracy of forest inventory using airborne laser scanning: Evaluating 
the first Nordic full-scale operational project. Scandinavian Journal of Forest Research, 19, 
554-557. 

25. Nakagawa, M., Hamatsu, J., Saitou, T. and Ishida, H., 2007. Effects of tree size on 
productivity and time required for work elements in selective thinning by a harvester. 
International Journal of Forest Engineering, 18, 43-48. 

26. Nurminen, T., Korpunen, H. and Uusitalo, J., 2006. Time consumption analysis of the 
mechanized cut-to-length harvesting system. Silva Fennica, 40, 335–363. 

27. Olsen, E.D. and Kellogg, L.D., 1983. Comparison of time-study techniques for evaluating 
logging production. Transactions of the American Society of Agricultural Engineers, 26, 1665-
1668, 1672. 

28. Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L., Briggs, B.B. and Dawson, T.P., 2004. 
Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sensing 
of Environment, 93, 368–380. 

29. Peper, P.J., McPherson, E.G. and Mori, S.M., 2001. Equations for predicting diameter, 
height, crown width and leaf area of San Joaquin Valley street trees. Journal of Arboriculture, 
27, 306-317. 



10 
 

30. Persson, A., Holmgren, J. and Soderman, U., 2002. Detecting and measuring individual 
trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing, 68, 
925-932. 

31. Sprinz, P.T. and Burkhart, H.E., 1987. Relationships between tree crown, stem, and stand 
characteristics in unthinned loblolly-pine plantations. Canadian Journal of Forest Research-
Revue Canadienne De Recherche Forestiere, 17, 534-538. 

32. Thomas, V., Oliver, R.D., Lim, K. and Woods, M., 2008. LiDAR and Weibull modeling of 
diameter and basal area. Forestry Chronicle, 84, 866-875. 

33. Visser, R., Spinelli, R., Saathof, J. and Fairbrother, S. (2009). Finding the ‘Sweet-Spot’ of 
Mechanised Felling Machines. USA: 32nd Annual Meeting of the Council on Forest 
Engineering (COFE 09). Kings Beach, CA: 10. 

34. Wang, J.X., McNeel, J. and Baumgras, J., 2003. A computer-based time study system for 
timber harvesting operations. Forest Products Journal, 53, 47-53. 

35. Woods, M., Lim, K. and Treitz, P., 2008. Predicting forest stand variables from LiDAR data 
in the Great Lakes - St. Lawrence forest of Ontario. Forestry Chronicle, 84, 827-839. 

36. Younan, N.H., Lee, H.S. and King, R.L., 2002. DTM Error Minimization via Adaptive 
Smoothing. IEEE Transactions on Geoscience and Remote Sensing, 40, 3611-3613. 
 
 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Tasmania 

 1

Scaling plot to stand-level lidar to province in a hierarchical approach 
to map forest biomass in Nova Scotia 

 
Chris Hopkinson, David Colville, Danik Bourdeau, Suzanne Monette & Robert Maher  

 
Applied Geomatics Research Group,  

Centre of Geographic Sciences,  
Lawrencetown, Nova Scotia,  

B0S 1M0, Canada  
Chris.hopkinson@nscc.ca 

 
Abstract 

 
This paper presents a study that used lidar transect, plot and wide area polygon sample data 
collected across Nova Scotia, Canada from 2005 to 2010 to calibrate and extrapolate above 
ground forest biomass from permanent sample plots (PSPs) to forest stand polygons to the 
entire Province. The whole tree dry biomass estimate for the total forest resource inventory 
(FRI) database in Nova Scotia is ~ 373 x 106 tonnes ±39%. Where lidar coverage exists, 
biomass is modelled at the 25 m grid cell resolution, which is a great improvement over the 
previous ecoregion level estimates, allowing for more effective operational stand management. 
Given the large spatio-temporal domain of the data sources, one of the major challenges faced in 
this study was temporal latency between coincident field, lidar and GIS data inputs, which was a 
significant contributor to the overall level of uncertainty in the result. 
 
1. Introduction 
 
The amount and range of biomass stored within a forested stand is an indicator of its status and 
ecosystem functioning (Brown, 2002). In Atlantic Canada, revenues from sawlog and pulp 
wood forestry products, critically important to the rural economy, have been in a steady decline 
in recent years (APEC, 2008). At the same time, public energy utilities have been rising to the 
dual challenge of meeting growing energy demands while attempting to reduce greenhouse gas 
emissions. The Province of Nova Scotia, for example, has committed to 25% renewable energy 
supply by 2015 and 40% by 2020, and biomass is seen as a potential viable source of long-term 
carbon-neutral alternative energy to supplement more traditional sources (NSDE, 2010). For all 
of these reasons, the ability to map forest biomass in Nova Scotia at a scale appropriate for land 
management has economic, ecological, environmental value.  
 
2. Data sources 
 
The Province of Nova Scotia is a little over 50,000 km2 and of this area >80% is forested. The 
forests of Nova Scotia are catalogued and monitored by the NS Department of Natural 
Resources (DNR). There are two publicly available and spatially explicit datasets that describe 
these resources and have been used as the basis for modelling in this project: a PSP database and 
a FRI GIS database. The PSP database details the attributes of all trees with a stem diameter at 
breast height (DBH) > 9.1 cm within 3250 plots of 11.3 m radius covering the whole Province. 
The PSPs are randomly established throughout the forests of Nova Scotia and cover a 400 m2 
circular area. About half of the 3250 plots were established from 1965 to 1970, while the rest 
were established between 1998 and 2002. About 650 plots are revisited every year to ensure a 
five year rotation for each plot. Within the plot, living and dead trees are numbered and several 
attributes are recorded for each tree including height, DBH, species, signs of disease, cause of 
death etc. 
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The FRI database describing the total forest coverage within Nova Scotia contains 
approximately 1.1 million stand polygons that are delineated from aerial photographs and 
intended to describe regions of stand similarity within contiguous parcels of land. The FRI 
database is primarily updated from air photos collected on a ten year rotation. Using paired 
photographs, interpreters can see in three dimensions and then delineate homogeneous stands of 
trees to interpret crown closure, stand height, species and land capability. Satellite imagery is 
used in between aerial photo years to update the FRI for noticeable change, such as 
clear-cutting. Both PSPs and FRI stands are being continuously updated on a revolving basis as 
opposed to updating the whole Province at one time.  

 

 
 

Figure 1: Top - AGRG Lidar survey polygons and sampling transects from 2000 to 2010 within Nova 
Scotia. Bottom – spatially coincident permanent sample plots that are within two years of lidar survey.  

 
While the DNR GIS databases contain extensive stand-level inventory data covering the 
Province, the conversion of these data into meaningful estimates of available and sustainable 
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biomass energy requires calibration (Townsend, 2008). At the local scale, PSP data collected in 
the field allow reasonably accurate calculation of biomass over small areas (Lambert et al. 
2005), which have been used to provide coarse estimates of biomass for Nova Scotia down to 
the ecoregion scale (Townsend, 2008). However, to derive more spatially explicit estimates of 
biomass at the typical management unit or stand-scale is challenged by the heterogeneity 
displayed by Acadian mixed wood forests.  
 
To scale between PSP and FRI data layers to develop a spatial model of biomass representing 
both spatial domains requires a data source that can sample the canopy structure within a plot 
and allow for effective aggregation at the stand scale. Airborne lidar data have been shown time 
and again to be ideally suited to the task of plot- and stand-level canopy structure and biomass 
modelling (Lim et al. 2003). Lidar data have been collected across Nova Scotia by the Applied 
Geomatics Research Group since 2000 (Figure 1). Several polygons and sample transects 
covering ~ 10,000 km2 or ~20% of the area of Nova Scotia have been mapped using an 
Airborne Laser terrain mapper (ALTM) 3100C (Optech Inc. Toronto, Canada). Only ~ 50% of 
the data were suitable for this study, as a threshold of ~ 1point/m2 was applied to ensure a high 
density of data for subsequent model generation. Of the 3250 provincial PSPs, 281 were 
spatially coincident with lidar cover, and of these 99 were culled after applying a 2 year 
temporal buffer. The data sources and associated modelling approaches are described in Table 1. 
 

Table 1: Data sources and attributes used, domains of spatial representation and notes on how the data 
were used in the Provincial biomass modeling approach 

 
Raw data 

[number units/ total 
db units] 

Spatial model scale 
[unit area] 

(Total db area) 

Data attributes Modeling  
approach 

Modeling 
purpose 

PSP attribute db  
[258 / 3250] 
8%  
   

Plot 
[400 m2] 
(1.3 km2)  

Height, DBH, 
species, stem 
count  

Based on Lambert et al. 
(2005). Species divided 
into hardwood / 
softwood  

Generate 
biomass ‘ground 
truth’ at plot 
scale  

Lidar point cloud 
[1000km2/50,000km2] 
>2%    

Lidar survey coverage 
[~1 m point sampling 
to 500 km2 polygon] 
(~ 10,000 km2)  

Height 
percentiles & 
vertical 
distribution 
ratios  

Linear, quadratic and 
JGLS regression models 
with < 2 variables to 
predict bole / whole tree 
biomass  

Calibrate FRI 
stand data by 
extrapolating 
PSP-based lidar 
model  

GIS stand polygon  
[2639 / 1.1 million] 
2.4%  
   

FRI stand  
[~0.01 km2 to 10 km2] 
(~ 42,000 km2)  

Mean canopy 
height &  
closure  

Linear, quadratic and 
JGLS regression models 
of bole / whole tree 
biomass  

Simulate stand 
level biomass 
and aggregate up 
to Province  

 
3. Summary of methods 
 
After initial quality control of the coincident lidar and PSP data, there were 182 PSPs between 
the years 2005 and 2010 available to train and test a lidar-based model of biomass. PSP data 
were used to derive ground truth estimates of bole and whole tree dry biomass through the 
application of a robust individual tree biomass model that was constructed from plot-level 
sample data collected across Canada (Lambert et al. 2005). The lidar biomass data were then 
used to train an FRI-based model using attributes from 1873 stand polygons which could be 
applied to the entire Province. Lidar data metrics collected over 13 different survey missions 
using the same ALTM 3100C sensor were extracted for each of the PSPs. Summary statistics 
extracted using FUSION (McGaughey, 2010) describing the vertical within-plot lidar frequency 
distributions and point cloud ratios were used to describe canopy height and cover attributes. 
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These lidar ‘metrics’ were then correlated with the associated PSP biomass estimates to 
construct predictive models of biomass. The lidar-based maps of biomass were segmented into 
corresponding FRI polygons, which were then scaled up to the Province using a new model 
based on the FRI stand attributes of canopy height and closure.  
 
4. Results & discussion 
 
4.1 Plot-level biomass 
 
Statistical descriptions of each PSP lidar point cloud dataset generated in the FUSION software 
(McGaughey, 2010) were tested for inter-correlation and suitability for use in multivariate 
biomass modelling (Table 2). As expected, all height-based frequency distribution metrics 
demonstrated high inter-correlation, as did most ratio-based metrics. While other derivatives of 
the frequency distribution are possible, it was decided to keep the PSP biomass modelling 
approach simple to allow for maximum transferability across diverse lidar datasets. 
Consequently, models tests were limited to two variables; one height-based and one ratio-based 
metric, as these demonstrated the least inter-correlation. Furthermore, height metrics are an 
index of canopy height (e.g. Naesset, 1997) while ratio metrics are an index of canopy cover 
(e.g. Hopkinson and Chasmer, 2008). These two attributes are logical indices of the two 
physical dimensions (height and width) that are fundamental to volume, and therefore, biomass 
calculations. 

 
Table 2: Correlation matrix of selected PSP lidar point cloud frequency distribution attributes extracted 
from FUSION. Shaded cells denote correlations between height and ratio metrics. Bold values illustrate 

weakest inter-correlation and therefore suitability for multivariate modeling 
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0
ElevMean  1 
ElevStdDev  0.81 1 
ElevP70  0.97 0.89 1 
ElevP75  0.97 0.91 0.97 1 
ElevP90  0.93 0.95 0.95 0.97 1 
ElevP95  0.91 0.95 0.93 0.95 0.99 1 
ElevP99  0.86 0.93 0.87 0.90 0.96 0.98 1 
Perc1stReturns>Mean 0.76 0.58 0.78 0.75 0.62 0.58 0.51 1 
PercAllReturns>Mean 0.72 0.45 0.71 0.67 0.53 0.49 0.41 0.93 1 
AllReturns>Mean/Total1stReturns*100  0.80 0.72 0.85 0.83 0.74 0.70 0.64 0.97 0.86 1 
Perc1stReturns>1.50  0.71 0.46 0.69 0.67 0.58 0.56 0.49 0.83 0.84 0.79 1 
PercAllReturns>1.50  0.70 0.34 0.63 0.61 0.53 0.51 0.45 0.64 0.73 0.59 0.91 1 
AllReturns>1.50/Total1stReturns*100  0.86 0.66 0.85 0.84 0.78 0.76 0.70 0.82 0.75 0.86 0.91 0.85 1 

 
Using PSP data and the biomass model of Lambert et al. (2005), several lidar biomass models 
were trained and tested for whole tree and bole. For the lidar model, species information was 
ignored but the ratio of softwood to hardwood stems was considered in PSP model training. 
Root mean square error (RMSE) for the best polynomial regression whole tree and bole lidar 
model remained approximately the same in both test datasets at ~ 26%. The explanation of 
variance in the test data was greater for bole biomass estimates at 75%, than whole tree biomass 
at 63%. All models were significant at the 99% level of confidence. These results indicated that 
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the lidar models were robust enough to provide stand-level summaries. 
 
4.2 Stand-level biomass 
 
A challenge that became immediately apparent during the process of relating lidar biomass 
estimates to FRI stand-level attributes, was the temporal latency between the two datasets (FRI 
data dating back to 1990s in extreme cases, while lidar data ranging from 2005 to 2010). This 
latency was most evident when comparing stand-level FRI mean tree height with the mean 
maximum of the lidar data aggregated into 25 m grid cells (Figure 2). Using canopy height as an 
indicator, quality control procedures were put in place to systematically remove the most 
obvious outliers (due to growth and clearcuts) using objective height and date criteria. However, 
even after this quality control process, the latency between lidar and FRI still has the potential to 
propagate uncertainty into the model. The nature of this error is such that any stand growth, 
decay, thinning or clear cut occurring following the last FRI stand update and preceding the 
associated lidar acquisition will lead to divergence between the lidar and FRI attributes. As long 
as the forests are in a state of dynamic equilibrium (i.e. the Provincial forest resource as a whole 
is neither expanding nor contracting), then these stand-level biases will not necessarily lead to a 
systematic bias in the overall population statistics. In practical terms, this means that we expect 
the model to display a high level of variance at the stand scale but when aggregating biomass 
estimates to larger and larger spatial domains, there should be a level of compensation between 
over- and under-estimates. 
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Figure 2: Mean maximum grid level lidar canopy height vs. FRI mean canopy height for stands 
completely covered by lidar data (n = 2639). 

 
Given the accepted level of uncertainty in the models at this stage of the analysis, no attempt 
was made to develop highly sophisticated or complex regression models between stand-level 
lidar biomass and FRI stand attributes. Crown closure and mean canopy height were chosen as 
the FRI attributes to be used in the stand biomass models as they most closely resembled the 
lidar metrics used in the previous modelling step. Similar to the PSP results, the RMSE in stand 
biomass approximated 27% both for whole tree and bole. However, the explanation of variance 
dropped to 41% and 43%, respectively, most likely a large function of the temporal latency 
issues described above. 
 
4.3 Nova Scotia’s biomass 
 
Using the hierarchical model development approach summarised above, we derived six 
estimates of total provincial biomass; three for bole (stem wood) and three for whole tree. The 
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three modelling approaches did not differ in terms of the data used at each stage of model 
development, rather the differences are simply in terms of the algorithm construction; ranging 
from simple single variable linear regression to dual variable quadratic and a further dual 
variable model that mimicked the structure of the model proposed by Lambert et al. (2005). 
Given the Lambert et al. (2005) model was used to derive the ‘ground truth’ plot-level dry 
biomass estimates from which the rest of the lidar and stand-level predictions are based, the 
model results are to be considered more reliable if expressed as dry biomass. The range of 
values for total bole biomass within the Province ranged from 253 – 260 x 106 dry tonnes, while 
whole tree biomass ranged from 365 – 373 x 106 dry tonnes (Figure 3). Bole biomass is the 
number to refer to if only stems are to be used as fuel wood and tree tops are to be left in situ for 
nutrient recycling. For the sake of comparison, the Nova Scotia Department of Natural 
Resources (DNR) estimate of total living merchantable tree stem biomass in the Province is 309 
x 106 dry tonnes (Townsend, 2008). The Canadian Forest Service (CFS) has also developed a 
largely satellite image-based estimate of total above ground biomass at the 1km pixel resolution 
(Hall et al. 2010), and when this is aggregated to the Province scale a value of 362 x 106 dry 
tonnes results.  
 

 
 

Figure 3: Map of predicted forest stand-level biomass across Nova Scotia 
 
Both the DNR and the CFS estimates of total above ground biomass for the Province of Nova 
Scotia are lower (by 17% and 3%, respectively) than that generated using the lidar scaling 
approach described here. The DNR biomass value refers to living whole tree dry biomass but it 
should be noted that this only considers stems with DBH > 9.1 cm. The whole tree biomass 
estimate generated in this study includes standing dead stems and given lidar cannot 
differentiate stems based on DBH it is likely the estimate is further inflated relative to the DNR 
estimate by inclusion of small and immature tree stems. The primary difference between this 
and the DNR and CFS approaches is that the approach described here allows calculation of 
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biomass at the stand scale and is useful for operational planning and decision making. Based on 
a conversion ratio of 140% for dry to green biomass for typical Acadian mixed wood species 
(e.g. Shelton and Shapiro, 1976), the estimates above provide values of around 357 x 106 green 
tonnes for total bole biomass and 514 x 106 green tonnes for whole tree biomass. 
 
Given the approach described uses three modelling steps, each building on the previous, 
uncertainty will propagate throughout. The RMSE values observed in the model results at each 
stage, demonstrated errors in the 15% to 30% range. Propagating the RMSE at the PSP, lidar 
and FRI modelling steps in quadrature compounds to an overall stand- and Province-level error 
of ~ 39%. This assumes that all errors are random and there is no significant bias. 
 
5. Conclusions 
 
For the time period from 2005 and 2010, 182 PSPs were used to train and test a lidar forest 
biomass model. This model was then used to train a FRI model from 1869 coincident stands, 
which was aggregated across all 1.1 million stands in Nova Scotia to arrive at a total above 
ground forest biomass estimate for the province. This biomass estimate can be expressed several 
ways but the whole tree dry biomass estimate is ~ 373 x 106 tonnes ±39%. Where lidar data are 
available in the Province (about 20% of the land surface area) a spatially explicit estimate of 
biomass can be generated at the 25 m grid cell resolution. In other areas, biomass can be 
estimated at the stand-level. The spatial resolution of these estimates constitutes an 
improvement over previous biomass estimates that were available at the ecoregion (DNR; 
Townsend, 2008) or 1 km pixel (CFS; Hall et al, 2010) resolutions. These results, therefore, can 
be used to aid in either stand- or within stand-level forest management practices and in 
informing forest biomass energy policy in Nova Scotia.  
 
Modeling biomass over such a large area is not without challenges. Greatest of these is 
obtaining useable model calibration and validation data. In this study, DNR PSP and FRI data 
were all that were available at the scale required. Both data sources were limited in terms of 
temporal compatibility with the lidar data that were used to scale between the two. Up to two 
years of latency in the PSP data is less than ideal given forests grow, die and are managed. 
However, this was less problematic than the > 10 years of latency for some of the FRI stands. 
The time discrepancy will introduce larger errors for younger stands and for those that have 
been clear cut. While objective criteria were used to mitigate such occurrences it is impossible 
to remove all such instances without manual selection and verification of each stand. Such an 
approach is not practical at this scale so a substantial amount of model uncertainty remains. 
However, it is assumed that temporal discrepancies will cause both over- and under-estimation 
of stand-level biomass, such that there will be a level of compensation.  
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Abstract 
 
This study was performed to estimate stand-level volume using the characteristics of vertical 
and horizontal distribution of airborne Light Detection And Ranging (LiDAR) data. It is found 
that the height distributional parameters, such as percentile, of LiDAR data reflected on- and 
in-canopy in a stand have the relationship with stand volume in previous research. However, we 
assumed that the nonparametric height distribution form of canopy LiDAR returns would be 
obviously related with the stand volume directly. Nonparametric height distribution was 
presented to be a continuous line according to the frequency of LiDAR returns by the height. 
Thereafter, the sum of each height of all canopy returns, which means the area below the 
continuous line, was compared to stand volume using National Forest Inventory (NFI) data. In 
addition, for verifying the volume of test stands, the similarity which is the overlapping ratio 
between the height distribution curves of sample and test stand was calculated. The relationship 
between the height sum and stand volume was relatively high to be R2=0.83. Based on such 
relationship, the maximum similarity of each test stand was computed as compared sample 
stands. As a result, mean similarity and root mean square error (RMSE) of estimated stand 
volumes were 82% and 34.96m3/ha respectively. However, supplementary indices, for 
non-overlapping part in similar distribution of canopy returns of sample and test stand, are 
needed to reduce such errors. 
 
Keywords: Nonparametric Distribution, Canopy LiDAR Returns, National Forest Inventory, 

Similarity, Stand Volume 
 
1. Introduction 
 

The stand volume is also an essential estimator for predicting forest biomass because the 
volume information can be converted to biomass using the Biomass Conversion and Expansion 
Factors developed by the Korea Forest Research Institute (KFRI) (Son et al.,, 2008). Therefore, 
an accurate forest inventory is critical to carbon sequestration monitoring as well as forest 
growth stock management (van Aardt et al.,, 2008). However, accurate and extensive work 
based on conventional field measurement is labour-intensive, time-consuming and expensive, 
even if little biased measurements on individual trees and plots are possible (Kwak et al.,, 
2007). 

As a solution to these problems, an optical sensor-based remote sensing technique has been 
used and evaluated over approximately three decades (Tucker et al.,, 2001). The application of 
remote sensing to forest measurement using satellite imageries and aerial photographs makes it 
possible to collect forest growth information for most location including inaccessible areas and 
to process data immediately (Zhou et al.,, 2001). However, the optical remote sensing technique 
suffers the limitations of difficulties in extracting three-dimensional profiles such as the stand 
height, canopy base height and the crown width, and in the acquisition of an image without the 
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negative influences of cloud and shade. Recently, airborne Light Detection And Ranging 
(LiDAR) approaches have attracted attention as a new technology in the field of remote sensing, 
by which the stand volume and biomass can be estimated using three dimensional (x, y and z) 
mass points (Lefsky et al.,, 1999; Popescu and Wynne 2004; Kwak et al., 2010). Several 
investigations have been performed to prove the utility of LiDAR by estimating the canopy 
height (Lefsky et al., 1999; Magnussen et al., 1999; Drake and Weishampel 2000; Peterson 
2000) and vertical structure (Harding et al., 2001; Parker et al., 2001). As a result, LiDAR 
remote sensing has been recognized as a reliable provider of important, tree-specific 
characteristics for estimating the stand volume and biomass (Drake et al., 2002).  

Conventional methods require information on the tree height and diameter at breast height 
(DBH) for estimating the stand volume as these are calculated using allometric functions, such 
as modelled from field measurements (Kim et al., 2000). However, it is difficult to directly 
estimate the DBH using an airborne remote sensing technique. To avoid the secondary 
modelling for DBH deduction, Chen et al. (2007) and Kwak et al. (2010) suggested a new 
method to calculate stem volume in single tree level using only the crown geometric volume 
(CGV) which is the computational crown volume above the crown base height extracted from 
LiDAR data. Furthermore, the stand volume and biomass have been estimated using height 
distributional approaches (e.g., median, mode, kurtosis, skewness and percentiles) of a 
large-footprint LiDAR system (Nelson et al., 1988; Harding et al., 2001; Parker et al., 2001; 
Drake et al., 2002). Moreover, small-footprint LiDAR has also been used to estimate the stand 
volume and biomass since the middle of the 1980s (Maclean and Krabill 1986; Nelson et al., 
1988). Even if the small-footprint LiDAR data are not waveforms, as can be acquired by a 
large-footprint LiDAR system, their distributions resemble a waveform because all LiDAR 
returns are accumulated per sampling unit, resulting in height-frequency distributions according 
to high vertical stratum (van Aardt et al., 2006). Therefore, the distribution of small-footprint 
LiDAR data enables characterization of the canopy vertical structure, which is useful in 
estimating the stand volume and biomass from fine-scale to stand-levels, using height 
distributional parameters such as percentile, median, mode, kurtosis and skewness (Magnussen 
and Boudewyn 1998; Means et al., 2000; Næsset 2002).  

On the other hand, there were a few researches on the estimation of forest structure using the 
distribution of LiDAR returns based on probability density function such as normal, weibull and 
bimodal distribution (Gobakken et al., 2005; Coops et al., 2007; Jaskierniak et al., 2010). 
However, the estimation based on parametric distribution has the drawback by which the 
original height value and distribution of LiDAR returns are ignored because the values are 
generalized during the process. In addition, the distribution of LiDAR returns in uneven forest 
or stand which has over 2 height clusters may be not normal because they have over 2 
stratifications and peaks. 

Therefore, in this study, the nonparametric height distribution of LiDAR returns was used to 
stand volume with Korean National Forest Inventory (NFI) data. As compared with height 
distribution functions of sample and test stands, the similarity between all stand was analysed. 
Thereby, the volume of a test stand with the maximum similarity was calculated with the basis 
of the most similar sample stand. 
 
2. Study area 
 

The study areas were located in Yangpyeong City of Kyeonggi Province (the upper left 
127°18′12.7295″E, 37°40′17.6375″N and lower right 127°50′56.4683″E, 37°22′1.8228″N) 
central South Korea (Figure 1). The area is approximately 878 km2 and situated from 160 to 
1,157m above sea level. The forest area in study site was dominated by steep hills, and 
composed to Pinus koraiensis (Korean pine), Larix kaempferi (Japanese larch), Pinus densiflora 
(Japanese red pine), Pinus rigida (Pitch pine) and Quercus spp. (Oaks).  
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Figure 1. Location of study area presented by mosaic aerial photograph taken from April to May, 2009 
 

3. Acquisition of NFI and LiDAR data 
 
3.1 Selection of sample sites from NFI data 
 

In South Korea, 5th National Forest Inventory (NFI) has been conducted on only forest area 
(As of 2011, approximately 6.4 million ha) from 2006. The scheme of survey was the 
systematic sampling with interval of 4 km x 4 km. In addition, there are 4 circular sample plots 
in one intersection of grid line by 4 km x 4 km. The size per one sample plot was 0.08 ha with 
15.96 m radius (Figure 2). In all sites for NFI, the tree species, age, height and diameter at 
breast height (DBH) of individual tree, and coordinate, elevation, slope and aspect of plot have 
been measured. 

 

 
 

Figure 2. Location distribution and scheme of NFI in South Korea 
 
Surveyed circular 114 plots (0.08 ha, respectively) of Korean pines from NFI data were used 

as 33 sample for modelling and 81 test plots for verification in Yangpyeong city. The plot 
(stand) volume was calculated as summing individual tree volumes within each plot. Individual 
tree volume was also calculated with allometric equations developed by KFRI as shown in 
Table 1. The coordinate was measured at the center of plot using the GPS Pathfinder ProXR, 
manufactured by Trimble. To correct for positional errors in the plots surveyed with a single 
GPS receiver, the acquired GPS data were processed by differential correction using 
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information of a GPS continuous station near the study area, which acquires precise positional 
and error correction information every 30 seconds. 

 
Table 1. Allometric equations by class of DBH of Korean Pine (where SV, D and H is the stem 
volume, DBH and tree height) 

Tree species Class of DBH (cm) Allometric equation 
Korean Pine 2~10 cm 9128.08523.100006730.0 HDSV =  
 12~20 cm 9632.09594.100006730.0 HDSV =  
 20 cm ~ 9050.07566.100006730.0 HDSV =  

 
3.2 Acquisition of airborne LiDAR data 
 
An Optech ALTM 3070 (a discrete LiDAR system) was used to acquire the LiDAR data. The 

flight was performed from 11th April to 28th May, 2009. The study area was measured at an 
altitude of 1,000m, with a sampling density of approximately 3~5 points per square meter, with 
radiometric resolution, scan frequency and scan width of 12bits, 70Hz and ±20°, respectively. 
For accurate analysis, we used LiDAR returns within ±10° scan angle as overlapped area were 
eliminated by MicroStation and TerraSolid Program. LiDAR data should be normalized for each 
return to retain the real height information related to the return hierarchy (van Aardt et al. 2006). 
Therefore, the extracted ground and vegetation returns were normalized to be real height values 
from the ground, and not height values above sea level. To normalize all returns, a Digital 
Terrain Model (DTM) was generated using ground returns, with the heights of all returns then 
subtracted from the DTM heights. Finally, we used the canopy LiDAR returns except 
understory layer of which height was almost lower than 2.5 m. 
 
4. Method 
 
4.1 Nonparametric distribution of LiDAR data 

 
Previous studies were based on height distributional parameters such as median, mode, 

percentile, kurtosis and skewness (Nelson et al., 1988; Harding et al., 2001; Parker et al., 2001; 
Drake et al., 2002). However, such methodologies require the selection of suitable variables and 
regression analysis throughout all procedure. Moreover, it is dangerous to estimate biophysical 
parameters, such as tree height, DBH, canopy base height and crown diameter, with the 
assumption which the distribution of LiDAR data follows the normality in a stand. That's why 
there are bi- or more-understory by which the stand has over two peaks in the height distribution 
(Std.) of LiDAR returns (Figure 3). In the case of parametric approach, only mean (μ) and 
standard deviation (δ) of height of LiDAR returns represent the characteristics of the stand 
simply. However, in actual forest stand, another statistics with mean and Std. were needed to 
present the various characteristics. In particular, the forests of South Korea are composed to 
various tree height and DBH because most forests have been not managed well by owners. 
Therefore, the assumption of normality of LiDAR returns is not suitable for the analysis of 
forest biophysical parameters. 

Thus we assumed that 1) the distribution of LiDAR returns (particularly canopy LiDAR 
returns in this study) is nonparametric to describe the stand structure without the loss of its 
characteristics, and 2) there is the strong relationship between the area of distributional function 
(sum of height of all canopy returns) and volume within a plot. Furthermore, the sum of height 
within a plots was calculated under the assumption that the number of LiDAR returns reflected 
in each plot is same even if they have a few different numbers. Based on such relationship, 
stand volume was calculated with the similarity between the LiDAR height distribution 
functions of sample and test sites.  
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Figure 3. Nonparametric distributions of 
canopy LiDAR returns 

Figure 4. The sum of height of canopy LiDAR 
returns is equal to area of distributional function 

 
4.2 Relationship between LiDAR height and stand volume 

 
For estimating stand volume using the similarity between the distributional functions of 

sample and test site, the relationship of area of distributional function and stand volume should 
be demonstrated. The area of distributional function is equal to the sum of all canopy returns in 
a stand (Figure 4). In previous studies, it was clarified that percentile data and descriptive 
statistics were related with stand volume and basal area (Nelson et al., 1988; Harding et al., 
2001; Parker et al., 2001; Drake et al., 2002). In this study, it is important that the sum of height 
of canopy LiDAR returns is correlated with stand volume because the ratio of overlapping area 
between distributional functions of sample and test sites would be used to estimate stand 
volume of target test sites directly. However, the estimated regression function was not used to 
stand volume with the sum of height of canopy LiDAR returns. 

 
4.3 Estimation of stand volume using similarity 
 

The similarity between the distributional function of sample and test sites was calculated with 
overlapped area of two functions as equation 1. 

 

( )∫
β

α
)()( xgxf I         (1) 

 
where α and β are the smallest and highest height, respectively, of overlapped area between 
distributional functions of sample and test sites. f (x) and g (x) are distributional functions of 
sample and test site respectively. The overlapping between two functions can be depicted as 
Figure 6.  
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Figure 5. Entire process for estimation of stand 
volume using the similarity 

Figure 6. Similarity of distribution function 
between sample and test site. The similarity is 
estimated using overlapped area each other. 

 
For estimating the similarity, firstly, we determined 33 and 81 sample and test sites composed 

of Korean pines. Stand volumes of them were computed using NFI data including tree height 
and DBH. In addition, canopy LiDAR returns were also extracted from relevant sites, and then 
the height distributional functions of canopy LiDAR returns for sample and test sites were 
prepared to estimate overlapped area. The maximum similarity of each test site were computed 
as compared to the overlapped area with the all distributional functions of sample sites. Thereby, 
respective 81 test sites were linked with prepared 31 sample sites to have maximum similarity. 
Finally, a stand volume of test site were calculated with the area ratio of sample and test site and  
stand volume of sample site which had maximum similarity with a test site (Equation 2). 
 

i
i

k
k Volume

Area
AreaVolume ⋅=       (2) 

 
where Volumek is a stand volume of selected test site, Volumei is a stand volume of sample site to 
have maximum similarity with selected test site, Areai and Areak are the area of selected sample 
and test site. 
 
5. Result and discussion 
 
5.1 Correlation of LiDAR height and stand volume  

 
The precedence for clarifying the relationship between the sum of height of canopy LiDAR 

returns and stand volume were performed as Figure 7. As a result, the coefficient of 
determination was approximately 0.83 to be relatively high, and there was the linear relationship 
between them. This is attributed to the fact that the sum of height of canopy LiDAR returns is 
related with individual tree height and crown diameter in a stand. High value of the sum means 
that most of LiDAR pulses were almost reflected on high layer of a stand and. Also, several 
reflection on high layer implies that most of individual crowns were distributed highly and 
widely on high layer. The stem or stand volume can be computed with tree height and DBH. 
Crown diameter is also related strongly with DBH. Therefore, the reflection on high layer in a 
stand represents high stand volume, otherwise low stand volume. 
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Figure 7. Relationship between sum of height of 
canopy LiDAR returns and stand volume 

Figure 8. Verification of observed and predicted 
stand volume using similarity 

 
Based on such relationship, the stand volume could be computed as compared with the 

similarity of sample and test sites. However, we didn't use the regression function estimated 
from the relationship between the sum of height and stand volume. 

 
5.2 Analysis of similarity 
 

The distributional similarity of canopy LiDAR returns was estimated with the degree of 
overlapped area of sample and test sites. Mean, standard deviation, Minimum and Maximum of 
similarity were analyzed to be 0.82 (82%), 0.10 (10%), 0.33 (33%) and 0.93 (93%), respectively. 
However, approximately 90% of similarities were distributed around 0.9 when the frequency of 
similarity depicted on graph (Figure 9). Therefore, the distributions of test sites were almost 
agreed with those of test sites. When estimating stand volume with the distribution of similarity, 
we didn't use a few test sites with small similarity considered as outliers. 
 

Figure 9. Distribution of similarities between 
sample and test sites 

Figure 10. Error by non-overlapped area in 
distributional function 
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5.3 Validation of stand volume 
 

After the similarity was analyzed, the stand volume with the maximum similarity between 
sample and test sites were computed by equation 2. The estimated stand volumes were 
compared with field measurement from NFI data. As a result, the coefficient of determination 
(R2) and root mean square error (RMSE) were estimated to be 0.52 and 34.96 m3/ha respectively 
(Figure 8) although the similarities were almost distributed around 0.9. This is attributed to the 
fact that non-overlapped part causes the error as seen in Figure 10. Figure 10 shows the 
difference of the number of returns in middle height layer between two sites although the 
distribution pattern of canopy returns are similar each other. This implies that two stands have 
similar vertical structure but the density of leaves and branches is different. The leaves supplies 
nutriments by photosynthesis and are related with stand growth directly. Therefore, it is fair that 
more non-overlapped part leads to more erroneous estimation when stand volume is estimated 
with only the similarity. To overcome such problems, the addition of explainable indices like 
leaves density or the development of coefficients for complementing non-overlapped part are 
required in the future study. 
 
6. Conclusion 
 

We estimated the stand volume using the similarity of nonparametric distribution of LiDAR 
data in forest area of South Korea whereas the height distributional parameters, such as 
percentile, of LiDAR data reflected on- and in-canopy in a stand have the relationship with 
stand volume in previous research. As a result, the similarity of sample and test sites was 
relatively high, but the accuracy of estimated stand volume was not high to be R2=0.51 and 
RMSE=34.96 m3/ha. That is attributed to the non-overlapped area in distributional functions 
between sample and test sites. Even if the pattern of height distribution of canopy returns is 
similar, the leaves density can influence the number of LiDAR pulses reflection and cause 
non-overlapped part in distributional functions. Therefore, it is needed to derive leaves density 
indices or complementary coefficients in the future research. 
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Abstract 
 
Within the past decade progress towards automatic recognition of individual trees and their 
parameters was made in both TLS and ALS- data based algorithms. In this paper we present an 
approach to combine single trees derived from ALS and TLS-data in order to gain a higher level 
of information. Therefore, two data sets are used: 1. a set of 3D-stemfiles generated by the 
algorithm described in Bienert et al. 2007 and 2. a set of detected single trees for the 
corresponding area of the data set 1 based on the algorithm described in Gupta et al. 2010. The 
3D-stemfiles include position, information regarding sweep and diameter in 10[cm] height 
intervals. The ALS-tree description covers the position, maximum crown diameter and length as 
well as tree top height. This information is used for a hierarchic approach of linking ALS and 
TLS-derived trees based on three different initial matching algorithms. The estimated position 
error is taken into account to generate an initial list of matching candidates. The 2D-distance 
based initial linking method linked 41% of the TLS-trees. It was found that 3D-estimation of the 
tree top based on sweep information of the TLS-trees led only to minimal more imputations 
than the 2D-approach. A possible reason is seen in the linear models chosen, which do not 
reflect the tree shape invariably. Future work focuses on the integration of species information 
and the quantification of false linkage, which could not be evaluated within this study.  
 
Keywords: terrestrial laser scanning, airborne laser scanning, tree linking, 3D-line fitting 
 
1. Introduction 
 
In recent years, object recognition based on Lidar generated point clouds has been an important 
topic in both science and industry. Airborne laser scanner (ALS) data in different point density 
levels is available throughout major countries and updated in useful time intervals. In the field 
of forestry applications, research related to biomass estimation and single tree detection are 
among the most regarded publications. High potential has been demonstrated for the retrieval of 
relevant information regarding economic and ecological parameters of forests from ALS data. 
Næsset 2002 finds a good estimation of dominant height, mean height, mean diameter, basal 
area and volume of stands in Scandinavia. In Straub et al. 2009, methods for single tree based 
total stem volume predictions in different forest conditions in southern Germany are compared. 
In the latest publication of Gupta et al. 2010, singletree parameters predicted in the same stands 
as the previous mentioned study include tree top height and position, crown length and 
maximum crown diameter. A comparison of different algorithms regarding their performance 
under different forest conditions can be found in Vauhkonen et al. 2010.  
Particularly singletree delineation and the related description of quality parameters are of high 
importance for the diverse European wood industry. Precise economically relevant description 
of standing trees is among the top applications of terrestrial laser scanning in forests. Liang et al. 
2008 detect tree trunks in a distance up to 60[m] with a single view scan. Bienert et al. 2007 
present a commercialized system to detect trees in one scan mode. For each detected tree, a 
profile fitting in a height interval of 10[cm] was conducted, thereby quantifying diameter, 
volume and shape of the entire tree.  
Combining the features extracted from both ALS and TLS data promises a precise and 
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comprehensive description of the ecosystem forest and its economic value. Few approaches are 
known to the author dealing with registration of ALS and TLS generated objects in wooden 
environments. Olofsson et al. 2008 present a method of linking field data to ALS derived trees. 
The linking is based on dbh, height and distances between ALS- and field-surveyed trees. 
Ground truth tree data generated in StandforD stemfiles during felling with harvesters is used in 
Holmgren et al. 2010. A 10[m]-radius sample plot size is used and the linking is based on ALS 
generated tree attributes as crown polygon and height. 
In this paper, we present an approach of combining the TLS and ALS datasets on object (tree) 
level. We use the results of proven algorithms developed at the University Freiburg, Department 
of Remote Sensing and Landscape Information Systems (Gupta et al. 2010) and University 
Dresden, licensed by TreeMetrics Ltd. (Bienert et al. 2007). 
 
2. Material 
 
2.1 Study area 
 
The study area is located in south-west Germany (49.0N 8.4E) in the municipal forest of 
Karlsruhe. The extent of the test site is 2.1x4.4[km2] and predominantly includes pine, beech 
and spruce. Within the area, 42 permanent inventory plots where selected to cover typical forest 
conditions for this site. The plots include scots pine (Pinus sylvestris), sessile oak (Quercus 
petrea), red oak (Quercus rubra) and European beech (Fagus sylvatica). 
 
2.2 TLS data 
 
TLS data acquisition was conducted on the centre point of all plots by TreeMetrics Ltd. in 
November 2010. The scanning device was a Faro Imager 5006i. Data was processed with the 
algorithm described in Bienert et al. 2007. In a pre-processing step, all returns not within a 
radius of 15[m] of the plot centre were discarded. The settings were made for high precision and 
accuracy, which leads to a high omission error. Manual inspection did not reveal any false tree 
detection, but a high number of undetected stems can be observed. The log length of the 
detected trees is underestimated due to the strict parameter settings. The centre coordinates of 
the plots were measured by a surveying company and have a location error of < 5[cm]. The 
coordinates for each detected stem were calculated with distance and azimuth to the centre. The 
processing result is a list for each plot containing the detected trees in form of coordinates, 
diameter and volume in a height interval of 10[cm]. In 42 plots, 831 trees were detected (min=1, 
max=21, mean=8.9).  
 
2.3 ALS data 
 
In November 2009, ALS data was acquired with a Riegl LMS-Q560 Scanner. The point density 
is ca. 24[pt/m2]. The method used for detecting and delineating single trees is described in 
Gupta et al. 2010. In addition to the top tree position, two more parameters are calculated for 
each detected tree: maximum crown diameter and crown length. Within a 20[m] radius of the 
TLS-scanner position, 1277 trees were detected.  
 
3. Methods  
 
3.1 Data preparation 
 
To reduce false imputation, data cleaning was performed on the TLS-tree set. Here, all small 
neighbouring trees that (a) are within 1.5[m] and (b) have a dbh difference > 10[cm] were 
removed. This is to dismiss trees that, although they are detected by TLS, most likely are not 
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detectable by ALS (i.e. because they are in the understory), as being linking candidates. 

 
Figure 1 view through a TLS-scan with an understory tree covered by a dominant tree. After cleaning the 

smaller tree has been removed. 
 
Figure 1 shows an example of two trees with a distance to each other of 0.7[m] and 
dbh-difference of 24.5[cm]. The smaller tree on the left was discarded according to the cleaning 
condition.  
 
3.2 Initial linking 
 
Firstly, the 2D Cartesian distance for each TLS and its neighbouring ALS tree is calculated 
when the condition 
 
 

்݀ܪ  ൏ |݁|        (1) 
 
is fulfilled. Where ்݀ܪ  refers to the horizontal Cartesian distance between TLS and 
ALS-trees and ݁ to the combined position error of both datasets.  
 

݁ ൌ ට ݁ௌ
ଶ  ்݁ௌଶమ

     (2) 

 
ܵܮܣ݁  and ݁ܶܵܮ  are the errors from the two detection algorithms. Each TLS-tree is then 
associated to potential ALS-trees. A n:m relation is possible, which potentially associates 
multiple TLS trees to multiple ALS-trees.  
 
3.3 Advanced initial linking 
 
On the test site, a distinct leaning can be observed, particularly pine trees. This implicates that 
the crown is often not perpendicular to the tree position at dbh. Horizontal distances up to 7[m] 
between tree top and dbh position were observed in a reference data set. Therefore, we 
considered additional information provided by the TLS-trees. Those trees have a certain length 
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which is not related to the actual tree height but more to branchiness, occlusion and parameter 
settings of the detection algorithm; however, the sweep of the stem is reflected very well. This 
sweep is used to estimate the potential position of the tree top by fitting a straight line through 
each 3D-coordinate tuple of the tree. For getting meaningful estimations, this approach was 
applied only to stems which are longer than 5[m]. The line fitting algorithm is explained in 
detail in Drixler 1993. The algorithm is based on quadrics and utilizes the concept of 
eigenvalues. Fitting the 3D-line follows four steps (Drixler 1993 p.47ff.): 
 

1. The coordinates of the TLS-derived tree are reduced with their centre of gravity and the 
result is stored in matrix כܣ 

2. Three eigenvalues and eigenvectors of the matrix product of כܣ்כܣ are computed  
3. The corresponding eigenvector of the maximum eigenvalue represents the direction 

vector of the fitted line. 
4. The geometric gravity point of the TLS tree points is used as the origin point. 

5. The variance-factor ߪ is calculated with the two smaller eigenvalues as ߪ෬ ൌ  ටఒభାఒభ
ேିଷ

 

 
This approach returns a 3D-straight line defined by 6 parameters (ݔ, ,ݕ ,ݖ ,௩௧ݔ
,௩௧ݕ  .changes along the stem is in the range of millimetres-ݕ-ݔ ௩௧ሻ. The resolution of theݖ 
This means the points along the stem may reflect small buckles and curvature at the stem 
bottom what can substantially influence the line fitting. To overcome this uncertainty, an 
iterative approach was developed that begins at the stem top and moves downwards. Initially, 
the topmost 10 points are used for an initial line fit. For each iteration, one point is added to the 
point set used by the fitting algorithm. The change of the variance-factor ߪ per step is observed 
and when ߪ becomes greater than 0.009, the process ceases. The threshold of 0.009 was found 
empirically.  
The fitted line is then elongated to the height of the highest detected tree in the ALS-data. The 
3D minimum distance is measured between the fitted line and the ALS trees and if distance 
values fulfil the criteria described in formula (1), the pair is put on the list of potential matching 
candidates.  
 
A third list is generated with the help of 3D-boxes. The estimated tree-top and the geometric 
gravity point, both derived from the line fit approach specify a 3D-box. The parameters 
maximum crown diameter and tree top height define another 3D-box. When the two shapes 
intersect the trees are put on the list of possible matching candidates. 
 
3.3 Final linking procedure 
 
The list of potential matches contains all pairs of TLS- and ALS-trees in which, for example, 
one TLS tree is linked to several ALS-trees and vice versa. Figure 2 outlines the different steps 
of the linking procedure. The algorithm begins with a random TLS-tree and analyses its 
neighbourhood situation. It checks how many neighbouring ALS- and TLS-trees are present. 
The associated neighbours are again checked for their neighbours and so on. This process stops 
if there are no more partners on the list. The network is stored in a temporary list, which is the 
starting point for further analyses. 
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successfully linked. If there is still no match possible, a general estimation of the dbh of the 
ALS tree is made by a logarithmic regression equation based on site specific parameters and 
literature review. Species information is not available and, therefore, not taken into account. The 
procedure compares each pair concerning the dbh estimated and measured. The standard 
deviation of all TLS measured dbh values is taken as the threshold for imputation. When the 
difference between the measured and estimated dbh is greater than the standard deviation, the 
pair is discarded from the list. In the case that only one pair meets the condition, it is matched. If 
more than one combination is possible, then no match is performed.  
 
 
4. Results 
 
The distance threshold ݁ was calculated with the following values: 
 

1. Since ݁ܵܮܣ was not specified in Gupta et al. 2010, the author checked the position accuracy 
manually and concluded that the horizontal distance between the reference tree top and 
found tree top was up to േ3.2ሾ݉ሿ. 

2. In Bienert et al. 2007, the position error is not mentioned, but analyses regarding the 
error of the dbh estimation were performed. Seeing as the diameter is through the stem 
centre associated with the tree position those result were used as input for ݁ܶܵܮ. Bienert 
et al. 2007 found a maximum error for the tree diameter of േ19.6[cm] for Sitka spruce.  

 
A test series with ݁ ൌ 1.5…7ሾ݉ሿ applied to the 2D-distance based candidate list showed a 
strong correlation (ܴଶ ൌ 0.98) between ݁ and the number of matched pairs. 
 
4.1 2D-distance based candidate list 
 
The 2D-distance based initial linking leads to an initial list of 880 possible combinations. After 
the cleaning of understory trees, 858 combinations remain. Clearing the 1:1 situations leads to 
matches of 185 TLS-trees to one ALS tree and 673 combinations need further investigations. 6 
matches were made through the second 1:1-check. The query regarding the distance difference 
matched 106 TLS-trees. The maximum crown diameter was responsible for 34 matches and the 
dbh comparison led to 24 imputations. In total 355 (41%) out of 831 TLS-trees were linked to 
an ALS-tree.  
 
4.2 3D-line fit based candidate list 
 
After clearing small trees likely covered by a big tree, the initial list of potential pairs within of 
3.2[m] minimum 3D-distance of the fitted line to an ALS-tree-top contains 619 combinations 
(previously 597). In total, 284 (48%) TLS-trees were matched with an ALS-tree. The initial 1:1 
situation was dominating the imputation with 179 cases. The distance comparison led to 56 
matches and the crown diameter was responsible for 25 links. Analysing the (estimated) dbh of 
the two tree sets linked 21 TLS-trees. Only 3 pairs were matched through a recheck for 1:1 
situations.  
 
4.3 3D-box intersection based candidate list 
 
The 3D-box intersection returns approximately double the amount of potential pairs (1224) 
compared to the 3D-line-fit based method. After clearing understory trees, 1202 remain. 
Compared to the other approaches, the number of initially matched pairs is relatively low (57) 
whereas matching through distance difference (153) dominates. Imputation through crown 
inclusion and dbh-comparison was responsible for 45 respective 22 pairs. In total 294 (24%) 
TLS-trees were linked to an ALS-tree.  
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Figure 3 View through TLS-point cloud (green) with a depth of 1.5[m]. The blue points represent the 

ALS-trees found by Gupta et al. 2010 
 
4.4. Matching reliability 
 
The three different results were analysed in respect of differences in linked tree pairs. 181 pairs 
were matched with all three initial linking methods. With both the 2D-distance based and the 
3D-line fitting based candidate list, 227 pairs were matched. 3D-boxes and 2D-distance based 
initial list generation led to 216 pairs which appear after the algorithm in both final imputations 
lists. When comparing the two 3D-approaches, 221 pairs appear in both candidate lists. In total, 
454 different TLS-trees could be matched when running all three initial list generators 
separately and combining the results.  
 
5. Discussion & Conclusion 
 
The results show that depending on the initial linking method approximately one third of the 
TLS-trees could be linked to an ALS-tree. One has to consider the fact that in our case detection 
algorithms for terrestrial laser scanners include trees with a dbh of 7[cm] and higher. This 
implies a substantial number of detected trees that do not take part in the crown layer and are 
thus barely detectable in airborne laser scanner data. We exclude potentially fully covered 
TLS-trees that are close to another TLS-tree to reduce that effect, however this does not attack 
the problem of isolated standing trees that are not dominant enough to appear in the crown layer 
visible to ALS-scanners. To solve this issue, a more reliable dbh-estimation is essential. In 
general, the fact that the species information is missing thus far is seen as a major obstacle for a 
better linking. With known species in either TLS or ALS-tree data, the dbh-estimation could be 
of a higher accuracy. Recent work described in Heinzel and Koch 2011 show promising results 
for tree species detection in mixed stands. It is planned to include these findings in the future.  
The three approaches of making an initial candidate list do not necessarily produce the same 
pairs. Only 181 matches were identical in all three approaches. A possible reason for that is the 
consideration of the third dimension. It was observed that, even with a low variance factor, the 
fitted line did not always reflect the growth direction of the stem reliably. In these cases, the 
projected tree top position is very likely incorrect and therefore a wrong ALS-tree gets linked. 
This problem does affect the 3D-boxes approach as well. The fitting approach returns an 
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over-parameterized definition of a line since a straight line in 3D is defined by four independent 
parameters (ߙ, ,ߚ ,ߛ ݀).The method can be questioned when taking this into consideration. 
However, we believe that the negative effect of the fitting algorithm itself is not causal for 
wrong tree top estimation. The high resolution of 2-dimensional direction changes is seen as the 
major reason for the failing of the fitting. Since the underlying model is a straight line, this leads 
to an insufficient result in cases where the tree has a distinct sweep along the complete stem. For 
future work, better indicators need to be found to decide whether or not a line fitting is 
appropriate or not.  
A major problem is to quantify false linkage, since there is no information that can prove correct 
linking. A solution to that problematic could be to use the TLS-point cloud to assess the 
accuracy of the tree top position and maximum crown diameter. First visual inspection showed 
that with good registration, useful accuracy estimation with respect to linking is possible. A cut 
through the point TLS-point cloud with the detected ALS-trees on top is shown in Figure 3.  
The strong linear correlation between the numbers of matched pairs and ݁ is not surprising 
since the number of potential pairs increases dramatically. The quality of the result is certainly 
problematic because more unrealistic matches are made when the maximum distance is 
increased.  
In future research the effect of the linking on biomass and forest parameters estimation is 
investigated. 
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K-nearest neighbor (kNN) approaches are popular statistical methods for predicting forest attributes 
in airborne laser scanning (ALS) based inventories. Their main upsides are the simplicity to predict 
multivariate response variables and their freeness of distributional assumptions on the conditional 
response. One of their largest draw-backs is that predictions outside the range of the reference data 
inherently result in an under- or overestimation. This property of kNN approaches is known as 
extrapolation bias and aggravates with an increasing number of neighbors (k) used for the prediction. 
 
This study presents one possibility to reduce extrapolation biases of predictions based on the 
area-based approach (ABA) by using individual tree crown (ITC) approaches within those specific 
areas of a low density ALS acquisition where the point density might be sufficiently high for using 
ITC methods. In the proposed strategy, additional (or artificial) reference plots augmented field 
measured plots. Artificial plots were created by applying ITC segmentation to a canopy height model 
derived from high density ALS data. The response variable biomass per hectare was predicted for 
every segment following a semi-ITC approach. The segment predictions were aggregated on the 
artificial plot level. The artificial plots were then treated in the same way as the original reference 
data to make predictions in areas with low density ALS data based on the ABA. It was hereby 
assumed that the predicted plot level response on the artificial plots is equivalent with the observed 
plot level response on the original reference data. 
 
The data consisted of 110 reference plots with a smaller data range than the 201 independent 
validation plots. Considerable extrapolation bias was visible if only the reference plots were used for 
the prediction. Almost no extrapolation bias was found if the prediction was based on reference plots 
augmented by artificial plots. The root mean squared error (RMSE) of the biomass predictions based 
on the reference plots was 39.1%. The RMSE reduced to 29.8% if the reference plots were 
augmented by artificial plots. 
 
Keywords: Nonparametric regression, kNN, MSN, accuracy, precision, lidar, ALS 
 
 
1. Introduction 
 
K-nearest neighbor (kNN) approaches are popular statistical methods for predicting forest 
attributes in airborne laser scanning (ALS) based inventories (e.g., Breidenbach et al. 2010b; 
Hudak et al. 2009; Packalén and Maltamo 2006). Their main upsides are the simplicity to 
predict multivariate response variables and their freeness of distributional assumptions on the 
conditional response. One of their largest draw-backs is that predictions outside the range of the 
reference data inherently result in an under- or overestimation (McRoberts 2009). This property 
of kNN approaches is known as extrapolation bias (Magnussen et al. 2010) and aggravates with 
an increasing number of neighbors (k) used for the prediction. Magnussen et al. (2010) 
proposed a general, model assisted method to dampen extrapolation biases. 
 
This study presents one possibility to reduce extrapolation biases of predictions based on the 
area-based approach (ABA) (Næsset 2002) by using individual tree crown (ITC) approaches 
within those specific areas of a low density ALS acquisition where the point density might be 
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sufficiently high for using ITC methods. In the proposed strategy, additional (or artificial) 
reference plots augmented field measured plots. Artificial plots were created by applying ITC 
segmentation to a canopy height model derived from high density ALS data. The response 
variable biomass per hectare was predicted for every segment following a semi-ITC approach 
(Breidenbach et al. 2010a). The segment predictions were aggregated on the artificial plot level 
which resulted in the “observation” of the response at the artificial plot. The artificial plots were 
then treated in the same way as the original reference data to make predictions in areas with low 
density ALS data based on the ABA. 
 
Even if low density ALS data are acquired, areas of high density ALS data exist where 
additional flight lines are flown perpendicular to the main flying direction for the purpose of 
calibrating the stripes against each other. Lower flying altitudes may even be considered for 
these additional flight lines in order to increase point density (Næsset et al. 2006). This makes 
the proposed approach easily applicable under operational settings. Since the ALS campaign 
and the field work were carried out independently, an additional ALS campaign was necessary 
to acquire the high resolution ALS data for some flight strips in this study. 
 
2. Material and methods 
 
2.1 Study area and field data  
 
The study area was located in the municipality of Aurskog-Høland, in southeast Norway (Figure 
1). The forest in the area is dominated by Scots pine (Pinus sylvestris) and Norway spruce 
(Picea abies). The topography is smooth with heights above sea level between 120 and 390 m. 
 
The field data consisted of 110 reference plots and 201 independent validation plots. On these 
field plots, diameter at breast height (dbh) and species were recorded for all trees. Tree height 
was measured for a subsample of trees on every plot to predict the heights of the unmeasured 
trees. Single tree biomass was derived using species-specific biomass functions based on dbh 
and height (Marklund 1988).  
 
The reference plots were sectors (i.e., quarters and halves) of 40 large sample plots with an area 
of 500 and 1000 m2, respectively. Following a purposive sampling design, the 40 large sample 
plots were located under strips of high density ALS data (Figure 1, lower right hand side). The 
field work in which also tree coordinates were recorded was carried out in 2008. See 
Breidenbach et al. (2010a) for more details of the reference plot setup. The original number of 
sectors was 152, each with an area of 250 m2. However, in order to better illustrate the strength 
of using artificial plots, only sectors with a measured biomass between 50 and 170 Mg ha-1 were 
selected. Thus these selected sectors constituted a sample of 110 reference plots. The reference 
plots were used to create the artificial plots and for fitting the statistical model using the ABA. 
 
The circular validation plots had an area of 200 m2 and stemmed from an operational forest 
inventory that took place in 2006. The sample plots were distributed according to a stratified 
systematic design (Figure 1, upper right hand side). Table 1 summarizes characteristics of the 
reference and validation plots. 
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Figure 1: Location of the study area within Norway and positions of the 201 validation plots (upper right 

hand side) as well as the 40 large sample plots containing the sectors serving as reference plots (lower 
right hand side). 

 
 

Table 1: Characteristics of measured biomass on the sample plots (Mg ha-1) 
Plot type Minimum Mean Maximum Standard deviation 
Reference plots 52.09 92.69 168.30 33.08 
Validation plots 18.47 111.30 314.30 62.64 
 
2.2 Remote sensing data 
 
The whole municipality of Aurskog-Høland was covered with low-density ALS data in summer 
2005 in order to provide auxiliary information for an operational forest inventory. The Optech 
ALTM 3100 sensor was operated from a fixed-wing aircraft with a flying height above ground 
of approximately 1850 m and a half scanning angle of 15 degrees. The pulse repetition and 
mirror frequencies were 50 kHz and 31 Hz, respectively. Only the first and last returns per pulse 
were recorded. While the main flight direction was north-south oriented, two flight strips were 
flown almost perpendicular to the main block in order to calibrate the other strips against each 
other (Figure 2). The pulse density under these strips was frequently above 1.5 m-2 whereas the 
pulse density in general was around 0.7 m-2. 
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Figure 2: Returns per square meter of low density first return ALS data (background), extent of high 
density flight strips (horizontal black lines) and locations of large sample plots (crosses). 

 
 
High density ALS data were acquired along five non-overlapping flight strips covering the 40 
large sample plots in summer 2006 (Figure 2). The flight direction was east-west oriented and 
the acquisition settings resulted in flight strips with a swath of 150 m in south-north direction. 
Up to four returns per pulse and the intensity of the reflected signal were recorded for 
approximately seven pulses per square meter. The Optech ALTM 3100 sensor was also used for 
this data acquisition but was operated from a flying height above ground of approximately 800 
m and a half scanning angle of 5 degrees. The pulse repetition and mirror frequencies were 
100 kHz and 70 Hz, respectively. Both ALS data sets were processed by the data vendor and 
delivered in UTM coordinates with ellipsoidal heights. 
 
2.3 Creation of artificial plots and area-based predictions 
 
The proposed approach can be subdivided into two phases. In the first phase, artificial plots are 
generated in the areas with high density ALS data. The second phase is basically the 
well-known ABA (Næsset 2002). However, the artificial plots are used in addition to the 
reference sectors to increase the amount of training data.  
 
In the first phase, the positions of the artificial plots were established such that they were 
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aligned along the flight lines approximately in the middle of the high resolution ALS strips. An 
artificial plot center was established every 50 m along the flight lines. It should be noted that the 
numbers given here were chosen for technical and practical reasons. In theory, artificial plots 
could be anywhere within the area of high resolution ALS data. 
 
Using an inverse distance weighted algorithm and four neighbors, digital surface models 
(DSMs) with 0.5 m edge length were created from the high density first return ALS data for 
areas including a 5 m buffer around the artificial plot center. Tree crowns or small clusters of 
trees were segmented in the inverted DSMs using a watershed algorithm. Segments were 
assumed to belong to an artificial plot, if their centroid was within a radius of 8.92 m of the 
artificial plot center. The mean and coefficient of variation of ALS height and intensity, 
proportion of first returns, proportion of returns lower than 30% of the maximum height 
(density3) of the ALS returns within the segments as well as the segment area were derived as 
predictor variables for the semi-ITC approach. 
 
The same strategy as for the artificial plots was followed to segment tree crowns on the 
reference plots. The segments were intersected with the tree coordinates in order to link the field 
measurements with the remote sensing data. Due to omission and commission errors of the 
segmentation algorithm, there can be no, one, or several trees within a segment. 
 
A nonparametric kNN method based on the normalized Euclidean distance (Crookston and 
Finley 2008) was used to predict the tree properties of crown segments on the artificial plots. 
Biomass associated with the closest segment on a reference plot was imputed to the target 
segments on the artificial plots. 
 
In the second phase, the predicted biomass for the segments was aggregated on the artificial plot 
level. In the case of the reference plots, the measured tree biomass was aggregated. Both data 
sets were merged to one large table used as reference in the ABA. Targets in terms of kNN were 
the 201 independent validation plots. The following seven metrics served as predictor variables 
in the ABA and were derived from the height distribution of the low resolution ALS data: 
Maximum, mean, standard deviation, coefficient of variation, interquartile distance, kurtosis, 
first quartile. The metrics were derived for the artificial, reference and validation plots. 
 

As for generating the artificial plots, a kNN approach was used in the ABA. However, the 
distance metric was based on canonical correlation. With k=1, the method is known as most 
similar neighbour inference (MSN) (Moeur and Stage 1995). In MSN, the distance between 
observations, say a target with index t and a reference with index r, is calculated by multiplying 
the differences in the explanatory variables (X), ݀௧ ൌ ܺ௧ െ ܺ, with a weighting matrix. The 
weighting matrix (W) is derived using canonical correlation analysis that maximizes the 
correlation between response (Y) and explanatory variables by linear transformation ܷ ൌ  ܻߙ
and ܸ ൌ ݇ ;ܺߛ ൌ 1,… , ߛ  andߙ The variables .ݏ  are the canonical coefficients of the 
response and the explanatory variables respectively. The weighing matrix is then given by 
ܹ ൌ ΓΛଶΓԢ where Γ = the matrix of all ߛ and Λଶ = diagonal matrix of the squared ߣ . This 
results in the distance function ܦ௧ଶ ൌ ݀௧ܹ݀௧ᇱ . 
 
The goodness of fit of the MSN models was analysed by plotting observed versus predicted 
values on the validation plots against each other and by root mean squared errors (RMSE) and 
mean residuals. 
 
3. Results 
 
The range of the predicted values based on the reference plots alone was between 60 and 
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150 Mg ha-1. Small observed values were overestimated and large observed values were 
underestimated (Figure 3, left hand side). 
 
Almost no under- and overestimation of small and large observed values was recognized if 
artificial plots were used to augment the reference plots (Figure 3, right hand side). The use of 
artificial plots also resulted in considerably smaller root mean squared errors and mean residuals 
(Table 2). 
 

 
Figure 3: Observed vs. predicted biomass based on the reference plots alone (left) and based on the 

reference plots augmented by artificial plots (right). The artificial plots were created using the segmented 
reference plots. 

 
 

Table 2: Accuracy measures of the predictions 
 RMSE 

(Mg ha-1) 
RMSE (%)a Mean residual 

(Mg ha-1) 
Mean residual 

(%)a 
Reference plots 
only 

43.46 39.06 6.94 6.24 

Reference plots 
and artificial plots 

33.14 29.78 -2.60 -2.34 

a Relative to the mean of the observed values on the validation plots. 
 
 
4. Discussion and conclusion 
 
The range of the predicted values based on the reference plots alone (between 60 and 
150 Mg ha-1) was smaller than the range of the observed values in the reference plots (between 
50 and 170 Mg ha-1). This was a result of the regression to the mean effect which occurs if the 
number of neighbors (k) is larger than one (McRoberts 2009). The use of artificial plots levelled 
out the regression to the mean effect and the extrapolation bias (Magnussen et al. 2010) that 
occurred due to the smaller data range of the reference plots compared with validation data. 
Another less obvious effect was that gaps within the data range were reduced by using the 
artificial plots which also increased the accuracy of the prediction. The distances in the feature 
space between a target and the closest neighbors increase with increasing gap size. Gaps are 
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especially large within areas of the data range that is only sparsely covered with observations 
(McRoberts 2009). 
 
This study showed that semi-ITC approaches can be useful also if low density ALS data are 
acquired in order to carry out an ABA forest inventory. It would be an easy task to increase the 
point density on the flight lines that are flown to calibrate the flight lines against each other in a 
low density ALS acquisition. A good coordination between planning of the flight and field 
campaigns is, however, essential. Since field and remote sensing data acquisition were carried 
out independently in this study, high density ALS data over the reference sectors had to be 
acquired separately. The necessary ALS data do not result in higher costs if two separate flight 
campaigns can be avoided. The tree coordinates that are necessary for the semi-ITC approach 
followed here (Breidenbach et al. 2010a) increase the survey costs compared to field 
measurements sufficient for the ABA. However, the field survey costs for semi-ITC could also 
be reduced compared to the field data acquisition necessary for the ABA since the measurement 
of complete sample plots is not required in semi-ITC. In fact, tree coordinates could be 
measured for single segments or for segments that are organized in polymorph groups. A survey 
design suitable for semi-ITC could for example be organized in two steps. i) ITC delineation of 
all areas with high density ALS data. ii) Selection of segments where tree coordinates can easily 
be measured. III) Measuring of all tree coordinates within the selected segments. The selected 
segments should cover the whole range of variation in the data. Some kind of randomization 
scheme during the selection can reduce subjective influence. It is also of importance that the 
selected segments are not influenced by the fact that they are easy to measure (e.g., by near-by 
roads). In terms of precision (sometimes denoted as bias), ITC approaches that do not require 
tree coordinates are not yet in an operational state (Yu et al. 2010).  
 
In operational inventories, predictions need to be tree species-specific (e.g., Breidenbach et al. 
2010b; Packalén and Maltamo 2008). This will be the focus in further studies. It would also be 
of interest to assess how different segmentation algorithms affect the quality of the artificial 
plots. 
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Abstract 
Plot-level forest inventory information is critical for forest management; however, acquisition of 
forest structural attributes is a time consuming, costly, and often inconsistent task. Recent 
developments have utilized terrestrial laser scanning (TLS) for rapid acquisition of forest 
structural detail as point cloud data, suitable for conversion to forest attributes. Processing of 
these data remains a non-trivial task. In this paper, an efficient and robust method for stem 
detection from terrestrial laser scanning is presented based on the Medial Axis Transformation. 
The algorithm effectively eliminates outliers such as branches and uses a small number of 
parameters. Results show robustness of model parameters and minor errors of commission, 
while errors of omission are a function of range distance from the scanner. For horizontal 
distances up to 15 meter from the scanner 85% of trees manually detected from the scans could 
also be detected automatically. This includes some very small trees (<10 cm) that would not 
have been included in field inventories. Implications of the current algorithm and related data 
requirements on acquisition protocols are discussed. 
 
Keywords: terrestrial laser scanning, medial axis transformation, tree detection 
 
1. Introduction 
Field inventory information is of paramount importance in formulating management plans and 
scenarios. The collection of tree-level information through manual measurements provides for 
detailed and well understood information to support growth and yield programs and also acts as 
check to inform less detailed forest inventory procedures, such as the development of polygon 
based inventory information based upon interpretation of air photos. The information on stem 
attributes can be used to infer a range of structural parameters such as leaf area index (LAI), 
above and below ground biomass, and volume. Despite the value of plot-level inventory 
information, the time and cost involved in field acquisitions is currently a limitation to 
information availability (Baccini et al. 2007) and novel techniques are needed that allow the 
rapid and inexpensive in-situ acquisition of forest structural parameters (Smith et al., 2003). 
 Ground-based or terrestrial LiDAR is capable of describing forest structure as point 
cloud data with very high spatial detail. Individual tree stems are typically detected from 
horizontal slices of point cloud data (Strahler et al. 2008; Maas et al. 2008). Stem attributes such 
as diameter at breast height (DBH) are then obtained using a least squares circle or a Hough 
transform (Bienert et al. 2007; Thies and Spiecker 2004). Stem detection can also be achieved 
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from range-image data. The reduction to a two dimensional space and the availability of image 
topology improve computation efficiency. Forsman and Halme (2005) segmented range images 
into smooth surfaces of a size corresponding to the width of tree trunks. Circles were then fitted 
through the segments and segments were removed if the residuals were large. Liang et al. 
(2008) detect trunks as clusters in scan projections using cylindrical coordinates of the LiDAR 
returns. 
 The potential for range image data, however, has not been fully addressed in the 
literature and improvements are needed for robust and automatic tree segmentation from point 
cloud and range image data. One popular and efficient technique used in describing and 
reconstructing object shapes in image processing is the Medial Axis Transformation (MAT) 
(Blum, 1967). The medial axis of an object represents a set of points centred within the object's 
boundaries and provides a description of object shape that can be used for analysis and object 
classification. 
 In this paper, we demonstrate that shape description using MAT allows robust 
detection of tree stems from 2D range image data. The accuracy of the algorithm is assessed 
against the raw point cloud, and stem locations obtained from field measurements. 
 
2. Method 
 
2.1 Study area 
 
The study area is a plantation forest on Vancouver Island, British Columbia, Canada, 
approximately 20 km south of Campbell River. The stand studied primarily consists of 
Douglas-fir [Pseudotsuga menziesii var. menziesii (Mirb.) Franco], and a minority of western 
hemlock [Tsuga heterophylla (Raf.) Sarg.] and red cedar [Thuja plicata Donn. ex D. Don] 
comprising 17% and 3% respectively. The predominant tree age was 60 years-old and heights 
varied between 30 and 35 meter. 
 
2.2 Plot establishment 
 
Four plots of 30 by 30 meter were selected for which DBH and stem locations were acquired. 
Stem locations were measured relative to the plot centres using a vertex (Haglöf, Sweden) range 
distance measure and compass bearing, while DBH was measured using a diameter tape 
measure. Terrestrial LiDAR data was acquired using the EchidnaTM Validation Instrument (EVI) 
(Jupp et al. 2009; Strahler et al. 2008). The EVI instrument emits pulses at 1064 nm at a rate of 
2 kHz and records full-waveform return information. Laser pulses are emitted over zenith angles 
by a rotating mirror that is inclined at 45° relative to optical axis of the laser light source. 
Azimuthal scanning is achieved by rotating the tripod mounted instrument around its vertical 
axis (Jupp et al., 2009; Strahler et al., 2008). The resulting scan covers 360 degrees azimuth and 
130 degrees zenith. The data were collected in August 2008 using an angular sampling interval 
of 4 mrad and a beam divergence of 5 mrad. To ensure full plot coverage, five scans per plot 
were made representing the four corners and centre location. 
 
2.3. Processing 
 
The full waveform LiDAR data sets were processed with the EVI toolkit developed by CSIRO 
Melbourne, Australia, to obtain a discrete return point cloud representing foliage, trunks and 
branches. The data was filtered for last returns and then projected on a 2-D plane using a 
panoramic, or Andrieu projection (Andrieu et al. 1994). The same projection was applied to a 
suite of EVI output including return intensity, range distance, Carthesian and polar coordinates, 
and radial distance. Radial distance is the product of range distance and the sine of the zenith 
angle and represents the horizontal component of range distance. 
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From the radial distance image, flat objects were identified as pixels for which all 

8-connected neighbouring pixels showed deviations less than a tolerance, δ. The resulting 
binary image (figure 1, top left) can be used in MAT. Several methods for computing MAT exist 
(e.g. Borgefors et al. 2008). In one method, the medial axis is computed from the Distance 
Transformation (DT) of a binary image. The DT computes the cumulative shortest distance from 
feature pixels, having a value of zero, to every non-feature pixel in the original, binary image 
array (e.g. Borgefors, 2008; Brieu et al. 1995), where distance can be expressed as Euclidean 
distance or as the sum of horizontal and vertical displacement components, known as Manhattan 
distance. In this research, Manhattan distance was used. In the DT image, shown as a relief in 
figure 1 (top right), medial axes appear as top ridges along tree stems and these top ridges were 
detected based on the change of slope of the DT image pixel values (e.g. Shih and Pu 1995) 
along the image horizontal axis. Along with cumulative distance of every non-feature pixel, the 
DT also returns the coordinates of nearest feature pixels and these were used to associate object 
contours with their medial representation. Figure 1 (bottom left) demonstrates the medial axis 
representation and shows their associated contour lines (bottom right). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Since the medial axes detected to this stage include all discrete objects in the 
thresholded radial distance image, filtering is needed to retrieve only the medial axes from tree 
stems. To do this, objects were classified as stems based on a measure of correlation, ρ, a 
measure of variation in direction of their medial axes, ξ, and the number of pixels contained in 
their medial axes, n. For every medial axis, the two associated object contours were examined 
and assessment was made to what degree these contours represented parallel, planar curves. 
Hereto, the normalized cross correlation was computed between contours using their pixel 
y-coordinates. In addition, a measure of local orientation was obtained for every pixel of the 
medial axes. For a particular medial axis pixel, this was measured as the slope (in image space) 

Figure 1: Demonstration of the Medial Axis Transformation. Top left: binary image showing relatively 
flat surfaces in white. Top right: Distance Transformation computed from the binary image. Bottom left: 

Medial Axis Transformation derived from Distance Transformation. Bottom right: object contours 
associated with the medial axes (bottom images are overlayed on return intensity data). 
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Abstract 
 
Today the estimation of biomass and detection of changes in biomass in large areas is based on 
coarse remote sensing data and field measurements, which are time consuming, expensive and, 
above all, in local level inaccurate. The recent development of techniques has offered 
opportunities to develop new methods, e.g. laser scanning. Airborne laser scanning (ALS) 
derived features could be used to estimate the total biomass of standing trees. The objective of 
this study was to make preliminary investigations between accurately measured biomasses in 
the field and ALS derived features. Study material consisted of 38 sample trees: 19 Scots pines 
(Pinus sylvestris) and Norway spruces (Picea abies), which biomasses were accurately 
measured. ALS derived segments representing the field trees were matched and features for 
trees were extracted from ALS points within segments. Correlations between biomasses and 
ALS features were calculated and simple regression models were formulated. The relative 
residual errors were 21% for Scots pine and 40% for Norway spruce. More empirical tests are 
needed for ALS based tree biomass estimations. 
 
Keywords: Airborne laser scanning, Biomass, Estimation, Regression 
 
1. Introduction 
 
One of the biggest challenges of the programs aiming to reduce global emissions e.g. Reducing 
Emissions from Deforestation and Forest Degradation (REDD) is how to measure and monitor 
forest biomass and its changes effectively and accurately. Remote sensing methods (RS), such 
as optical and microwave satellite imaging, aerial photography, and laser scanning, are efficient 
tools for various forest monitoring tasks. The recent knowledge of forest biomass and its 
changes is based on more or less subjective ground measurements and coarse or medium 
resolution satellite images. Therefore the accuracy of the biomass estimations, especially in 
local level (e.g. forest stand), is poor. Though, attempts to improve local estimates have been 
(Tuominen et al. 2010). 
 
Forests are one of the major carbon sinks in the global ecosystem. Because the canopy height, 
biomass, and carbon pools are functionally related, canopy height, which can be measured 
accurately by means of ALS, is a critical parameter in terrestrial carbon cycle (Kellndorfer et al. 
2010). The leaf area index has also been used as a measure of biomass (Koch 2010) and it has 
been successfully mapped with ALS, using ground calibration (e.g. Solberg et al. 2006). 
 
Airborne and terrestrial laser scanning (ALS & TLS) are promising techniques for efficient and 
accurate biomass detection because of their capability of direct measurement of vegetation 
structure or tree and stand characteristics (e.g. Holopainen et al. 2010). With ALS’s ability to 
directly measure forest structure, including canopy height and crown dimensions, it is 
increasingly used for forest inventories at different levels. Previous studies have shown that 
ALS data can be used to estimate a variety of forest inventory attributes including tree, plot and 
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stand level estimates for tree height (Hyyppä and Inkinen 1999; Magnussen et al. 1999; 
Maltamo et al. 2004), biomass (Lefsky et al. 1999; Bortolot and Wynne 2005; Van Aardt et al. 
2008), volume (Næsset 1997; Hyyppä et al. 2001; Wallerman and Holmgren 2007), basal area 
(Lefsky et al. 1999; Means et al. 2000; Næsset 2002) and tree species (e.g. Holmgren and 
Persson 2004; Van Aardt et al. 2008; Brandtberg 2009; Vauhkonen et al. 2010). ALS is also a 
promising method for monitoring forest hazards and defoliation, because of its ability to derive 
vegetation structure properties (Solberg and Næsset 2006; Kantola et al. 2010). 
 
Determination of stem and crown biomass requires accurate measurements of stem, bark, 
branches and needles of an individual tree (Repola 2007; 2009). These measurements are time 
consuming especially for mature trees. The trees under investigation also need to be felled down 
for accurate measurements. As far as we know, this kind field data has not yet been used in ALS 
based biomass estimation. The objective of this study was to make preliminary investigations 
between accurately measured biomasses in the field and ALS derived features. 
 
2. Material and method 
 
2.1 Study area 
 
The study area is located in the vicinity of Evo, in Southern Finland (61.19°N, 25.11°E). The 
material was collected from 11 mature and maturing forest stands including 38 sample trees; 19 
Scots pines (Pinus sylvestris L.) and 19 Norway spruce (Picea abies L.) (Table 1). 

 
Table 1: Description of sample trees 

 
 Scots pine Norway spruce 
 Mean Std Range Mean Std Range 

dbh, cm 19.6 4.0 15.6 20.9 7.0 26.6 
Height, m 18.8 2.4 9 19.2 6.4 20 
Age, year 49 5 16 68.6 25.8 88 
Crown Ratio 0.57 0.08 0.30 0.25 0.11 0.35 
Liv. Branch, kg 46 25 91 106 69 279 
Dead Branch, kg 4.2 3.3 13 4.0 4.5 16 
Stem Mass, kg 270 122 446 338 281 1034 
Total Mass, kg 321 146 541 448 351 1332 

 
2.2 Measurements 
 
2.2.1 Biomass field measurements 
 
First the trees were felled. The total height of the tree, heights of the living and dead crown were 
recorded. The living crown was divided into four equal length sections and from every section 
one “typical” branch was selected for dry biomass measurements. Also one dead branch was 
selected. The felled trees were lopped off and the masses of the branches in these five classes 
were recorded (one class for the dead branches and four for the living branches). 
 
The stem was cut into logs. The first cut was at the stump height, the second at the middle 
between the stump and breast heights, the third at breast height (1.3 m), and then starting from 2 
m height every meter. The bottom diameter of the logs was measured and the masses were 
weighed. From every other log a sample disc of 15 cm height were cut for measurements of the 
moisture content of the bark and stem wood. The bark, stem wood and branches (5 per tree) 
were dried in an oven at 70 °C temperature for 2-3 days. 
 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 3

2.2.2 Biomass estimation for the sample trees 
 
For every tree the following biomasses were estimated: stem wood, stem bark, and living and 
dead branches. The branch biomass included both branch wood and bark. The biomasses of the 
trees were predicted by applying ratio estimation methods. The measured moisture content of 
the sample discs for both the bark and stem wood separately were applied to the stem mass 
together with the estimated proportion of bark. Having the sample discs from different heights 
of each tree, we applied the proportions and rations measured for the logs that were next to the 
disc. If some measurement were missing the closest result along the stem was used instead. 
 
The sample branches were used to estimate the branch dry weight from the fresh mass. Ratio 
estimates for living branch biomass were calculated first by crown sections. The total living 
branch biomass was the sum of the biomasses of the crown sections. The same method were 
applied to dead branches. 
 
2.2.3 ALS data and individual tree detection 
 
The ALS data was acquired in July 2009 with a Leica ALS50-II SN058 laser scanner (Leica 
Geosystem AG, Heerbrugg, Switzerland). The flying altitude was 400 m, at a speed of 80 knots, 
a half-angle of 15 degrees, a pulse rate of 150 kHz and a footprint diameter of 6 cm. The density 
of the returned pulses within the plot was approximately 10 hits per m2. The ALS data were first 
classified into ground and non-ground points, using the standard approach of the 
TerraScan-based method explained in Axelsson (2000). A digital terrain model (DTM) was then 
developed, using classified ground points, and laser heights above the ground (normalized 
height or canopy height) were calculated by subtracting the ground elevation from the laser 
measurements. Canopy heights close to zero were considered as ground returns and those 
greater than 2 m as vegetation returns (P0, Table 2). The intermediate data between them were 
considered as returns from ground vegetation or bushes. Only vegetation returns were used for 
ALS feature extraction. Several features were extracted from the vegetation returns for plot. 
 
A raster canopy height model (CHM) was created from normalised data for all plots inside the 
coverage of ALS data for individual tree detection (ITD) and crown segmentation. Single tree 
segmentations were performed on CHM images using a minimum curvature-based region 
detector. During the segmentation processes, the tree crown shape and location of individual 
trees were determined. The procedure consisted of the following steps: 
 

1. CHM was smoothed with a Gaussian filter to remove small variations on crown surface. 
The degree of smooth is determined by the value of standard deviation (Gaussian scale) 
and kernel size of the filter. 

2. Minimum curvatures were calculated. Minimum curvature is one of the principal 
curvatures. For a surface like CHM, higher value of minimum curvature describes tree 
top. 

3. The smoothed CHM image was then scaled based on the computed minimum curvature 
resulting in a smoothed yet contrast stretched image. 

4. Local maxima were then searched in a given neighbourhood. They were considered as 
tree tops and used as markers in the following marker controlled watershed 
transformation for tree crown delineations. 

 
Each segment was considered to present a single tree crown. Laser returns falling within each 
individual tree segment were extracted and canopy height of these returns were used for 
deriving tree features. In total, 26 features were generated including basic segment information: 
crown area, height and volume, and percentiles of canopy height distribution and canopy cover 
percentiles as proportion of returns below a given percentage of total height (Table 2). The ALS 
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data segments and trees were matched in order to get the ALS features for the measured trees. 
 

Table 2: Features extracted from ALS data for trees 
 

Feature Description 
X* Tree location (Easting) 
Y* Tree location (Northing) 
Hmax Heights range 
Hmean Arithmetic Mean of laser heights 
HSTD Standard deviation of heights 
CA Crown area as area of convex hull 
CV Crown volume as convex hull in 3D 
P0-P90 Heights percentiles from 0th to 90th (by every 10th) 
P100 Heights Maximum 
CCP10-CCP90 Percentage of returns below 10% - 90% of total height (by every 10%) 
MaxD Maximum crown diameter when crown was considered a ellipse 

 
A correlation between the biomasses and the ALS features was calculated: 
 

( )
( )( )
( )
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1

n

i i
i

B F
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n s s
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− −
=

−

∑
,     (1) 

 
where B is a biomass (stem wood, stem bark, living branches, dead branches, total), F ALS 
feature, n is the number of observations and sB and sF are the sample deviations for the biomass 
and ALS feature, respectively. The strength of correlation is classified according to the absolute 
value of the correlation coefficient either as none (0 – 0.1), weak (0.1 – 0.3), moderate (0.3 – 
0.5) or strong (0.5 – 1). 
 
The first regression models (OLS = ordinary least squares) for the total biomasses were 
searched with statistical software R (R Development Core... 2009). The stepAIC function 
available at R library MASS can both drop and add variables among the given set of variables 
by stepping “forward” and “backward”. With the help of the function the variables were 
selected to the models. The regression models were fitted to both tree species separately. 
 
4. Result 
 
The correlation between the ALS features and biomasses are shown in Table 3. The most 
important ALS metrics varied between tree species. For the Scots pines the geometric crown 
features extracted from ALS data and height percentiles (P20-100) in ALS data are the most 
important, whereas for the Norway spruces only the height percentiles (P0-100) and percentage 
of returns below 40% of total height show strong correlation. 
 
The visual interpretation of the relationships between ALS features and biomasses of the single 
trees did not encourage making any transformations to the ALS features before using them as 
independent variables in regression models. Relationships were more or less linear. Numerous 
combinations of variables in regression models were tried, and simple models including only 
two to three independent coefficients in addition to intercept were selected (Table 4). The 
estimates with these models are plotted in Fig. 1 against the true measured value and also the 
model residuals against the estimated values. No obvious trends with either tree species could 
be detected. Norway spruce has larger deviance, but heteroscedasticity could not be seen. 
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Table 3: Correlations between biomasses and ALS features. 
 
 Scots pine Norway spruce 
ALS 
feature Stem Stem 

bark 
Liv. 

Branch
Dead 

Branch Total Stem Stem 
bark

Liv. 
Branch 

Dead 
Branch Total 

Hmax 0.80 0.76 0.52 0.32 0.78 0.14 0.14 0.11 0.11 0.14 
Hmean 0.67 0.67 0.37 0.25 0.64 0.20 0.21 0.21 0.22 0.22 
HSTD 0.24 0.11 0.03 0.12 0.21 -0.09 -0.08 0.02 -0.02 -0.06
CH 0.55 0.48 0.34 0.16 0.53 0.11 0.13 0.25 0.33 0.16 
CA 0.70 0.70 0.75 0.36 0.73 0.16 0.11 0.02 -0.15 0.12 
CV 0.60 0.58 0.48 0.30 0.59 0.13 0.08 0.08 -0.07 0.12 
P0 -0.20 -0.13 -0.11 0.01 -0.19 0.59 0.56 0.71 0.49 0.66 
P10 0.38 0.47 0.28 0.20 0.37 0.72 0.70 0.56 0.36 0.71 
P20 0.51 0.53 0.35 0.24 0.50 0.73 0.72 0.54 0.36 0.72 
P30 0.56 0.59 0.25 0.22 0.52 0.76 0.72 0.54 0.34 0.73 
P40 0.58 0.58 0.24 0.15 0.54 0.75 0.72 0.52 0.32 0.72 
P50 0.63 0.61 0.29 0.20 0.59 0.82 0.81 0.56 0.30 0.79 
P60 0.65 0.63 0.31 0.23 0.61 0.87 0.85 0.58 0.31 0.82 
P70 0.68 0.65 0.33 0.26 0.64 0.89 0.86 0.60 0.31 0.85 
P80 0.73 0.67 0.40 0.30 0.69 0.89 0.85 0.59 0.29 0.84 
P90 0.78 0.71 0.45 0.33 0.74 0.90 0.85 0.58 0.26 0.84 
P100 0.80 0.76 0.52 0.32 0.78 0.91 0.86 0.60 0.24 0.86 
CCP10 -0.14 0.26 -0.18 -0.07 -0.13 -0.31 -0.33 -0.36 -0.20 -0.34
CCP20 -0.18 0.23 -0.25 -0.10 -0.18 -0.41 -0.44 -0.44 -0.25 -0.44
CCP30 -0.17 0.23 -0.27 -0.12 -0.17 -0.42 -0.44 -0.44 -0.28 -0.45
CCP40 -0.20 0.18 -0.32 -0.16 -0.21 -0.48 -0.51 -0.49 -0.33 -0.51
CCP50 -0.23 0.15 -0.34 -0.14 -0.23 -0.44 -0.45 -0.45 -0.35 -0.47
CCP60 -0.11 0.18 -0.16 -0.10 -0.11 -0.38 -0.41 -0.44 -0.40 -0.42
CCP70 0.16 0.34 0.21 0.09 0.18 -0.32 -0.36 -0.38 -0.34 -0.36
CCP80 0.34 0.44 0.41 0.28 0.36 -0.04 -0.11 -0.10 -0.23 -0.07
CCP90 0.31 0.35 0.36 0.22 0.33 -0.02 -0.12 -0.02 -0.26 -0.03
MaxD 0.47 0.48 0.50 0.18 0.49 0.01 -0.04 -0.05 -0.12 -0.01
 

Table 4: Regression models for total biomasses (kg) of single trees. 
 

 Scots pine Norway spruce 
 Coefficient Estimate p-value Coefficient Estimate p-value 
 (intercept) -165.5 0.012 (intercept) -353.5 0.006 
 Hmean 246.1 0.000 P70 36.9 0.000 
 P10 -44.6 0.000 CCP20 -369.4 0.042 
 P50 -185.2 0.000    

SE 33.5   94.8   
R2 0.82   0.78   

 
For comparison estimates of total biomass following equations of Repola (2009) were 
calculated for the trees and plotted against the true value from field measurements (Fig. 2, left). 
However, the residuals show a systematic shift in estimates larger than 250 kg (Fig. 2, right). In 
this case, the biases for the Scots pines were 9.1 kg (5.8%) and for the Norway spruce 35.2 kg 
(15.0%). The RMSEs combining both bias and deviation were 15.0 kg (9.5%) and 54.6 kg 
(23.2%), respectively. In parentheses were the relative errors. 
 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 6

0 100 300 500 700

0
10

0
30

0
50

0
70

0

Biomass, kg

B
io

m
as

s 
R

eg
re

ss
io

n,
 k

g

0 100 300 500 700

−
20

0
−

10
0

0
10

0
20

0

Biomass Regression, kg

R
es

id
ua

l, 
kg

 
 
Figure 1: Total biomass of tree (kg) estimated with ALS regression model, vs. field measurements (left) 

and residuals, vs. estimated total biomass (right), red = Scots pine and green = Norway spruce. 
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Figure 2: Total biomass of tree (kg) predicted with Repola (2009) vs. field measurements (left) and 
residuals, vs. predicted total biomass (right), red = Scots pine and green = Norway spruce. 

 
5. Discussion and conclusion 
 
The estimation of biomass for single tree with regression models based on ALS features gave 
promising results. The residual errors for Scots pine were 34 kg (21%) and for Norway spruce 
95 kg (40%) (Table 4). The models of Repola (2009) gave lower RMSEs (9.5% (Scots pine) and 
23.2%(Norway spruce)), but similarly the prediction of Scots pine was more accurate than 
Norway spruce. The coefficients selected for the models are logical. Most of the biomass for the 
Scots pine is in the stem and therefore the height is important variable (Hmean), but also the 
density of the crown is included in the model (P50, P10). For the Norway spruce information 
about the penetration of the laser pulses in the crown (near ground level) and height are 
important (CCP20 and P70). 
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This study provided some of the first tests for biomass prediction using ALS data. Results are 
rather promising, but more field data is needed for developing practical modelling means. Tree 
biomass estimation accuracy achieved using ALS features could provide alternative or 
additional information to the current tree biomass models. There are two alternatives to estimate 
forest biomass for larger areas using tree level information achieved by ALS: 1) using direct 
ALS feature based models, 2) by deriving dbh, tree species and height of the tree by means of 
ITD and using biomass models. These variables are possible to estimate with high accuracy 
using ITD (Maltamo et al. 2009, Korpela et al. 2010). 
 
Accurate tree level biomass estimation would help globally in the reporting of environmental 
change-related counter activities. According to our preliminary results, we assume that laser 
measures offer a good alternative for the traditional field measurements. However, more 
empirical tests are needed to verify these results. 
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Abstract 
 
In this study we use airborne LiDAR to classify tree species and estimate volume at the stand scale 
using multiple linear discriminant analysis and multiple linear regression analysis. This involved  
the extraction of 38 independent variables from LiDAR data including height, intensity, and ratio 
metrics. In stand species classification, the 90 percentile of height (HC,90), standard deviation of the 
intensity (IC,std) and vegetation intensity ratio (VIR) were the most suitable variables for explaining 
each stand species. Hit ratio represented by accuracy in discriminant analysis was 81.7% in stand 
species classification. Afterward, the regression models were estimated using each variable, with the 
best model then selected using the corrected Akaike's Information Criterion (AICc). HC,90 , mode of 
intensity (IC,mode) and standard error of mean of intensity (IC,se) were applied to optimally explain the 
stand volume of Japanese Larch (Larix leptolepis), with an R2 =0.83. With the mean of height 
(HC,mean), mode of height (HC,mode), standard deviation of intensity (IC,std) and range of intensity (IC,range) 
could be used to predict the stand volume of Japanese red pine (Pinus densiflora), with an R2 =0.79. 
Finally, the 80th height percentile (HC,80), IC,mode and the kurtosis of intensity distribution (IC,kurt) were 
applied to predict the stand volume of Oaks (Quercus spp.) with an R2 =0.68.  
 

Keywords: stand species classification, stand volume estimation, LiDAR, Multiple linear 
discriminant analysis, Multiple linear regression analysis 

 
1. Introduction 
 
Earlier research into mapping forest volume and biomass using airborne LiDAR was based on 
species specific allometric relationships that were applied to LiDAR derived estimates of 
individual tree attributes such as maximum tree height, diameter at breast height (DBH) and 
crown width (Popesu, 2007; Chen et al., 2007). Estimates of DBH typically being developed by 
the relationship between tree height and crown width  (Leckie et al., 2003; Popescu, 2007). 
However, deriving these individual tree attributes can become complex at the forest stand scale 
due to variable species composition, density and crown shape (Kim, 2007). To avoid these issues, 
stand volume has been estimated using height distributional approaches (e.g., median, mode, 
percentiles) of a large-footprint LiDAR system (Harding et al. 2001; Parker et al. 2001; Drake 
et al. 2002). The relationships between LiDAR height distributional parameters and stand 
volume are similar to the allometric relationship between field-measured vertical profiles and 
the stand volume (Drake et al. 2002). In addition, the vertical growth of forest stands has been 
shown to be correlated with increases in stand biomass levels (Drake et al. 2002), and 
large-footprint LiDAR provides data related with the vertical arrangement of the forest structure 
from the tree top to the ground (Harding et al. 2001). In demonstrating the relationship between 
LiDAR-derived vertical canopy profiles and biomass, Drake et al. (2002) proved the 
relationship between field-measured vertical profiles, LiDAR-derived vertical canopy profiles 
and biomass.  

To accurately estimate forest volume and biomass over large geographical areas, it is 
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respectively, each with an area of 0.02 ha (14 meters on a side). Sample plots were used to 
discriminate stand species and model the stand volume and LiDAR height, intensity and ratio 
parameters. Due to absence of test plot measurement, this study performed a cross validation to 
stand species classification. However, estimating stand volume based on optimal regression 
model didn’t evaluate with test plot, therefore further study might measure the test plot and verify 
the results additionally.  

 
Table 1. Descriptive statistics of the field measurements 

 
Estimator Statistics L. leptolepis P. densiflora Q. spp. 
Stand Age Max. 50.0 45.0 46.0 
 Min. 29.0 35.0 27.5 
 Mean. 44.4 40.5 33.4 
 Std. 8.2 3.9 5.7 
Stand DBH Max. 34.2 29.4 22.1 
(cm) Min. 12.7 17.8 12.5 
 Mean. 25.2 23.2 18.2 
 Std. 6.5 3.3 3.3 
Stand Height Max. 22.4 17.4 14.8 
(m) Min. 10.4 9.7 9.8 
 Mean. 16.5 13.1 12.2 
 Std. 4.6 2.3 1.7 
Tree Number Max. 21.0 55.0 83.0 
 Min. 11.0 32.0 13.0 
 Mean. 17.7 40.3 39.4 
 Std. 3.2 7.1 19.7 
 
3. Method 

 
In this study, the stand level species classification and volume estimation were performed using 

multiple linear discriminant analysis and multiple linear regression analysis, with LiDAR height, 
intensity and ratio parameters and field measurements of the stand species and volume as 
independent and dependent variables, respectively (Figure 2).  

 
3.1 Extraction of LiDAR height, intensity and ratio parameters 
 

The LiDAR height, intensity and ratio parameters can be prepared as representative statistics, 
such as percentile, mean, maximum, minimum, median, mode, standard deviation, coefficient of 
variation, standard error of the mean, kurtosis, skewness, the number of canopy and total returns, 
and range. All parameters were related with the height information of the plots, but especially the 
kurtosis and skewness were included as explanatory variables due to their relationship to the 
vertical distribution of LiDAR returns within the plots. In probability theory and statistics, 
kurtosis is a measure of the "peakedness" of the probability distribution, where a higher kurtosis 
indicates a greater variance as the result of infrequent extreme deviations, as opposed to frequent 
deviations. Accordingly, the kurtosis of LiDAR returns reflected within plots might be used to 
explain how many LiDAR returns are concentrated around the mean height, considering the 
distribution of simultaneous LiDAR returns. Moreover, an attempt was made to apply skewness 
as an independent variable for estimating the plot volume. The skewness measures the asymmetry 
of the probability distribution in probability theory and statistics. Thus, it might be able to predict 
how many LiDAR returns would be reflected around the ground or canopy within plots via the 
skewness of LiDAR returns. LiDAR intensity distributional information was also significant in 
the modeling of tree-specific parameters (Means et al. 2000). Additionally, the canopy return 
ratio, which is the ratio of the number of canopy returns and the total number of LiDAR returns 



1 
2 
3 
4 
5 

 

 

 
Independent v
Height metrics
HC,i , i=10, 20,
HC,mean , mean 
HC,max , maxim
HC,min , maxim
HC,med , median
HC,mode , mode 
HC,std , standard
HC,cv , coefficie
HC,se , standard
HC,kurt , kurtosi
HC,skew , skewn
HC,range , range

ariables 
s based on canopy r
, … , 100 percentile
of height 

mum of height 
mum of height 

n of height 
of height 
d deviation of heigh
ent of variation of h
d error of mean of h
is of height distribu
ness of height distrib
 of height 

Figure 2. F

returns Inten
e height IC,mea

IC,max
IC,min
IC,med
IC,mod
IC,std 

ht IC,cv ,
height IC,se ,
height IC,kur
ution IC,skew
bution IC,ran

 

SilviLaser 2011, 

Flowchart of stand s

Table 2. Defin

nsity metrics based 
an , mean of intensit
x , maximum of inte
n , minimum of inten
d , median of intensi
de , mode of intensit
, standard deviation
, coefficient of varia
, standard error of m
rt , kurtosis of intens
w , skewness of inte

nge , range of intensit

Oct. 16-20, 2011 – Ta

4

species classification

nition of independen

on canopy returns
ty 
ensity 
nsity 
ity 
ty 
n of height 
ation of height 

mean of intensity 
sity distribution 
ensity distribution 
ty 

asmania, Australia 

n and stand biomas

nt variable metrics

Ratio metrics ba
NumT , number 
NumC , number 
VRR , vegetatio
IT , sum of total 
IC , sum of cano
VIR , vegetation
 
 
 
 
 
 

s estimation 

ased on integrated c
of total returns 
of canopy returns 

on return ratio 
intensity 

opy intensity 
n intensity ratio 

 

canopy and ground returns 



SilviLaser 2011, Oct. 16-20, 2011 – Tasmania, Australia 

 5

per plot, was added, because Means et al. (2000) and Næsset (2002) demonstrated that the metrics 1 
were useful descriptors of the tree volume.  2 
 3 
3.2 Multiple linear discriminant analysis for stand species classification 4 
 5 

To classify three stand species including P. densiflora, L. leptolepis and Q. spp., this study 6 
adopted the multiple linear discriminant analysis with field-surveyed stand species information 7 
as a dependent variable. This analysis was fundamentally based on a way that minimizes the 8 
inner-class variance as well as maximizes inter-class variance for effective pattern recognition. 9 
In this study, 38 independent variables were employed for discriminating the stand species. 10 
However, the use of all candidate variables to separate the stand species would be inefficient 11 
due to the need for intensive and time-consuming work in collecting and managing all the data. 12 
In particular, the discriminant equation is unreliable because the variations in the estimated 13 
parameters and species are increased due to multi-collinearity. Therefore, the reduced 14 
discriminant equation, with essential explanatory variables, has to be performed using stepwise 15 
selection method under 0.05 significant levels. 16 

According to Kim (2008), for performing linear discriminant analysis, every independent 17 
variable and covariance matrix should be a multivariate normal distribution and identical matrix, 18 
respectively. However, independent variables used in this study rejected the normality 19 
assumption of linear discriminant analysis through normality test, such as Shapiro-Wilk and 20 
Anderson-Darling test. Moreover, it was also dismissed in identical covariance matrix 21 
assumption by Box-M test. Nevertheless, Klecka (1980) showed that these rejected assumptions, 22 
not a great influence, just decrease the efficiency and accuracy of discriminant analysis slightly. 23 
Therefore, multiple linear discriminant analysis makes a progress for classifying stand species. 24 
The accuracy of classification result was evaluated by hit ratio represented as explanation of 25 
developed discriminant equation. In addition, Fisher’s linear discriminant equation was applied 26 
to allocate other unknown stand species. 27 

 28 
3.3 Multiple linear regression analysis for stand volume estimation 29 
3.3.1 Selection of explanatory variables 30 
 31 

Multiple linear regression modeling was performed using the field-measured plot volume as a 32 
dependent variable. In this study, 38 independent variables were employed for regression 33 
modeling of the plot volume, using the LiDAR height, intensity and ratio metrics. However, use 34 
of the full model for all candidate variables to estimate the plot volume would be inefficient due 35 
to the need for intensive and time-consuming work in collecting and managing all the data. In 36 
particular, the regressed model is unreliable because the variations in the estimated parameters 37 
and plot volume are increased due to multi-collinearity. Therefore, the reduced model, with 38 
essential explanatory variables, has to be regressed using stepwise selection methods under 0.05 39 
significant level (Chen et al. 2007). Afterward, Variance Inflation Factor (VIF) and correlation 40 
coefficient were adopted to reduce the inappropriate variables. Therefore, in the case where the 41 
VIFs of stepwise selected independent variables were under 10, correlated independent 42 
variables were eliminated for stricter statistics, which had Pearson's correlation coefficients over 43 
0.5 (van Aardt et al, 2006).  44 
 45 
3.3.2 Selection of regression model 46 
 47 

Generally, different regression models with various combinations of selected variables can be 48 
assessed by their R2, adjusted R2, Root Mean Square Error (RMSE), Sum of Square Error (SSE), 49 
Akaike's Information Criterion (AIC). The coefficient of determination, R2, provides a measure 50 
of how well future outcomes are likely to be predicted by the model without considering the 51 
number of independent variables. However, the fitness assessment between regression models 52 
must be carried out using the adjusted R2 value, which adjusts for the number of explanatory 53 
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terms in a model. Kvålseth (1985) recommended the following adjusted R2 equation for 1 
evaluating regression models. However, the adjusted R2 does not consider the residual variance. 2 
AIC is used to discriminate the suitability and accuracy between different regression models, 3 
which measures the relative distance between estimates and observations (Akaike 1974). 4 
Additionally, AIC considers the residual variance when assessing the fitness of models that are 5 
contrary to the adjusted R2. However, in practice, the corrected AIC (AICc) must be used, 6 
because secondary-bias may occur when the sample size is small (Burnham and Anderson 2002). 7 
Therefore, AICc was used for evaluating and selecting regression models, because the sample 8 
size of 20 observations in our study was relatively small (Equation 2). 9 
 10 
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 12 

When comparing different regression models, the estimated AICc values are generally 13 
rescaled with the minimum AICc values. This transformation allows the best model to have Δi  = 14 
0. Models with Δi ≤ 2 are accepted as providing substantial support, those with 4 ≤ Δi ≤ 7 as less 15 
support, and those with Δi ≥ 10 as having no support (Burnham and Anderson 2002).  16 
 17 
4. Result and discussion 18 
4.1 Stand species classification using multiple linear discriminant analysis 19 
 20 

Explanatory variables of the LiDAR height, intensity and ratio metrics were extracted via the 21 
stepwise selection method at a significant level of 0.05. The selected independent variables were 22 
90th percentile of height (HC,90), standard deviation of the intensity (IC,std) and vegetation intensity 23 
ratio (VIR) were the most suitable variables for explaining each stand species (Figure 3). Fisher’s 24 
linear discriminant equations of each stand species group were estimated and unknown stand 25 
species could be determined by deriving the higher value through comparison between 26 
calculated value from each equation (Equation 3, 4, 5).  27 
 28 
ݏ݈݅݁ݐ݈݁ ݔ݅ݎܽܮ ൌ 20.271 · ,ଽܪ െ 0.675 · ,௦௧ௗܫ  1010.785 · ܴܫܸ െ 614.361                 (3) 29 
ܽݎ݈݂݅ݏ݊݁݀ ݏݑ݊݅ܲ ൌ 18.385 · ,ଽܪ െ 0.585 · ,௦௧ௗܫ  1013.633 · ܴܫܸ െ 589.463              (4) 30 
ܳ. spp.ൌ 19.310 · HC,ଽ െ 0.666 · IC,ୱ୲ୢ  1038.743 · ܴܫܸ െ 624.776                       (5) 31 

 32 

 
Figure 3. Distributions for different tree species 

and selected parameters 
 

 
Figure 4. Distribution of discriminant 
score and centroid by first and second 

canonical discriminant function 
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Among 60 surveyed sample plots, 49 plots were correctly classified to actual stand species by 1 
cross-validation, in addition, total hit ratio was assessed at 81.7 % (Table 7).   2 
 3 

Table 7. Stand species classification results by Fisher’s descriminant equation 4 
 5 

  Species 
Predicted species class Hit ratio(%) L. leptolepis P. densiflora Q. spp. 

Referenced 
species 
class 

Frequency 
L. leptolepis 17 1 2  
P. densiflora 0 17 3  
Q. spp. 1 4 15  

Probability 
L. leptolepis 85.0 5.0 10.0  
P. densiflora 0.0 85.0 15.0  
Q. spp. 5.0 20.0 75.0 81.7 

 6 
4.2 Stand volume estimation using multiple linear regression analysis 7 
 8 
4.2.1 Selection of explanatory variables 9 

 10 
In case of L. leptolepis, five explanatory variables were selected: 90 percentile (HC,90), standard 11 

deviation of height (HC,std), mode of the intensity (IC,mode), standard error of mean of intensity (IC,se) 12 
and the sum of intensity (IT) among the LiDAR height, intensity and ratio metrics, and with low 13 
multi-collinearity due to the VIF of approximately 1 (Table 8). Moreover, explanatory variables were 14 
reselected via a comparison of a correlation analysis between candidate variables. From the result, 15 
HC,std was eliminated due their relatively higher coefficients than 0.5 (Table 9). 16 

Likewise, the explanatory variables were selected using the stepwise selection method at a same 17 
significant level to P. densiflora. The extracted variables were mean of height (HC,mean), mode of 18 
height (HC,mode), standard deviation of intensity (IC,std) and the range of intensity (IC,range). The 19 
multi-collinearity between the selected variables was low compared to their VIFs (below 10), as 20 
shown in Table 8. Using the VIF analysis, the correlations between candidate variables were 21 
investigated via one-to-one comparisons. However, from the results, all four variables were included 22 
for the regression analysis due their relatively low coefficients (below 0.5) (Table 9). 23 

 24 
Table 8. Results of variable selection to each tree species by variance inflation 25 

 26 
Species Variable DF Parameter 

Estimate 
Standard 
Error t value pr>|t| Variance 

Inflation 

L. leptolepis 

Intercept 1 -11.2321 1.91114 -5.88 <.0001 0.0000 
HC,90 1 1.44559 0.28551 5.06 0.0002 4.07915 
HC,std 1 -2.24028 0.62636 -3.58 0.0030 4.03682 
IC,mode 1 -0.65035 0.19885 -3.27 0.0056 1.00719 
IC,se 1 63.19259 20.10955 3.14 0.0072 1.48727 
IT 1 0.00112 0.000192 5.83 <.0001 1.37517 

P. densiflora 

Intercept 1 1.19921 2.42319 0.49 0.6279 0.00000 
HC,mean 1 0.38271 0.11826 3.24 0.0055 1.48927 
HC,mode 1 0.07408 0.04048 1.83 0.0872 1.20480 
IC,std 1 2.54207 1.37647 1.85 0.0846 1.52052 
IC,range 1 -0.85953 0.24021 -3.58 0.0027 1.86565 

Q. spp. 

Intercept 1 -0.55562 1.09140 -0.51 0.6181 0.00000 
HC,80 1 -0.47026 0.19574 -2.40 0.0297 8.50554 
HC,90 1 0.72066 0.18835 3.83 0.0017 8.57314 
IC,mode 1 0.06646 0.02167 3.07 0.0078 1.24328 
IC,kurt 1 0.84446 0.42291 2.00 0.0643 1.22767 

 27 
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Table 9. Results of variable selection to each tree species by correlation coefficient 1 
 2 
Species Variables HC,90 HC,std IC,mode IC,se IT 

L. leptolepis 

HC,90 1.00000 0.98055 -0.0341 0.18118 -0.15654 
HC,std 0.98055 1.00000 -0.03256 0.26466 -0.07958 
IC,mode -0.0341 -0.03256 1.00000 -0.04156 -0.03433 
IC,se 0.18118 0.26466 -0.04156 1.00000 -0.14369 
IT -0.15654 -0.07958 -0.03433 -0.14369 1.00000 

P. densiflora 

Variables HC,mean HC,mode IC,std IC,range  
HC,mean 1.00000 0.20974 -0.47106 -0.43012  
HC,mode 0.20974 1.00000 -0.20509 -0.41167  
IC,std -0.47106 -0.20509 1.00000 0.44358  
IC,range -0.43012 -0.41167 0.44358 1.00000  

Q. spp. 

Variables HC,80 HC,90 IC,mode IC,kurt  
HC,80 1.00000 0.93215 0.15998 -0.07099  
HC,90 0.93215 1.00000 0.25939 0.14843  
IC,mode 0.15998 0.25939 1.00000 0.45776  
IC,kurt -0.07099 0.14843 0.45776 1.00000  

 3 
Explanatory variables of the LiDAR metrics for Q. spp. stand were extracted via the same 4 

procedure, consequently, the first candidate independent variables shown in Table 8 were the 90 5 
percentile (HC,80), 90 percentile (HC,90), mode of the intensity (IC,mode) and the kurtosis of intensity 6 
distribution (IC,kurt). The multi-collinearity between the selected variables was weak, since each VIF 7 
had a value below 10. Furthermore, as a result of the correlation analysis between the selected 8 
variables, HC,80 and HC,90 were highly correlated, with R2 values over 0.5 (Table 9). Therefore, HC,90 9 
was rejected as candidate independent variables in the final regression analysis because both the 10 
probability value from a t-test and the VIF of HC,80 were lower than HC,90. Eventually, HC,80, IC,mode 11 
and IC,kurt were adopted for the multiple linear regression analysis for predicting the plot volume. 12 

 13 
4.2.2 Selection of regression model 14 

 15 
The independent variables in L. leptolepis selected using the stepwise selection method and 16 

correlation analysis were used in the regression models, which were generated by combining the 4 17 
reduced independent variables. The predictable equation was estimated by adopting the optimal 18 
regression model for estimating the plot volume represented by ΔAICc below 2 (Table 10). The two 19 
optimal regression models found with ΔAICc ≤ 2 were model no. 1, which estimates the plot volume 20 
using HC,90, IC,mode and IC, and model no. 2, where the explanatory variables were HC,90, IC,mode, IC,se 21 
and IT when AICc was employed as the first criterion for selecting the best model. Among these two 22 
models, model no. 2 was more significant statistically when other statistics, such as RMSE, SEE, R2 23 
and Adjusted R2, were compared between the two. Therefore, the model showing the best 24 
performance when both models are applied to the test plots needs to be determined. Unfortunately, 25 
optimal regression model selection procedure was deferred due to absence of test plot measurements.  26 

In P. densiflora stand, four explanatory variables were stepwise selected and analyzed for 27 
correlation. Therefore, the combinable regression model was estimated, with optimal regression 28 
models with ΔAICc below 2 chosen (Table 11). However, the best model, and the only one with 29 
ΔAICc ≤ 2, was model no. 1, by which the plot volume could be estimated using HC,mean, HC,mode, 30 
IC,std and IC,range, while two models were retained in the case of L. leptolepis stand. Models 2 to 7 31 
were eliminated as candidate regression models because their ΔAICc was over 2, and they showed a 32 
lack of statistical significance with increasing ΔAICc.  33 

In the case of Q. spp. stand, three explanatory variables were selected and applied to the regression 34 
analysis. The results of this regression procedure indicated that one regression model was recommended 35 
with ΔAICc ≤ 2: model no. 1, which estimated the stand volume using HC,80, HC,mode and IC,kurt. Models 2 36 
to 7 were eliminated as candidate regression models for estimating plot volume of Q. spp. stand, because 37 
their ΔAICc was over 2, and they showed a lack of statistical significance with increasing ΔAICc.   38 



SilviLaser 2011, Oct. 16-20, 2011 – Tasmania, Australia 

 9

Table 10. Result of stem volume parameters estimated multiple regression analysis to Larix leptolepis  1 

 2 
Table 11. Result of stem volume parameters estimated multiple regression analysis to Pinus densiflora 3 

No. Intercept HC,mean HC,mode IC,std IC,range RMSE SSE R2 Adjusted R2 AICC ∆AICC 
1 1.19921 0.38271 0.07408 2.54207 -0.85953 0.59237 5.2634 0.79490 0.74020 -16.6989 0.0000 
2 2.64933 0.38166 . 2.59838 -1.01080 0.63437 6.4387 0.74910 0.70205 -14.6681 2.0308 
3 3.82277 0.32662 0.07575 . -0.69251 0.63543 6.4603 0.74826 0.70106 -14.6013 2.0976 
4 5.36580 0.32427 . . -0.84348 0.67256 7.6898 0.70035 0.66510 -13.1169 3.5820 
5 8.03553 . 0.07448 . -1.00925 0.74067 9.3262 0.63658 0.59383 -9.2581 7.4408 
6 9.52304 . . . -1.15547 0.76430 10.5149 0.59026 0.56750 -8.8587 7.8402 
7 -1.83127 0.50375 0.12139 . . 0.76151 9.8583 0.61585 0.57065 -8.1484 8.5505 

 4 
Table 12. Result of stem volume parameters estimated multiple regression analysis to Quercus spp. 5 

No. Intercept HC,80 HC,mode HC,kurt RMSE SSE R2 Adjusted R2 AICC ∆AICC 
1 -0.71001 0.28685 0.07623 0.31517 0.67066 7.1966 0.67930 0.61917 -12.4426 0.0000 
2 -0.78485 0.25922 0.10226 . 0.72128 8.8441 0.60588 0.55951 -10.3196 2.1230 
3 -0.46668 0.33777 . 0.52472 0.78235 10.4051 0.53632 0.48177 -7.0687 5.3739 
4 2.21758 . 0.11427 . 0.84555 12.8691 0.42652 0.39466 -4.8181 7.6245 
5 2.50174 . 0.09646 0.22681 0.83989 11.9922 0.46560 0.40272 -4.2296 8.2130 
6 -0.44895 0.31571 . . 0.95199 16.3130 0.27305 0.23266 -0.0754 12.3672 
7 3.58202 . . 0.48424 0.98272 17.3833 0.22535 0.18231 1.1956 13.6382 

No. Intercept HC,90 IC,mode IC,se IT RMSE SSE R2 Adjusted R2 AICC ∆AICC 
1 -4.71040 0.44771 -0.69894 . 0.000753 0.58949 5.5600 0.81366 0.77873 -17.6027 0.0000 
2 -5.85002 0.43730 -0.68725 24.2152 0.000782 0.58676 5.1643 0.82693 0.78077 -17.0792 0.5235 
3 -5.13540 0.45399 . . 0.000776 0.68392 7.9517 0.73351 0.70216 -12.4468 5.1559 
4 -6.38033 0.44243 . 26.6189 0.000808 0.68341 7.4728 0.74956 0.70260 -11.6893 5.9134 
5 -2.79655 0.41578 -0.73511 . . 0.74849 9.5241 0.68081 0.64326 -8.8381 8.7646 
6 -3.44416 0.40871 -0.72885 14.7069 . 0.76551 9.3760 0.68578 0.62686 -7.1515 10.4512 
7 -3.18132 0.42134 . . . 0.8224 12.1741 0.59200 0.56934 -5.9285 11.6742 
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4.3 Discussion 1 
 2 

The multiple linear discriminant analysis undertaken by this study for stand species 3 
identification indicated the most suitable explanatory variables were 90 percentile of height (HC,90), 4 
standard deviation of the intensity (IC,std) and vegetation intensity ratio (VIR). Holmgren and Persson 5 
(2004) showed that HC,90 was able to be used to be a variable for species identification according 6 
to close relation with height of dominant trees in stand, and crown shapes difference by growth 7 
differences due to stand species. In addition to HC,90, IC,std and VIR were a meaningful variables 8 
for discriminating stand species through involving the characteristics of spectral reflectance on 9 
each species crown. However, there was not obvious distinction between species in each 10 
variable distribution, except HC,90 (Figure 3). When considered data acquisition condition, there 11 
was an uncertainty whether L. leptolepis and Q. spp. were leaf-on or –off in 4th of May (Yu, 12 
2011). The leaf unfolding condition could fully influence to IC,std and VIR distribution (Kim, 13 
2007), thus, further study needs a more effective analysis using IC,std and VIR variables at leaf-on 14 
conditions. 15 

With the regression model using the LiDAR height metrics, the estimation was performed in 16 
each stand species with the HC,90, HC,80, HC,mean, HC,mode and HC,kurt parameter values for predicting 17 
the plot volume. It was adjudged that only the canopy LiDAR height metrics-extracted 18 
regression model might have an inapplicability problem when estimating the plot volume, even 19 
though previous researchers (Chen et al. 2007) were able to estimate the plot or stand volume 20 
using only the canopy height metrics. However, every variable selected in this study had 21 
essential meaning for predicting the stand volume. Therefore, it was not considered possible to 22 
predict the stand volumes using only the canopy LiDAR height metrics in our study area.  23 

Intensity data were used to develop the regression models for stand volume estimation. 24 
However, the accuracy of the verification decreased steeply when intensity information was 25 
included, and their influence was weak when the absolute values of their coefficients were 26 
examined. This is because the intensity information of the LiDAR data reflected onto objects 27 
could not be normalized according to the object heights above sea level, although the intensity 28 
differed according to the medium and height. The intensity data of the LiDAR metrics were 29 
demonstrated to be ineffective variables for estimating the plot volume, despite the contrary 30 
research of van Aardt et al. (2006), because the total corrected intensity could not be estimated 31 
according to the increasing elevation.  32 

 33 
5. Conclusion 34 

 35 
Previous studies classifying tree species at the stand-level used remotely sensed optical imagery, 36 

and estimated stand-level volume using DBH and tree height derived from LiDAR data. To 37 
scale-up from the individual tree to stand level, the results of this study suggest the use of 38 
LiDAR-derived height, intensity and ratio metrics. 39 

The investigation of variables uncorrelated with the metrics will be an important part of our 40 
future study for estimating the plot or stand volume. In addition, the consideration of plot density 41 
data derived from LiDAR data and acquisition condition will be needed for future accurate 42 
volume and species surveys. If these shortcomings can be overcome, LiDAR data will be utilized 43 
with increased usefulness in estimating plot- or larger-scale volumes.  44 
 45 
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Abstract 
 
This paper presents a new approach to measure stem diameters based on the data acquired by 
multiple scanning by terrestrial lidar. Recent terrestrial lidar (Riegl VZ400) has wider coverage 
and is able to efficiently provide the highest point density data. Stem diameter derived from 
terrestrial lidar was compared with field measured diameter at breast height (d.b.h) of 42 sample 
trees. Stem returns of d.b.h were extracted and used to identify the approximated stem centre 
using principal component analysis. Various scan coverage of stem returns was used in the 
algorithm developed in this study to assess which is the most appropriate to measure stem 
diameter. The results show that more than 40% scan coverage of stem returns can produce stem 
diameter with the error of 5 cm or less using the algorithm. The applied technique can also 
assess the quality of wood by estimating straightness of stems from the alignment of stem 
centres at several heights. Furthermore, stem volume which is the most important variable to 
estimate the amount of carbon can also be measured directly using this technique. 
Keywords: Stem diameter, Scan angle, Stem volume, Terrestrial lidar, Principal component 
analysis 
 
1. Introduction  
 
Above-ground carbon and woody biomass can be predicted using allometric equations with 
predictor variables such as diameter at breast height (d.b.h) and tree height. Tree parameters 
derived from remotely sensed data may be used as the inputs in the equations. The effectiveness 
of airborne Light Detection and Ranging (lidar) to acquire such tree parameters has been 
demonstrated across a wide range of forest types (Andersen et al., 2006, Hyyppä et al., 2001, 
Kato et al., 2009, and Næsset & Økland., 2002). The applicability of airborne lidar may 
however be limited by available facilities and cost, which depends on the distance from the 
airport and the flying time involved in data acquisition, among other things. For this reason 
airborne data collection is not always feasible in developing countries. Reducing Emissions 
from Deforestation and Forest Degradation in Developing Countries (REDD) projects focus on 
the change in the amount of carbon sequestered in forests. Carbon change can be monitored 
using airborne lidar. But even if airborne lidar is the most promising technology to measure tree 
parameters (Patenaude et al., 2003), the airborne sensor itself may not be available in the 
developing countries.  
 
With the recent development of terrestrial lidar a more mobile sensor has become available to 
acquire high quality data for forest assessment. Even if terrestrial lidar does not offer the area 
coverage of airborne lidar and is less suitable for the measurement of total tree height, it is 
comparatively more suitable for the measurement of diameter, which is strongly correlated with 
biomass and carbon. To monitor the change in the amount of carbon in developing countries, 
terrestrial lidar is well suited since it can save and display the data in three dimensions, which 
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can be useful in the event that corner markers of permanent plots are stolen or lost. Moreover, 
change in the details of objects such as stem growth can be measured directly by multi-temporal 
data. Efficient data collection by terrestrial lidar provides opportunities for the development of 
alternative forest inventory techniques.     
 
To ensure the applicability of terrestrial lidar for forest inventory, scanning angle and scanning 
coverage (tree stem illumination) should be considered to ensure the quality of stem diameter 
measurements. In past studies, terrestrial lidar has achieved data densities high enough to 
measure leaf angles (Eitel et al., 2010) and reconstruct the detailed shape of trees (Côté et al., 
2009). Terrestrial lidar technologies can detect the details of the objects only if the coverage of 
scanning is sufficient. Chasmer et al (2006) compared terrestrial and airborne lidar systems for 
forest inventory and found that the tree parameters acquired by terrestrial lidar, especially tree 
height and crown length, were underestimated. The accuracy of tree parameters can be 
improved by better placement of the sensor. Hopkinson et al (2004) used terrestrial lidar to 
derive plot level forest metrics. When a clear view of tree top is obtained, underestimation in 
measurement of tree height is minimized. Stem diameter is typically derived using algorithms to 
fit a circle or cylinder to the lidar point cloud (for example Tansey et al., 2009). In this study, a 
new algorithm is introduced to fit the point distribution flexibly to derive stem diameter.  
 
The purpose of this paper is to assess the effect of scan angle and scan coverage on the accuracy 
of stem diameter measurements. The steps to be taken for the assessment are: 
  1.  to extract the points at the breast height of stem. 

2.  to estimate the coverage scan angle from the sensor locations. 
3.  to measure stem diameter and validate it by the field measurement. 
4.  to assure the quality of data in measuring stem diameter. 

 
2. Method  
 
2.1 Study area 
 
The study area is located in Fujinomiya city, Shizuoka Prefecture, Japan. The coordinates of the 
study area are 35.255 N and 138.673 E. An experimental scanning in this study was conducted 
on private land in May 2011. The dominant species is Japanese Cedar (Cryptomeria japonica). 
The terrain is almost flat and there is no understory except for fern (Figure 1).  
 

  
Figure 1. The picture of study area (left). The horizontal view of terrestrial lidar data with color (right). 

 
2.2 Terrestrial lidar sensor 
 
The terrestrial lidar sensor used in this study was the Riegl VZ400 (Table 1). This is a full- 
waveform digitizing sensor, which can collect more returns per pulse resulting in high density 
point clouds suitable for detection of stem shape details.   
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2.3 Experimental design 
 
The sensor locations were chosen to assess the effect of scan angle and scanning coverage. Five 
scanning positions were chosen 10 m apart. Forty-two trees were selected as the validation 
sample for the study. The trees were selected near, away from, and along the sensor locations to 
obtain a range of scan angles. Stem locations were mapped using a total station and stem d.b.h. 
were measured using a diameter tape. The sensor location and sampled stem locations are 
displayed in Figure 2.  
 
2.4 Extraction of laser returns 
 
Based on the mapped stem location, the point clouds associated with each of the 42 stems were 
extracted and further analysed. 
 

Table 1. Terrestrial lidar sensor setting 
Acquisition date  May 16th , 2009  
Laser sensor  Riegl VZ-400  
Laser wavelength 
Max range  

Near Infrared Red 
150 m (360°x  100°)  

Laser point density  125,000 points/second 
(high speed mode）  
42,000 points/second 
(long distance mode）  

 

 
Figure 2. Sensor and stem locations for this study. Yellow points are sensor locations (10 m apart) and 
brown points are sampled stem locations. The background is the DTM derived from terrestrial lidar data .  
 
2.5 Constructing DTM 
 
Stem diameters were measured at a height of 1.3m above the ground. To define ground level in 
the lidar data set a Digital Terrain Model (DTM) was constructed based on the smoothed surface 
of the lowest lying points. First a fifty centimetre resolution grid was generated and the points 
with minimum height were identified and saved at each grid cell. If there were no data in a grid 
cell, for example on the obscured side from the sensor location, then the grid cell was assigned a 
height based on the heights of neighbouring grid cells. In grid cells where laser points were not 
reflected from the ground but from the understory, the height value was high relative to the 
surrounding cells. In that case the minimum values of the neighbouring grid cells were assigned. 

m
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The procedure was reiterated to smooth the surface. 
 
2.6 Approximating the centre of stem 
 
Points between height 1.25 and 1.35m above the DTM were extracted from the individual stem 
point clouds. The centre of the stem was approximated in three steps. Firstly, the average 
coordinate of all extracted points were calculated. Secondly, angles from the average location 
were obtained and points in some fixed sector were extracted and used to estimate the normal 
vector, which was determined by eigenvector of principal component analysis. Lastly, the 
intersected coordinates of these normal vectors were identified and the average of all the 
intersected coordinates was defined as the approximated centre of stem. The variable angle 
intervals (from 10 to 180 degrees) were tested to find the optimum extracted angle. 
 
2.7 Scan angle effect on stem diameter 
 
Coverage angle of each stem from the sensor locations was estimated by simulation, or virtual 
scanning from the actual sensor location to the stem locations. There are two steps for this 
simulation. In the first step, the coverage angle was estimated without any objects based on two 
sensor locations. 50 cm grids were generated over the entire study area to estimate the visible 
side from the two sensors located 50 meters apart and calculate point density. With the both scan 
angle and point density map, the value of one was assigned to the cells where the point density 
was more than one and zero was assigned to the others to create a mask, which determined the 
visible side from two sensors. In this simulation, the maximum distance of lasers was set to be 
100 meters from the sensor locations.   
 
2.8 Stem diameter measurement 
 
To measure the stem diameter of terrestrial lidar at breast height, the inner side of the points of 
returns from stems were used. The outlined points on the surface of stem represented bark and 
the points at the inner side were only used for the stem measurement. Points at every 5 degrees 
from the approximated centres were collected and the minimum distance was set to be a sample 
diameter. All sample diameters were averaged to give the stem diameter of a tree.   
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Figure 6. Simulation result to show scan coverage from two sensors without any object (left) and the ideal 
visible angle is overlaid on the actual scanned map (right). Red points represent the sensor locations.    
 
The white area in Figure 6 corresponds to the zone of full scan coverage (360 degrees coverage, 
white area in Figure 6). The full scan coverage area is especially located between the sensors.  
 
3.3 Scan angle and scan coverage  
 
The visible side of stems were identified by the simulation based on the sensor locations. The 
simulation was conducted without any objects (Figure 6) and the range was set from 50% (half 
obscured) to 100% (360 degree of coverage). The actual scanned image was overlaid on the top 
of the simulation result to assure the visible side of the angle for the stem location.     
 
3.4 Stem diameter measurement 
 
The relationship between measurement error and scan coverage is shown in Figure 7 (left). The 
measurement error is the difference between lidar diameter and manually measured diameter. 
The scan coverage of each of the 42 sampled trees is their location relative to the sensors. Figure 
7 (left) shows that when scan coverage exceeds 40 % trees tend to have errors below 5 cm. This 
indicates that scan coverage of more than 40 % can produce more accurate stem diameter. The 
correlation between manual and lidar diameter measurements is high (R2=0.73) and the 
correlation line nearly coincides with the 1:1 line (Figure 7, right). This shows that the lidar 
stem diameter measurements are unbiased.  
 
3.5 Assurance of scan angle to measure stem diameters 
 
Section 3.2 showed the ideal coverage of scan angle and section 3.3 showed that the coverage 
angle of more than 40% can produce the stem diameter with the error of 5 cm or less. In Figure 
6, the area covered by two sensors has at least 50% coverage in this study site. It was concluded 
that all trees in this area are qualified to obtain accurate stem diameter from terrestrial lidar 
sensors set 50 m apart.  
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Figure 7. Error of stem diameter in different coverage of scan angle (left). The comparison between lidar 
and field measurement. Red line represents one to one correlation. 
 
There is not so much understory in this study site but further research is needed to find out the 
influences from understory to get enough point density to measure stem diameter. In a follow-up 
study a site with understory should be used to quantify the scan effect for stem measurement. 
 
The technique developed for this study was only used for stem diameter at breast height but the 
same technique can be applied to any height of stem diameter. For the quality assessment of 
wood, the straightness of stem can be estimated directly from the alignment of stem centres at 
several heights using the applied technique. Moreover, stem volume which is the most important 
variable to estimate the amount of carbon is also directly measured by this technique. 
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Abstract 
Terrestrial laser scanning (TLS) has been shown to be a promising technology for the accurate 
forest inventory on the sample plots. The advantages of applying TLS can be improving the 
accuracy and efficiency of the field measurements. In addition, TLS data have the possibility to 
provide more tree parameters than what are commonly accepted and employed at the moment. 
This paper discusses the automatic measurement of the stem curve using TLS. A pine and a 
spruce were used in the experiment. The stem curve estimated from point cloud was compared 
to the field measurements. The experiment shows that the estimation of the stem curve from 
single-scan and merged point clouds are comparable to each other. This result indicates that TLS 
data has the potential to automatically estimate the stem curve.  
 
Key words: forest inventories, stem curve, terrestrial laser scanning 
 
1. Introduction 
The stem curve is an important parameter in many forest applications. Stem curve models can 
be used to determine saw-wood and pulpwood proportions (Holopainen et al., 2010). The 
knowledge of the stem curve is often the basis, directly or indirectly, for the forest management, 
such as harvesting and thinning. 
 
The conventional measuring tools, e.g., callipers, measuring tapes, and hypsometers, are 
however not suitable for measuring the stem curves of living trees. The exact stem curve can be 
measured in a destructive way. The tree is cut down and the diameter along the stem is 
measured, e.g., using callipers. The harvester also records the stem curve. The diameter 
measurements for the commercial part of the stem at intervals of 10cm are included in the 
logging machine data.  
 
Alternatively, stem curve models (e.g., Laasasenaho, 1982), were developed to predict stem 
curves using fixed measurements, usually tree species, the diameter at breast height (DBH) and 
the total height. If there are several measurements on each stem, splines can be used to 
interpolate stem dimensions between measured points. 
 
Some specific laser instruments were developed to measure DBH in the field, such as a 
laser-relascope (Kalliovirta et al. 2005) and a laser camera (Melkas et al. 2008, Vastaranta et al. 
2009). The laser-relascope is composed of a laser instrument, a variable-width slot with a fixed 
length arm, an electronic compass, an electronic inclinometer, and the supporting unit. The 
DBH is measured by combining the range and angle data. The laser-camera integrates a digital 
camera and a laser line generator. The stem diameter is measured using the length and relative 
position of the laser line in the image. These instruments can be used to collect the diameters at 
different heights; therefore have the potential to measure the stem curve of living trees. 
However, the measurement becomes less accurate, or impossible, when there are obstacles, e.g., 
the branches, between the instrument and the stem. 
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Terrestrial laser scanning (TLS) has been proved to be a promising solution to collect tree 
parameters (e.g. Thies et al., 2004). The data collected by TLS are high-precision 
three-dimensional (3D) measurements of the targets in the form of a point cloud. This technique 
makes automated, non-invasive and expedient field mensuration possible (Hopkinson et al., 
2004).  
 
The estimation of the stem curve using TLS has not been studied in detail. A pilot work was 
reported in (Maas et al., 2008). One Stika spruce in the single-scan data was used in the stem 
profile determination. The Root Mean Squared (RMS) error of 1.0cm in the best fit part and 
4.7cm overall was reported. More studies are needed to understand the estimation of the stem 
curve of living trees using TLS. As far as we know, this paper is one of the first detailed studies 
to use single and merged point cloud to estimate the stem curve. 
 
2. Method 
2.1 Data acquisition 
The study trees were on two sample plots in Evo, Finland (61.19ºN, 25.11ºE). The plots were 
scanned in the multi-scan mode in spring 2010. The scans were co-registered using reference 
balls put on the plot. One Norway spruce and one Scots pine were employed in this study. The 
merged point cloud of the individual tree was from three nearest scans. The single-scan data was 
one of the three scans, where the visibility of the stem is good. The registration and the data 
selection were done using the Leica Cyclone software. 
 
The TLS data were collected using a Leica HDS6100 terrestrial laser scanner (Leica 
Geosystems AG, Heerbrugg, Switzerland). The scanner uses phase-shift measurements of 
continuous waves to measure distances and its maximum data acquisition rate is 508,000 points 
per second. 
 
Fig. 1 and 2 show the trees in point clouds. Fig. 1(a) and (b) are the spruce in the merged point 
cloud and the single-scan data, respectively. Fig. 2(a) and (b) are those for the pine. Both trees 
have a lot of branches. They are present at both lower and upper part of the tree as regard to the 
spruce, and more concentrated at the upper part as regard to the pine.  
 

         
             (a)              (b)                 (a)             (b) 
      Fig. 1 The spruce in the point cloud         Fig. 2 The pine in the point cloud 
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The field measurements were collected in summer 2010. The trees were cut down and trimmed. 
The stem was cut into logs. The first cut was at the stump height, the second at the middle of the 
stump and the breast height (1.3m), and the third at the breast height. The cuts were done at 
every meter starting from 2m. The stem diameter was measured using steel callipers at the 
bottom of the log. 
 
2.2 Method 
2.2.1 Data sampling 
The distribution of points in the laser scanning data is not even. In general, the further away an 
object is from the scanning position, the larger is the distance between nearby points. As regard 
to a single tree in the point cloud, the distance of points on the stem decreases as the height 
increases. The original data were sampled in the Z direction to reduce the total amount of the 
data and computing time. Every n of the original points were sampled. The factor n was 
experimentally determined. It depended on the properties of the data and the object. The factor 
was selected also in the way that the data from the upper part of the stem are less sampled than 
those from the lower part. Equation 1 shows the calculation of the factor n. Z is the z-coordinate 
in meter. 
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2.2.2 Stem modelling 
The stem points were identified by points spatial properties and the 3D stem model. The spatial 
properties were studied in points neighbourhood. A local coordinate system was set up for each 
point using the eigenvalue decomposition. The axes directions in the system were defined by the 
eigenvectors. A point was possibly on a stem if it was of low variance along one direction in the 
local coordinate system and had a close-to-horizontal normal vector in the real world coordinate 
system. The selected points were grouped. A point was in a group if there was at least one point 
from the same group within a certain distance. The group with the largest amount of points was 
selected as the stem.  
 
Stem model was built to the points. The model was a series of 3D right circular cylinders along 
the stem profile. In each model element, a cylinder was matched to a set of points by means of 
the robust estimation, where points were weighted to reduce the influence of cross errors, e.g., 
the branch points. After the first cylinder was built, the parameters of current cylinder were used 
as the initial estimation for the next one, along the axis and overlapped with the current one. For 
more details on the robust modelling procedure, readers are referred to (Liang et. al., 2011). 
 
2.2.3 Stem curve estimation 
The stem curve was estimated from the 3D stem model. The model elements were selected at 
the heights where the reference data were measured. The heights were 1.3m and every meter 
between 2m and 12m. The lowest point in the merged point cloud was used to define the ground 
level in the scanner coordinate system. The diameters from the corresponding model elements 
were employed as the diameter estimations. 
 
3. Result 
The estimations of the stem curve of the spruce with the merged point cloud and the single-scan 
are showed in Fig. 3 and 4, respectively. In Fig. 3(a), the solid line is the estimation of the stem 
curve by means of the TLS data and the automatic method; the dashed line is the reference data 
recorded in the field. Fig. 3(b) shows the error of the estimation. The error was calculated by 
subtracting the reference from the estimation at 1.3m and every meter between 2m and 12m. 
The dashed line shows the range of ±1cm. The RMS error is 0.6cm and 0.6cm using the merged 
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and single-scan data. Fig. 4, 5 and 6 are plotted in the similar way as the Fig. 3. 
 

  
  Fig. 3 The stem curve estimation of the spruce      Fig. 4 The stem curve estimation of the spruce 
       using the merged point cloud                    using the single-scan point cloud 
 
Fig. 5 shows the estimation of the pine using the merged point cloud. Fig. 6 is that using the 
single-scan data. The RMS error of the stem curve estimation of the pine is 1.3cm and 1.8cm 
with the merged and single-scan data, respectively. 
 

  
   Fig. 5 The stem curve estimation of the pine        Fig. 6 The stem curve estimation of the pine 
        using the merged point cloud                     using the single-scan point cloud 
 
Fig. 7 shows the point distribution of the pine in the XY plane. Points are around 12m above the 
ground and in the merged point cloud. Fig. 7(a) shows the original point cloud around the stem 
position. Fig. 7(b) is the detected stem points. More discussion is in section 4.  
 

 
Fig. 7 The point distribution at 12m  

 
4. Discussion 
By referring to diameter, it is being implied that stems are circular in cross section. However, 
the first problem with measuring stem diameter is that tree stems are never exactly circular 
(West, 2009). The irregularities are generally present at the place where the branches grow or 
external defects are present, such as knots and bulges.  
 
In TLS data, the stem diameter was automatically estimated by means of 3D modelling. The 
direction and diameter of the stem are estimated at the same time. The stem diameter was 
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therefore measured perpendicular to the stem axis, as the field measurement required. The 
estimation error, however, can be expected because of the irregularities of the cross section and 
the approximation of the cylinder shape. Given the stem axis, other geometrical primitives can 
be used to reduce such estimation error. The free-form curve (e.g., Pfeifer and Winterhalder, 
2004) has been reported to describe the details of the shape of the stem section in 
two-dimensional(2D) space. It is possible to improve the estimation of the stem diameter by 
combining the 3D cylinder and 2D curve fitting. The original points can be first projected to the 
3D plane perpendicular to the cylinder, or the stem, axis. The 2D curve is used to fit the points 
on the plane. Further researches are needed to study the applicability of the combination of the 
3D and 2D fitting to reduce the estimation error. 
 
The estimation error can also be introduced by the diameter changes along the stem axis. This is 
more likely present at the upper part of the stem where the stem diameter decreases rapidly. In 
such case, the cylinder gives an average value of the diameters along the axis. The diameter of 
the cylinder can be larger or smaller than the reference, depending on the position the reference 
data is collected, Fig. 7(b) shows the stem point at the height of 12m. The points were scattered 
on the plane. It is likely because of the diameter changes along the Z direction. 
  
The accuracy of the stem curve estimation becomes lower in the upper part of the stem. It is 
influenced by many factors, e.g. the wind and the occlusion effect. The wind, for example, may 
move clearly the top of the tree around its position. In the multi-scan mode, several scans were 
made at different positions, usually in turn. It is possible that the stem surface is present at 
different positions in several scans. In that case, the estimation can be either larger or smaller 
than the reference. The occlusion effect is typically heavy in the upper part of the stem. Less 
laser points are reflected from the stem when a lot of branches are present between the scanner 
and the stem. The influence of the cross error, e.g., crown points, thus becomes more significant 
when less points are from the stem surface. However, it is worth to note that the influence of the 
large amount of branches is significant when the occlusion becomes really heavy. The 
estimation is still accurate for the spruce when a lot of branches are present in the middle and 
lower part of the tree. 
 
The registration error may also introduce some estimation errors. The registration is done 
typically using reference balls put on the ground. It can be expected that the registration 
accuracy becomes lower when the distance to the reference balls growing. Likely, the 
registration error is larger at the upper part than the low part of the tree. It is not clear yet the 
distribution of the registration error in the merged data. At the moment, no evidence shows that 
this error is large. 
 
It is worth to note that the measurement error is also present in the reference data. The 
measurement of the stem diameter in the field depends on the positions where the measurements 
are made. For example, it is possible that the difference between major and minor axes is not 
apparent, and only one measurement is made. It is also possible that the diameter is measured at 
other heights but recorded as the measurement at the regular height in the field measurement. 
For example, the stem may thicken because of dead branch or other damage. In that case, the 
diameter should be measured at a higher position. 
 
The accuracy of the estimation of the spruce is higher than that of the pine. The bark texture 
may have some influences on that. More experiments are needed for further analyses. The 
estimation from the single-scan data is less accurate than that got from the merged point cloud. 
In the single-scan data, the laser point cloud covers 50 percent, at best, of the object surface. It is 
more difficult and therefore likely less accurate to build the stem model. However, the 
accuracies from two data sets are close to each other, if the visibility of the stem is fairly good in 
the single-scan data. This results shows that it is possible to use the single-scan point cloud in 
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the stem parameter estimation. Further researches are needed to improve the estimation method, 
to analysis the estimation error, and to understand the effects of merged and single-scan data. 
 
5. Conclusion 
The stem curve estimation using the TLS data and automatic method was reported and discussed. 
The result shows that the TLS data and automatic method can be used to estimate the stem curve on 
the sample plot. It indicates that the multi-scan TLS data is suitable for the estimation of the stem 
curve; and the single-scan data can be also used in the estimation of stem curve if the visibility of the 
stem is rather good.  
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Abstract 
Dry weight of the branches of 20 trees of Norway spruce was obtained through destructive sampling. Airborne 
laser scanning data from the same trees were used to calculate crown volume for each tree. The crown volume 
was derived by using the crown laser echoes with a radial basis function to construct a crown surface. A 
regression model was fitted to the data, with the crown volume as explanatory variable and the dry weight of the 
branches as response. The model revealed a strong relationship between the two, with R2 = 0.80. A leave-one-out 
cross-validation gave a root mean square error of 34%. 

 

Keywords:  Airborne laser scanning, biomass, crown volume, bioenergy 

1. Introduction 
The last ten years has seen an increased interest in the use of biomass for energy purposes. Biomass 
from forests will most likely be one of several sources of energy that will replace fossil fuels in the 
future. One obvious example is the utilization of logging residues, biomass that would otherwise have 
been left in the forest during the logging. The branch biomass constitutes a considerable part of the 
logging residues. When logging residues become a commercial product from the forest, this resource 
should be quantified as part of the forest inventory to improve planning of extraction for energy 
purposes. An increasing part of forest inventories are based on data collected with airborne laser 
scanning (ALS). While many ALS based operational forest inventories are using the area-based 
approach as described by e.g. Næsset (2002), also methods targeting single trees have been proposed 
(Hyyppä et al. 2001; Persson et al. 2002; S. Solberg et al. 2006; Wang et al. 2008). The latter methods 
usually require ALS data with higher resolution, but intend to give information on a single tree level, 
contrary to the per area information provided by the former. Although not as widely used at the 
moment, inventory methods targeting individual trees might in the future be more used, depending on 
the ongoing technological and methodological research and development and future costs for data 
acquisition.  The potential of estimating individual tree characteristics by ALS has been investigated in 
several studies, including stem volume (Straub & Koch 2011), stem diameter (Popescu 2007), crown 
base height (Vauhkonen 2010), leaf area index (Roberts et al. 2005) and biomass (Popescu 2007).  
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When a tree is scanned by an airborne laser scanner, a majority of the laser pulses will echo from the 
crown, i.e. the branches. This suggests that the ALS data contain useful information on the crown 
biomass. In fact, much of the information inherent in the ALS data will be directly related to the tree 
crown and the branches. In a previous study on single-tree biomass estimation from ALS (Popescu 
2007) a strong relationship between the ALS data and the branch biomass was reported. The actual 
branch biomass of each individual tree was however not measured, but obtained through allometric 
equations with field measured tree height (h) and diameter at breast height (dbh) as explanatory 
variables. A direct relationship between ALS data and branch biomass were therefore not established. 

Single-tree predictor variables derived from the ALS point cloud such as height percentiles and crown 
diameter have been used by e.g. Popescu et al. (2003) and Straub & Koch (2011). Kato et al. (2009) 
presents a method for crown surface reconstruction that enables the calculation of crown volume. An 
intuitive assumption is that this crown volume could be a good predictor variable for estimation of 
branch biomass.  

To our knowledge no previous studies relates ALS data directly to accurate measurements of branch 
biomass (i.e. obtained with destructive sampling) at a single tree level. The first aim of the present 
study was therefore to assess the accuracy of ALS based predictive models for single-tree branch 
biomass of Norway spruce (Picea abies (L.) Karst.) using ground measurements of branch biomass. 
The second aim was to assess the suitability of using an ALS derived crown volume as a predictor 
variable for branch biomass. This variable was chosen based on the above mentioned assumption, and 
promising results from a pre-study comparison of some ALS derived variables (not included in the 
present study). 

 

2. Materials and methods 
 

2.1 Study area 
The study area was Aurskog-Høland municipality (59°50′N 11°30′E, 120-390 m above sea level) 
located in the south-eastern part of Norway. The total area of Aurskog-Høland is 96,000 ha with 
67,000 ha productive forest. The forest type is boreal with Norway spruce and Scots pine (Pinus 
sylvestris L.) as the dominant tree species. 

2.2 Field data 
Field data were collected in June 2009. Two locations were chosen, and from each location 10 trees 
were selected.  The two locations were chosen from potential locations in the intersections of the two 
east-west strips of already existing ALS data (see section 2.3) and forest roads. In order to avoid edge 
effects from the forest roads, trees with a distance >10 m to the forest road were preferred. Finally, due 
to practical reasons, trees with a distance >30 m from the road were not selected.      

On all the 20 selected trees the crown projection was measured in the eight cardinal and intercardinal 
directions. The measurements were carried out with a measuring tape and a compass. The horizontal 
distance from the stem at breast height to the vertical projection of the branch tip in the given direction 
was recorded. For all trees dbh was measured with a calliper. 

The 20 trees were then felled, and the raw weight of the branches (including needles) of each tree was 
obtained by weighing the tree before and after the branches were cut off. The weighing was done with 
a mobile lift mounted on a truck. A Teraoka Seiko OCS-XZL digital scale with load capacity 3000 kg 
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was used. Samples of entire branches were selected among the living branches of each tree in order to 
determine the dry weight. In total 11 living branches were taken from each tree, i.e., three branches 
from the lower part of the crown, three from the middle part and three from the upper part of the 
crown. In addition two branches were taken from the top of the stem (dbh < 5 cm). From all the 
sampled branches there were taken three sub-samples which were dried and the raw and dry weight of 
each sub-sample was recorded. For each tree h was measured with a measuring tape after the felling. 

The coordinates of each tree were obtained in a two-step procedure: (1) The location of each tree 
relative to two local reference points was accurately measured with a total station, and (2) the 
coordinates of the two reference points were obtained by differential Global Navigation Satellite 
Systems (dGNSS), using dual-frequency receivers observing pseudo-range and carrier phase of the 
Global Positioning System and the Russian Global Navigation Satellite System. Hasegawa & 
Yoshimura (2003) found horizontal positional errors in the range of 1 – 30 cm in dGNSS- 
measurements under conditions comparable to those in the present study.  

Characteristics of the 20 trees are summarized in Table 1. 

 

Table 1: Summarized characteristics of the 20 trees in the data material. Field measured dbh, h and dry weight of 
the branches (BRdw). 

 dbh 
(cm) 

h 
(m) 

BRdw 
(kg) 

min 11.2 8.2 8 
max 39.8 26.3 156 
mean 23.6 19.6 69 

 

2.3 ALS data 
ALS data were collected along two strips in east-west direction in the study area. The strips were 
flown 9 km apart in the north-south direction.  

The dataset was collected in June 2006 with an Optech ALTM 3100 sensor on a fixed-wing aircraft. 
The average flying altitude was 800 meter above ground, the pulse repetition frequency was 100 kHz, 
the scan frequency 70 Hz and the maximum scan angle was ±5 degrees from nadir. This gave an 
average point density on the ground of 7-10 m-2.  

Classification of echoes into ground- and vegetation echoes was carried out by the contractor with the 
TerraScan software (Anon. 2011). The contractor also determined the planimetric coordinates and 
ellipsoidal height values for all echoes. Echoes classified as ground were used to construct a 
triangulated irregular network (TIN) terrain model. The height above ground was calculated for all 
echoes by subtracting the respective TIN heights from the ellipsoidal heights.   

First and last recorded echoes were used in the present study. 

 

2.3.1 Single tree segmentation 
Several methods for automatic delineation of the ALS point cloud into single tree segments have been 
proposed. However, automatic segmentation will always omit some trees (omission errors) and 
include false trees (commission errors) (Vauhkonen et al. 2011). To avoid errors introduced by 
automatic segmentation, we decided to use the field measured crown projection for selection of echoes 
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that could be assigned to each individual tree. An eight-sided polygon was formed from the crown 
projection measurements of each tree, and all echoes within the polygon were assigned to that tree.  

 

2.4 Calculations 
 

2.4.1 Dry weight biomass of the branches 
A raw to dry weight ratio was calculated for each branch sub-sample.  For each tree a raw to dry 
weight ratio was calculated as the mean of the ratios obtained from the samples.  Finally, the total dry 
weight biomass of the branches for each tree was calculated as the raw weight of the branches 
multiplied with the calculated tree-specific raw to dry weight ratio. This is denoted BRdw in the rest of 
this paper. 

 

2.4.2 ALS derived crown base height1 
The crown base height was estimated from the height of the laser echoes in each tree. A simple 
procedure was applied, where only the echoes below the median height were considered. These echoes 
were sorted according to their height above ground, and the echo with the largest vertical distance to 
the next echo below was set to be the lowermost echo in the crown, and hence the crown base height 
(Fig. 1). Laser echoes above the crown base height were considered to be crown echoes. 

 

Figure 1: Estimated crown base height for four of the trees in the data material. 

 

                                                            
1 Contrary to definitions of crown base height used by e.g. Maltamo et al. (2010) where the base height refers 
to the height on the tree trunk where the lowermost branches are found, we wanted in this study the crown 
base height to correspond to the height of the lowermost point on any of the branches in the live crown.  
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2.4.3 Radial Basis Function derived crown volume 
Crown volume was calculated from the crown echoes for each tree by using a radial basis function 
(RBF) as proposed by Kato et al. (2009). The method was modified to work with less dense ALS data, 
and the calculations can briefly be summarized as follows:  

Points on the surface of the crown to be reconstructed were chosen by calculating a convex hull in the 
x,y-plane for the echoes in a number of individual height bins. The echoes at the border of the convex 
hull were marked as surface points, all others as being inside the crown. The topmost and lowermost 
echoes in the point cloud were always marked as being on the crown surface. 

For each surface point two off-surface points were created (see Carr et al. (2001) for details) in a given 
distance d from the surface point. An RBF can in this case be written as 

݂ሺݔሻ ൌ  ∑ ݔ|ሺߣ െ |ሻேݔ
ୀଵ ,  (1) 

where x is a point א Թଷ, N is the number of all the surface and off-surface points and |x-xi| is the 
Euclidian distance. The λi is a weight parameter, computed with the distance values d and the surface 
and off-surface points. When the λs are determined the RBF in Equation 1 can be evaluated for any 
given point x א Թଷ, and it has the property that f(x) will be zero at the crown surface. A crown surface 
was approximated by evaluating Equation 1 for values of x in a three-dimensional grid, and 
constructing a triangulated mesh surface where f(x) = 0 (visualized in Fig. 2).  The crown volume Vcr 
for each tree was then calculated from the triangulated mesh crown surface by  

ܸ ൌ ∑ ܸሺݐሻ,ெ
ୀଵ    (2) 

where M is the number of triangles in the mesh, V is a signed volume function and ti is the tetrahedron 
formed by the ith triangle and an arbitrary point p. The facing of the ith triangle relative to p, 
determines the sign of V. 
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Figure 2: The RBF crown surface for four of the trees in the data material. 

 

2.4.4 Model fitting and validation 
A linear regression model with Vcr as explanatory variable and BRdw as response variable was fitted to 
the data. A leave-one-out cross-validation was carried out by leaving out one observation at the time, 
re-fitting the model with the remaining trees and predicting the biomass for the single tree left out. 

 

2.4.5 Biomass by existing allometric equations 
For comparison reasons the biomass of the branches for the 20 trees were also estimated by existing 
allometric equations with field measured dbh and h as explanatory variables (Marklund 1988).  

3. Results 
The Pearson’s correlation coefficient between the biomass of the branches and the ALS derived crown 
volume was 0.892, which means that the ALS crown volume explained approximately 80% of the 
variation in branch biomass in the regression model (Table 2). The leave-one-out cross-validation gave 
a root mean square error (RMSE) of 34%.  

When relating the BRdw to the branch biomass estimated with existing allometric equations with field 
measured dbh and h as explanatory variables the correlation coefficient was 0.866. The RMSE for these 
estimates was 31%. Plots of the residuals (Fig. 3) show that the accuracy of the field based estimates 
from the existing allometric equations is slightly better than the accuracy obtained in the cross-
validation of the ALS based regression model. 
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Table 2: Estimated regression model and associated statistics. RMSE from cross-validation of the model. 

Response 
variable 

n Predictive model R2 Observed 
mean  
(kg) 

RMSE 
 

(kg) 

RMSE 
 

( %) 
BRdw 20 14.765 + 0.562 * Vcr 0.80 69 23 34 

 

Figure 3: Plots of the residuals from the regression model cross-validation and from the branch biomass 
estimates based on existing allometric equations. The residuals in the left plot are plotted in increasing order by 
tree size (dbh). 

 

4. Discussion and conclusions 
A strong relationship was found between the ALS data and the biomass of the branches. The accuracy 
of the ALS based model predictions is almost comparable to the accuracy obtained with allometric 
equations based on field measurements. This biomass estimate, derived with the existing allometric 
equation, is in fact equal to a theoretical ‘best case’ biomass estimate following the procedure 
described by Popescu (2007), assuming that dbh and h can be perfectly derived from the ALS data. In a 
real situation this will not be the case, and errors introduced when predicting dbh and h from ALS data 
will directly affect the biomass estimates derived this way.  With this in mind the comparison suggests 
that, in practice, a comparable accuracy can be obtained by predicting the branch biomass directly 
from the ALS data, without using a model chain with an independent allometric equation.  The main 
challenge with such an approach is however the dependency on field measurements as training data. 
Destructive sampling is obviously not an option in an operational setting, so other methods to estimate 
the ground truth values of branch biomass should be explored. Terrestrial laser scanning has emerged 
as a possible tool for this purpose, but more research is needed on this issue.  

Only one ALS derived variable was considered in this study, and including other ALS derived 
predictor variables will most likely improve the results. The properties of the RBF crown volume 
could be explored, and also how these are related to ALS point density, scanning angle and echo 
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return categories. Since the RBF crown volume is highly dependent on the estimated crown base 
height, more robust methods to estimate the crown base height might improve the results.     

In conclusion, the present study revealed a strong relationship between ALS data and accurately 
measured branch biomass of Norway spruce at a single tree level. Furthermore, the ALS derived 
variable describing crown volume was shown to be a promising candidate when predicting branch 
biomass.  
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Abstract 
 
In typical airborne laser scanning (ALS)-based inventories, the forest is aggregated from initial 
estimation units, for which the attributes are produced using variable imputation techniques. The 
initial units vary in size and shape, being usually either regular grid cells or segments derived 
from the ALS data. This study compared small grid cells and segments of trees or tree groups as 
initial estimation units in an ALS-based estimation of species-specific, plot-level volume. The 
experiments were carried out in a managed, boreal forest area in Eastern Finland, where pine 
was the dominant species, and spruce and deciduous trees formed the other species groups. The 
field data consisted of 79 sample plots (400–900 m2 in area) and the ALS data had a density of 
about 12 pulses/m2. The estimation was overall very accurate, resulting in best-case root mean 
squared errors of 13% for the total volume, 23% for pine, 49% for spruce and 90% for the 
deciduous trees at the plot-level. The total volume was estimated most accurately using a 
method in which 0 to n trees were imputed per segment. However, the differences between the 
estimation units were minor. Despite the significant biases in the estimates, the species-specific 
estimation was most accurate using a single-tree approach, i.e. by considering only the largest 
trees per segments in the imputation. The species-specific biases were of the same magnitude 
than the volume not detected by the tree detection algorithm, indicating that the proportion of 
the detected trees was estimated very accurately. 
 
1. Introduction 
 
Area-based approach (ABA) and individual tree delineation (ITD) are the main strategies to 
estimate forest attributes from airborne laser scanning (ALS) data (e.g. Hyyppä et al. 2008). As 
all trees cannot usually be detected, the ITD is more prone to bias, but comparisons of these 
approaches have indicated that total stand attributes such as volume and Lorey’s height can be 
estimated with comparable accuracies using both approaches (Packalén et al. 2008; Yu et al. 
2010; Peuhkurinen et al. 2011). The comparisons are typically performed using the same data in 
both approaches, although data requirements differ considerably between the approaches in 
terms of both ALS and field data. 
 
ABA can be operated using ALS data with a density of <1 pulses/m2, but extensive field 
reference data are required in order to represent the entire phenomenon of interest (e.g. Næsset 
2002). The ITD can be performed with a density of 2 pulses/m2 (Kaartinen and Hyyppä 2008), 
but typically densities of 5–10 pulses/m2 are used. The ITD has a potential to use less field data 
for model calibration (Hyyppä et al. 2008), but the trees need to be mapped in the field. 
Species-specific estimation will cause further differences between the approaches: in the ABA, 
the species information is predicted with an auxiliary data source such as aerial images (e.g. 
Packalén and Maltamo 2008), whereas recent Scandinavian studies have shown potential to 
predict species solely from ALS using the ITD approach (e.g. Korpela et al. 2010). 
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Recent methods have developed towards a combination of ABA and ITD in that segments 
delineated from ALS data are provided with a summation of field reference attributes rather than 
treating them as single trees (Breidenbach et al. 2010). The utility of the segmentation remains 
unclear compared to an alternative to use small, regular estimation units, e.g. grid cells in a 
fashion of a typical ABA (e.g. Næsset 2002) in tandem with high-density ALS data. 
Furthermore, considering 0 to n trees within a segment may limit the number of similar 
observations in the reference data and thus requires further comparison to a typical ITD 
approach, where only the dominant trees are considered and a small amount of reference data 
may be adequate (Korpela et al. 2010; Vauhkonen et al. 2010). 
 
The purpose of this study was to test different estimation units in the estimation of 
species-specific stem volume from high-density ALS data. 
 
2. Methods 
 
2.1 Study area and data 
 
The study area is a typical boreal managed forest area in Eastern Finland (lat. 62°31’N, lon. 
30°10’E). The field measurements were carried out on May-June, 2010. Altogether 79 field 
plots were placed subjectively, attempting to record the species and size variation over the area. 
Sample plot size was either 20×20, 25×25 or 30×30 meters depending on forest development 
class. Scots pine (Pinus sylvestris L.) was the dominant tree species representing 73% of the 
volume, Norway spruce (Picea abies [L.] Karst.) 16% and deciduous trees 11%.  
 
The ALS data of the area were employed in the mapping of the trees. First, a tree map was 
produced using the individual tree detection method described in the next section. The tree 
locations were verified in the field and the undetected trees were positioned using angle and 
distance observations to the ALS-detected trees. The coordinates for the small trees were then 
calculated using these observations in a least squares adjustment as explained by Korpela et al. 
(2007). All trees with either DBH ≥ 4 cm or height ≥ 4 m were mapped and measured for 
species, DBH and height. Stem volumes were calculated using the species-specific equations 
presented by Laasasenaho (1982). 
 
ALS data were collected on June 26, 2009 using an Optech ALTM Gemini laser scanning 
system from approximately 720 m above ground level with a field of view of 26 degrees. Pulse 
repetition frequency was set to 125 kHz and the instrument was operated in a multi-pulse mode. 
Each location was covered from two flight lines (side overlap 55%) in order to maximize the 
probability that trees have ALS hits each side, i.e. that there are no shadowed areas behind trees 
along the line from the laser scanner to a tree. A nominal sampling density was 11.9 
measurements per m2. The intensity data were range-corrected by the data deliverer. 
 
One of the plots was left out from the present analysis due to having clearly more larger trees 
than any other plot. This plot also pointed out as an outlier in terms of ALS-based mean height 
and intensity. The main characteristics of the field data are presented in Table 1. 
 

Table 1: Stem volume (m3/ha) at the plot level. SD – standard deviation. 
 

  All Pine Spruce Deciduous 
Mean 193.7 131.8 40.9 21.0 
SD 65.3 79.5 91.7 42.1 
Min 79.5 0.0 0.0 0.0 
Max 441.7 275.2 389.1 199.9 
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2.2 Derivation of the estimation units 
 
The core idea of this study was to produce species-specific volume estimates to initial 
estimation units of different size and shape, which were then aggregated to the plot-level for 
evaluation. We tested two variants of both grid cells and segments as the estimation units. In the 
grid approach, we used grids with cell sizes of 5×5 and 10×10, denoted GRID5 and GRID10, 
respectively. The sizes were selected aiming to a reasonable number of observations and 
variation within the cells. The grid cells were fit to follow the plot borders, except in GRID10, 
in which the eastern- and southernmost parts of the 25×25 m plots were left out. 
 
Both segment approaches used the same segments but had differences in terms of field reference 
data. In SEGM approach, the segments had the sum of field-measured volumes as the reference 
data in a manner presented by Breidenbach et al. (2010). In TREE approach, only the largest 
tree per segment was used (Vauhkonen et al. 2010). The segments were created from ALS-based 
canopy height model (CHM). The CHM was interpolated to a resolution of 50 cm by taking the 
maximum ALS point height within a pixel and filling the pixels that had no ALS hits within 
their area with a median filtering in local windows of 3 by 3 pixels. Hole pixels, with at least 
seven of the eight neighbours exceeding the height value of the centre pixel by more than five 
meters, were replaced with the median of the values of the neighbour pixels exceeding that 
threshold. 
 
In the segmentation, the CHM was first low-pass filtered using Gaussian kernels with the size of 
the smoothing window increasing as a stepwise function of the heights of the CHM (Pitkänen et 
al. 2004). The segments were created around the local maxima using watershed segmentation 
with a drainage direction following algorithm. Pixels lower than two meters were masked out 
from the crown segments and small segments, at most three pixels in size, were combined to 
one of the neighbour segments based on the smallest average gradient on the segment boundary 
between two segments. The method is described in more detail by Kaartinen and Hyyppä (2008) 
and Packalén et al. (2011), of which the latter also applied it to the data set of this study. 
 
2.3 Volume imputation method 
 
In the imputation, the estimation units were provided with stem volumes from the reference 
observations considered as nearest neighbours in terms of the extracted ALS-features. The 
imputation was carried out using the MSN method implemented in yaImpute package 
(Crookston and Finley 2008) of the R statistical computing environment 
(http://www.R-project.org/). MSN with more than one nearest neighbour (k-MSN) was 
additionally tested, with the values of k ranging from 2 to 10. The imputations were carried out 
in a leave-out-one-plot fashion, i.e. the segments belonging to the same plot as the target 
segment were not available as nearest neighbours. Otherwise the technical details are explained 
by Breidenbach et al. (2010). 
 
Response variables in the imputation were the species-specific sums of the volume within the 
estimation units in all other approaches except TREE, in which both volume and species were 
imputed for a segment. As categorical variables were not allowed with the MSN method, the 
species attributes was coded into dummy variables. A large set of ALS-based independent 
variables was tested and effects of including different feature groups were also evaluated. The 
features were calculated either at the level of the estimation unit or at an area level, the latter 
being either a 250 m2 circle in the segment approach or the full reference plot in the grid 
approach. The features are summarized in Table 2 and their calculation is explained in detail by 
Vauhkonen et al. (2010). 
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Table 2: Independent variables tested in this study. SD – standard deviation, H – height, Hmax – 
maximum height, I – intensity, Imax – maximum intensity. 

 
Feature group Description Grid Segment 
Hstat Maximum, mean and SD of H values and proportion of H > 0.5 m X X 
Hperc Percentiles 5, 10, 20, …, 90, 95% of Hmax X X 
HpercRel Hperc divided by Hmax X X 
Hdens Proportional densities 5, 10, 20, …, 90, 95% of Hmax X X 
Istat Descriptive variables of I values 0-40% down from the treetop X X 
Iperc Percentiles 5, 10, 20, …, 90, 95% of Imax X X 
Cvol Volume of the 3D convex hull of the point data above 50, 60, 70  - X 

and 80% of Hmax 
Carea Area of the 2D convex hull of the point data below 10, 20, …,  - X 

100% of Hmax 
Astat Area-level maximum, mean and SD of H values and proportion of  X X 

H values > 0.5 m 
Aperc Area-level percentiles 5, 10, 20, …, 90, 95% of Hmax X X 
Adens Area-level proportional densities 5, 10, 20, …, 90, 95% of Hmax X X 
Aint Area-level mean and SD of I values X X 
 
2.4 Evaluation and performance measures 
 
In all cases, the correspondence of the estimates with the reference data was evaluated in terms 
of RMSE and bias: 
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where n is the number of observations, and iy  and iy)  are the reference and estimated 
attributes, respectively. The relative RMSEs were calculated by dividing the absolute RMSE 
values by the mean of the reference attribute. Paired t-test was used to test if the average 
difference between the predicted and observed values was zero (“significance of bias” in 
Breidenbach et al. 2010). 
 
3. Results 
 
3.1 Properties of the estimation units 
 
The theoretical potential to produce the attributes with the TREE approach was first evaluated 
by comparing the field-observed total volume and stem number of the ALS-detected trees to 
those of all trees (Table 3). The total stem number and volume were underestimated by 46 and 
13%, respectively. Pine trees were detected slightly more frequently and spruce trees slightly 
less frequently compared to the total, whereas the stem number and volume of deciduous trees 
were underestimated by 76 and 26%.   
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Table 3: Performance of the ITD algorithm. 

 
    Number of stems   Volume, m3/ha 
    Bias Bias%   Bias Bias% 

All trees 575.7 45.7 26.0 13.4 
Pine 229.7 32.4 15.2 11.5 
Spruce 112.5 52.8 5.3 13.0 
Deciduous   255.4 76.0   5.5 26.1 

 

When intersected with the field data, GRID10 had highest mean volume and lowest coefficient 
of variation (CV) of the considered estimation units (Table 4). GRID5 had higher mean volume 
than SEGM, but especially the species-specific CVs were close to each other. The mean volume 
in the TREE approach was only slightly lower than in SEGM, but the CVs of the approaches 
differed more from each other. 
 

Table 4: Main properties of the segments. 
 
    Mean volume, m3   Coefficient of variation, % 
Method   All trees Pine Spruce Deciduous   All trees Pine Spruce Deciduous 
GRID5 0.50 0.32 0.12 0.06 84.8 114.4 271.8 330.8 
GRID10 2.06 1.31 0.52 0.23 47.5 76.1 220.1 231.5 
SEGM 0.31 0.20 0.07 0.03 96.5 119.5 297.4 393.4 
TREE   0.27 0.18 0.07 0.03   95.1 122.1 308.3 438.1 
 

 
3.2 Imputation results with all available variables 
 
The accuracies of stem volume imputation using all available ALS-features are shown in Tables 
5 and 6. When evaluated at the level of the initial estimation units, the predictions showed a 
statistically insignificant bias in nearly all cases, and the obtained RMSEs were smaller than the 
corresponding CVs (Table 5), the only exception being SEGM with k=1. The RMSE values 
appear to be connected to the size of the estimation units. 
 
The RMSEs usually decreased as a function of the value of k. The increase in the performance 
was typically higher when increasing k from 1 to a few than e.g. from 5 to 10. Interestingly, the 
direction of the bias typically changed from overestimation towards underestimation. 
 
When considered at the plot-level (Table 6), the predictions of total volume and the volume of 
pine trees were both within a margin of 7 percentage points with all methods, while spruce and 
deciduous trees included more variation between the applied estimation units. The total volume 
was predicted most accurately using SEGM (RMSE 13%). Despite significant biases, all 
species-specific volumes were predicted most accurately with the TREE method. Except for 
spruce, which was estimated accurately using SEGM, all other species were estimated more 
accurately with grid-based methods. GRID10 showed a better performance than GRID5 in all 
other cases except the volume of spruce trees. The effect of k was not as obvious when 
considered at this level, and the accuracy of the TREE estimates tended to decrease with an 
increasing k, for example.  
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Table 5: Accuracy of the volume estimates at the level of the initial estimation units. 
 

    All trees Pine Spruce Deciduous 
Method k RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% 
GRID5 1 77.6 1.3 111.7 0.9 193.8 1.5 328.2 2.8 

5 63.6 1.0 88.5 0.2 165.1 1.9 267.8 4.0 
  10 60.9 1.2 85.1 -0.2 156.3 2.6 262.4 6.1 

GRID10 1 33.0 0.3 52.0 0.7 98.8 -2.6 183.3 4.5 
5 28.2 0.8 46.6 -1.0 88.8 -0.1 158.8 13.4 

  10 27.7 0.9 44.8 -2.1 87.4 1.5 159.7 16.8* 
SEGM 1 61.4 -2.1 105.3 -3.6 183.1 -0.5 429.9 3.1 

5 47.8 -0.9 82.7 -2.7 154.8 2.0 342.2 3.2 
  10 46.3 0.0 79.8 -2.0 148.1 1.9 326.8 7.2 

TREE 1 56.2 -0.6 94.3 -0.9 154.8 1.7 406.4 -4.1 
5 45.7 1.0 76.5 1.2 137.1 5.0* 331.4 -2.6 

  10 44.7 1.4 73.9 1.6 135.3 4.5 328.5 1.1 
 

Table 6: Accuracy of the volume estimates at the plot level. 
 

    All trees Pine Spruce Deciduous 
Method k RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% 
GRID5 1 17.1 2.4 28.4 3.5 61.5 2.1 120.8 -4.0 

5 16.7 2.1 26.1 2.6 61.7 2.5 113.7 -2.3 
  10 15.4 2.3 24.5 2.2 62.8 3.4 115.9 0.3 

GRID10 1 16.8 0.5 26.5 0.4 66.8 -0.5 100.5 2.7 
5 13.8 1.1 24.7 -0.1 66.3 1.5 101.6 8.4 

  10 13.7 1.0 24.0 -1.3 60.9 3.2 105.9 11.1 
SEGM 1 14.5 -1.5 29.5 -1.9 53.1 -1.1 124.7 -0.1 

5 13.0 -0.2 25.6 -0.7 55.3 1.4 115.2 0.3 
  10 12.9 0.6 25.7 -0.1 55.7 1.3 116.5 3.9 

TREE 1 19.3 12.8* 23.4 10.5* 48.7 13.9* 90.6 25.3* 
5 19.9 14.0* 24.9 12.7* 54.7 16.6* 90.3 24.0* 

  10 19.9 14.2* 24.6 12.9* 55.7 16.0* 97.4 26.3* 
 
3.3 Effects of including different feature groups 
 
Table 7 shows the estimation accuracy when different feature groups were considered. Usually a 
slightly better performance was obtained when using a subset of all available features. Feature 
groups Hdens, Iperc and Cvol were not used in any of the estimations. 
 
The performances of the species-specific estimates could be increased by using percentile 
variables instead of basic height values (Hstat), but a more radical increase in the performance 
was obtained by including intensity variables with these. Using SEGM and TREE, the areas of 
point clouds at different relative height levels were found to have additional prediction power 
especially with respect to volumes of spruce. Finally, predictors calculated at an area larger than 
the initial estimation unit improved the predictions for spruce and deciduous trees in all tested 
cases. 
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Table 7: Accuracy of the volume estimates at the plot level using different predictor groups. The values 

are the mean RMSE% over k values of 1–10. 
 
Feature group All trees Pine Spruce Deciduous   All trees Pine Spruce Deciduous 

  GRID5   GRID10 
Hstat 24.5 60.6 229.2 201.8 18.9 62.4 228.7 207.3 
Hperc 20.3 43.7 129.2 192.6 18.0 41.3 142.6 188.5 
Previous + Istat 15.9 25.1 60.7 111.3 13.6 24.3 68.7 111.5 
Previous+Astat+Aint 15.0 24.6 50.9 101.6 13.8 24.9 62.8 106.2 
All 16.4 26.1 61.8 115.9 14.2 24.4 65.0 102.9 

SEGM TREE 
Hstat 19.5 60.3 140.4 210.7 21.7 63.3 147.4 206.0 
Hperc 17.1 38.1 94.3 194.5 19.5 44.4 110.3 197.6 
Previous + Carea 14.7 38.2 88.4 159.1 19.3 39.6 90.1 164.7 
Previous + Istat 13.8 25.3 63.4 114.4 18.5 23.1 64.9 109.3 

Previous + Astat +  
Adens + Aint 13.9 23.8 51.7 110.1 18.8 23.5 54.5 101.5 
All 13.2 25.7 55.0 116.3   19.8 24.7 53.9 92.8 
 

4. Discussion 
 
The predictions produced in this study were overall very accurate compared to previous studies. 
One should take the different plot size into account, but the total and species-specific accuracies 
at the plot level were comparable to those reported by Breidenbach et al. (2010), yet the 
estimation here was carried out without the aerial images. Considering tree-level imputation, 
Vauhkonen et al. (2010) reported RMSE of about 30% for stem volume estimates and species 
recognition accuracy of about 80%, while here the corresponding numbers were 45–56% and 
about 84%. The difference is likely in the use of different segmentation method between the 
studies. 
 
The most accurate species-specific predictions were produced by the TREE approach. It is 
notable that the predictions (Table 6) had biases of the same magnitude than the trees not 
detected by the ITD algorithm (Table 3) indicating that the properties of the detected trees was 
estimated very accurately. An explanation may be that single trees are simpler units and thus 
easier to find more similar reference units in the nearest neighbour search. 
 
The analysis of including different features groups showed that useful predictors vary for the 
different estimation units. However, some common remarks were made: first, the 
species-specific estimation with all methods was improved by including ALS intensity metrics. 
Second, a multi-scale approach, in which the predictors are calculated not only at the level of 
the estimation unit but also at a larger area was found useful for all tested units. 
 
The results of this study may have implications towards collecting field reference data for 
ALS-based inventories. More efforts are required to collect an adequate field reference data for 
the SEGM approach than for the TREE approach, especially if a methodology corresponding to 
this study (Korpela et al. 2007) is used without mapping the smallest trees, i.e. verifying only 
the ALS-detected trees in the field. The results of the grid based approach should be 
re-evaluated under operationally more realistic conditions, i.e. using lower resolution area-based 
data. Finally, the amount of required reference data per method should be tested.  
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Australia

• Landsat mosaic, states and capital cities 
• Population, density and growth
• Climate



Australian Forests

Source: State of the Forest Report 2008, ABARES
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• Aggregation of ICESat Lidar within 
vegetation mapping polygons

Satellite Lidar Vegetation Height for Queensland



Government funded lidar capture in Australia

Source: Geoscience Australia, Victoria DSE



Current and Likely Future Lidar Projects

Government funded captures
• Capital cities
• Coastal DEMs on-going
• Non-coastal flood risk assessment
• Fuel loads and fire hazard mapping for peri-urban 

fringes around Melbourne
• Ergon Powerline/Vegetation Monitoring Program

Non-government funded
• Coal-seam gas project planning
• Other mining related captures



Examples



Examples

Source: Queensland Climate Change Centre of Excellence (QCCCE)



Significant Progress in Lidar Capture in Australia 

• Greatly improved licensing and access arrangements 
– Creative Commons Licensing
– Whole-of-government access 

• Lidar Acquisition Specifications and Tender Template
– Intergovernmental Committee on Surveying and Mapping

 Lead by Geoscience Australia with contributors across the 
country



Australian Specifications for Lidar Capture - Considerations

• User’s won’t pay the significant additional funds to achieve 
higher ground classification accuracy

• Suggested future additions
– Standard for vegetations points and classifications 
– Standards for full waveform

• Development of a toolkit for assessing data against 
specifications should be a priority



Room for Improvement

• Commercial-in-confidence issues
• Transparency in processing and classifying point cloud
• Quality assurance 
• Efficient data access 
• Open source software and file formats

– Sorted Pulse Data Library or SPDLib



Research and Developmental Priorities

• Systems
– Multiple lasers 
– Multi-spectral lidar 
– Unmanned aerial vehicles

• Research
– Efficient integration of technologies e.g. lidar and imagery 
– Further automation in ground classification
– Storing, processing and analysing full waveform lidar
– Integration of bathymetry and lidar DEMs



Monitoring with Lidar

Differences in DEMs or vegetations points not related to on-ground changes
• Sensor characteristics
• Capture specifications
• Datums, ellipsoids, survey control
• Classifications
• DEM algorithms

Differences due to on-ground changes
• Of interest 

– Tree growth, tree death, clearing, erosion, deposition
• Not of interest

– Grass cover, crops



Lockyer Valley Post Flood Geomorphic Assessment



Lockyer Valley Post Flood Geomorphic Assessment



Challenges – Ground cover



Lockyer Valley Change Analysis Pre- and Post Flood



Over 1000 landslips mapped

Approx scale 1:2400

Lockyer Valley Change Analysis Pre- and Post Flood



Monitoring Gully Erosion 
in Great Barrier Reef Catchments

• Burdekin River Catchment:
– 15 patches of LiDAR (12 to 31 km2 

in size) acquired in May and June 
2010

• Average pulse density of 4.2 m2 and 
an overlap of 50 percent overlap 
between flight runs.

• Fitzroy River Catchment
– 5 patches of LiDAR were acquired in 

2007 and 2010.



Monitoring Gully Erosion
2007 DEM                2010  DEM Change



Appropriate data capture specifications



Fitzroy Basin, Qld

2007 profile
2010 profile

Monitoring Gully Erosion – Does it work?



Topography and VegetationDense Vegetation, Scan Angle and Interpolation



Systematic Errors – Height Datum?



Coastal Example – Highly Accurate Lidar



• 2-3 field + lidar campaigns between May 2004 and July 2010

Vegetation Monitoring Sites



Why are they changing?
• Different sensor properties
• Different acquisition configurations
• Different field calibration datasets
• Variable non-green vegetation cover

Comparison of discrete-return lidar Foliage Projective 
Cover (FPC) calibration over large areas



2000 2006

Monitoring Trends in Canopy Condition

Location: Injune, Qld



Monitoring Trends in Canopy Condition

August 2000 – Optech ALTM1020

April 2009 – Riegl LMS-Q560

0m

30m

Height

Location: Injune, Qld



Monitoring Vegetation Change using multi-temporal 
LiDAR at Brisbane Forest Park, Qld
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Monitoring Considerations

• Design survey with monitoring in mind
• Use same sensor and specifications if possible
• Obtain raw data, as well as processed
• Consider changes in the environment which will affect DEM or 

vegetation points and derivatives
– Water levels
– Ground cover 
– Fire

• Work out resources required than triple that







ROAMES

• Custom build scanning system
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Abstract 
 
The scientific community is witnessing a significant increase in the availability of different 
global satellite derived biophysical data sets. However, the use of such data is currently not 
supported by accurate in-situ biophysical measurement (e.g. canopy structure) in both a research 
and operational context for the monitoring of forest and land dynamics. Consequently, there is 
an urgent need for methods to measure in-situ canopy structure accurately and better integrate 
with improved and innovative remote sensing approaches. This paper explores the use of a 
ground-based, upward looking LiDAR instrument, combined with a fully automated analysis 
method to retrieve the gap fraction distribution. Traditional inventory methods for the 
assessment of forest structure are less objective or based on a 2D approach. We compare the 
seasonal dynamics of gap fraction distribution from hemispherical photographs and terrestrial 
LiDAR measurement during bud break. 
Preliminary analysis shows that gap fraction distributions derived from terrestrial LiDAR were 
consistently lower than the values obtained from hemispherical photography. This might 
indicate that the LiDAR scans at the centre position of the plot are not representing the plot 
scale variation. However, the LiDAR based methodology is fully automated, requires no 
operator interference and is more objective, whereas the analysis of hemispherical photographs 
requires a large number of operator decisions (e.g. thresholding). Further improvements of this 
LiDAR-based method can still be achieved by (i) a better understanding of scanner settings and 
data resolution on the derived gap fraction and (ii) integration of target intensity in the analysis. 
This paper highlighted the high potential and need for a robust method to derive gap fraction 
distributions to monitor seasonal dynamics in forests.  
 
Keywords: Terrestrial LiDAR, forestry, canopy structure, gap fraction, seasonal dynamics 
 
1. Introduction  
 
Forested areas play an important role in today’s society and serve as a source for the production 
of paper products, lumber and fuel wood. In addition, forests produce freshwater from mountain 
watersheds, purify the air, offer habitat to wildlife and offer recreational opportunities. To keep 
these production, ecological and recreational functions balanced, accurate and precise 
information about forest structure and its biophysical parameters is needed (Warning & Running, 
2007). Forest structure closely relates to several biological and physical processes. For example, 
respiration, transpiration, photosynthesis, carbon and nutrient cycle and rainfall interception 
heavily depend on the structural arrangement within the forest. Additionally, the terrestrial 
biosphere acts as a large sink for carbon dioxide (CO2). In times where global warming is an 
important issue, accurate and precise measurements of forest variables are needed for the 
observations of Essential Climate Variables (ECVs) and for reducing emissions from 
deforestation and forest degradation (REDD). Remote sensing methods are useful tools to 
obtain this structural and biophysical information and they can be applied over extensive and 
inaccessible areas. 
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Hemispherical photography is an indirect optical method, which is commonly used for studying 
forest canopies. Based on the light attenuation and contrast between elements in the photo (i.e. 
sky and canopy) it can be used to capture structural information about the canopy architecture. 
Methodological errors can occur at any stage of image acquisition and analysis and derived 
structural parameters are therefore subject to several potential error sources (Jonckheere et al., 
2004). LiDAR (LIght Detection and Ranging) is an active remote sensing method. In the first 
instance, no real image is created but only a point cloud, which is obtained in the local 
coordinate system of the sensor (Pfeifer and Böhm, 2008; Wehr and Lohr, 1999). The basic 
principle used in laser altimetry is to measure, by some means, the distance (i.e. range) between 
the LiDAR instrument and the scanned target. Although LiDAR is not dependent on the natural 
illumination conditions, weather conditions during the data acquisition can be a source of error. 
The presence of mild to moderate wind will introduce noise in the results due to erratic 
movements of branches, twigs and foliage (Côté et al., 2009). Danson et al. (2007) developed 
and validated a fully automated and objective method to derive gap fraction based on the 
xyz-coordinates of the acquired point cloud. 
 
The purpose of this paper is to apply an objective method to assess gap fraction distribution 
time series during bud break. We will compare gap fraction distributions derived from 
traditional inventory methods and terrestrial LiDAR measurements at different moment during 
bud break. The overall canopy gap fraction is defined as the probability of incident radiation 
being able to pass unhindered through the canopy. Canopy directional gap fraction is the 
probability that a ray of light will not encounter a canopy element in a given direction. Gap 
fraction measurements can be used to derive related biophysical parameters such as leaf area 
index (LAI) (Jupp et al., 2009). 
 
2. Methodology  
 
2.1 Study area  
 
Data has been acquired in Hallerbos, a deciduous forest located in Flanders, Belgium. The 
region has a temperate maritime (North Atlantic) climate. Previous studies have indicated that 
these stands were homogenous and constituted of even-aged mature trees (Bequet et al., 2011). 
Circular inventory plots were established in two mature European beech (Fagus sylvatica L.) 
stands where trees were older than 50 years and no understory was present. Data was collected 
during four field campaigns in the spring of 2011: April 14 and 15, April 25, May 6 and May 27. 
Due to extreme weather conditions earlier in the year bud break already initiated around April 7 
and no data was collected in leaf-off conditions. 
 
In order to avoid practical problems during the operation of the terrestrial LiDAR, the location 
of the plot was chosen so that no trees were in close proximity (i.e. closer than 1.5m) of the plot 
centre. Both plots have a radius of 18 m, establishing an area of approximately 1000 m2. 
Additionally, a 16-points regular sampling pattern was designed for acquiring hemispherical 
photographs (Figure 1). Directional gap fraction values for the hemispherical photographs were 
averaged over these 16 photos, which cover the whole plot. This amount of photographs should 
be sufficient according to Fiala et al. (2006), who advised a minimum number of six to ten 
hemispherical photographs per plot. 
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Figure 1: Schematic plot overview. LiDAR measurements were performed at location X using 2 different 
configurations. Hemispherical photographs were taken at each location on the 16-points regular grid. 
 
2.2 Hemispherical photography 
  
In this study a Nikon Coolpix 8700 (8 megapixels) fitted with an FC-E9 Fisheye lens (180 
degrees field of view) was used. The camera was fixed on a pole and the position of the lens 
was levelled in the horizontal and vertical direction using a water level. The top of the lens was 
pointed towards the sky and located at 1.3 m above the ground surface. Pictures were taken at 
the highest resolution and quality with a fixed ISO at 200. Weather conditions during the 
different field campaigns varied but in general the photographs were taken in overcast sky 
conditions. 
 
For the processing of the hemispherical photographs, the Hemisfer software (Swiss Federal 
Institute for Forest, Snow and Landscape Research WSL) was used (Schleppi et al., 2007). Only 
the blue channel of the image was chosen to be included in the analysis since it gives the 
maximum contrast between leaf and sky (Zhao et al., 2011) and the lens parameters were set to 
match those of the Nikon FC-E9. Thresholding is a crucial step in processing the hemispherical 
photos, which affects all further calculations. Manual thresholding is a subjective task and hard 
to reproduce consistently. A comparison study by Jonckheere et al. (2005) found that the method 
of Ridler & Calvard (1978) was most optimal and robust for a wide range of light and canopy 
structure conditions. Therefore this clustering-based automatic threshold method was applied to 
classify the pixels either as black (canopy) or as white (sky). This method was based on finding 
the midpoint between two clusters by iteratively estimating the average of two cluster means. 
The hemisphere was divided in 18 rings of 5 degrees and the directional gap fraction for each of 
those zenith rings was calculated. In the first step, gap fraction was derived within the defined 
rings based on the number of black and white pixels. These values were then corrected for 
non-linearity within the rings and ground slope (Schleppi et al., 2007). Results were calculated 
for the weighted means of all zenith angles within a ring since there are more pixels along the 
outer border of a ring than along the inner border. 
 
2.3 LiDAR measurements  
 
The RIEGL VZ-400 3D terrestrial laser scanner was used to acquire terrestrial LiDAR data in 
the study area. This type of scanner uses a line scanning mechanism that is based upon a fast 
rotating multi-facet polygonal mirror. This leads to fully linear, unidirectional and parallel scan 
lines. The instruments operates in the infrared (1550 nm) and has a range up to 600 m. Due to 
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the on-board online waveform processing, the scanner is able to record multiple target echoes 
(RIEGL laser measurement systems, 2011). 
 
LiDAR data was acquired at the centre location of the plot (Figure 1). The scanner was mounted 
on a tripod and tilted 90°. At the scan position two orthogonal scans were made. We consistently 
orientated the scanner so that the hemisphere was scanned in the East-West-direction by the first 
scan and the North-South-direction by the second scan. The frame scan angle was set to 180° 
(i.e. the upper hemisphere) and the line scan angle to 100°. Both frame and line resolutions were 
0.04° (Table 1). 
 

Table 1: RIEGL VZ-400 settings for the data acquisition 
 

Frame scan angle 180° 
Line scan angle 100° 
Frame resolution 0.04° 
Line resolution 0.04° 

Inclination angle 90° 

Measurement time 1 min 33 sec 
 
Directional gap fraction is derived from the method of Danson et al. (2007). This method 
checks whether or not a fired laser pulse hits a scene element on its way. When using this 
approach, multiple returns do not really have an added value and therefore the data was first 
filtered in RiSCAN PRO, exporting only the first returns to an ASCII file. The original scan 
holds approximately 22 to 24 million points, after filtering only 15 to 16 million points were left. 
The data was then further analysis in MATLAB. The original MATLAB code written by Danson 
et al. (2007) was modified for the use with RIEGL VZ-400 input data. In the first part of the 
analysis the number of hits in each zenith ring is calculated. This was achieved by transforming 
the original Cartesian coordinates to spherical coordinates so they could be evaluated against the 
selected zenith angles. 
The RIEGL scanner does not record a return echo if the laser pulse hit no scene element. 
Therefore the number of fired laser pulses during the scan (i.e. equal to the maximum amount of 
potential first return echoes) was calculated in the second part of the analysis. This number is 
dependent on the line and frame scan angles and their corresponding resolution. Based on the 
number of measured (i.e. real) and modelled (i.e. maximal) hits, directional gap fraction per 
zenith ring could be calculated. 
 
3. Results  
 
Gap fraction derived from the two orthogonal scan positions showed good agreement at both 
plots (Figure 2). This behaviour was consistent throughout the different measurement days in 
spring. Therefore, the LiDAR derived gap fraction values are represented as the average over 
the two orthogonal scan positions.  
 
The evolution of the directional gap fraction during bud break based on the LiDAR approach is 
derived for both plots and summarised in Figure 3. The average over the 16 hemispherical 
photographs was taken to represent the plot average (Figure 4). These values were than 
compared with the gap fraction estimates from the terrestrial LiDAR scans at different moments 
in spring (Figure 5). 
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Figure 2: (Top) Intensity of LiDAR returns in a cylindrical projection [left] & Hemispherical photograph 
of about the centre of the plot (i.e. on one of the inner sampling points of the 16-points regular grid) 
[right]. (Bottom) Comparison of LiDAR derived gap fraction from two orthogonal scan positions (Plot 2: 
15-04-2011). 
 

Figure 3: Directional gap fraction during bud break derived from terrestrial LiDAR scans. (Left) Plot 1. 
(Right) Plot 2. 
 

 
Figure 4: Gap fraction derived from hemispherical photographs. The solid line shows the plot average 
over the 16 individual locations (Plot 2: 15-04-2011). 
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Finally, the relative differences between the four points in time were calculated for both 
methods (Figure 6). Period 1 represent the changes in gap fraction distribution between April 
14/15 and April 25, period 2 represents the changes between April 25 and May 6 and the third 
period represents the changes between May 6 and May 27. Values from the later date are 
subtracted from the earlier date. 
 
 

Figure 5: Comparison of gap fraction estimated from terrestrial LiDAR scans and hemispherical photos at 
different moment in time during spring. (Left) Plot 1. (Right) Plot 2. 
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Figure 6: Comparison of the differences in gap fraction between the different time periods for both 
methods. Period 1: 14/15-04 to 25-04; Period 2: 25-04 to 06-05; Period 3: 06-05 to 27-05. (Left) Plot 1. 
(Right) Plot 2. 
 
4. Discussion 
 
The directional gap fraction estimates based on terrestrial LiDAR data show similar behaviour 
for both orthogonal scan positions (Figure 2). These observations are similar to Danson et al. 
(2007) and indicate that the orientation of the scanner in the xy-plane does not affect the 
obtained gap fraction values. 
 
Overall, there is an underestimation of the LiDAR derived gap fraction compared to the values 
derived from hemispherical photography (Figure 5). Although the overall trend over the zenith 
angles is similar, it is more pronounced for the values derived from the hemispherical photos. 
These results contrast the observations of Danson et al. (2007), who found that the calculated 
gap fraction distributions derived from terrestrial LiDAR only slightly overestimated the values 
calculated from hemispherical photography. In that study only one hemispherical photograph 
was taken, located at the exact same position of the scanner, whereas we took the plot average. 
Figure 4 shows that the directional gap fraction distribution derived from hemispherical 
photographs can greatly vary within the plot, especially at low zenith angles. It is suggested that 
LiDAR derived gap fraction shows similar behaviour and a single terrestrial LiDAR scan will 
therefore not always represent the plot directional gap fraction distribution. Further analysis is 
needed to test this hypothesis before a firm and strong conclusion can be drawn since other 
factors might cause this underestimation as well (e.g. scanner settings and data resolution). 
Therefore, further work is needed to understand the effect of line and frame scan resolution on 
the derived gap fraction distribution. With the instrument settings used in this work (Table 1) 
11245500 laser shots were fired into the scene. This leads to approximately 4 times more data 
points compared to the hemispherical photographs, which only had 2955806 pixels for analysis. 
A reduced scan resolution will increase the operating time significantly but will consequently 
also capture less detailed data (Table 2). As an indication, a scan with both resolutions set to 
0.05° will only need 1 minute and with a resolution of 0.1° operation time is reduced to 15 
seconds. Additionally, including target intensity values in the LiDAR analysis is expected to 
improve the derived gap fraction distribution and enable detection of sub-footprint gaps 
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(Hancock, 2010). 
 

Table 2: Different frame and line scan resolution settings for scan angles 180° x 100°  
 

Frame resolution Line resolution # laser shots fired 
0.04° 0.04° 11245500 
0.05° 0.05° 7198000 
0.07° 0.07° 3671388 
0.1° 0.1° 1801800 

 
Preliminary time series analysis (Figure 6) illustrates the expected decrease in gap fraction over 
time caused by canopy closure. Although absolute values differ between both methods, some 
preliminary conclusions can be drawn from these graphs. The canopy closure in plot 2 happened 
almost entirely in period 1. Plot 1 shows a more gradual canopy closure over the 3 periods, 
especially for the gap fraction derived from hemispherical photographs. These values suggest a 
gradual decrease in gap fraction in the smaller zenith angles and an increase in gap fraction in 
the larger zenith angles. This temporal behaviour is not supported by the LiDAR results, which 
show small gap fraction fluctuations in the lower zenith angles and no changes in the larger 
zenith angles. It is therefore necessary to first conduct the further research suggested in the 
paragraph above to come to a consistent and reproducible method that can be used to monitor 
gap fraction distribution changes during bud break. 
 
5. Conclusion 
 
In this work the seasonal dynamics of gap fraction distribution for European beech were derived 
from terrestrial LiDAR data and hemispherical photographs. Especially in the context of time 
series analysis, a consistent and reproducible tool is preferred for deriving structural information. 
Although gap fraction distribution derived from terrestrial laser scanning showed an 
underestimation compared to the values calculated from hemispherical photographs, the high 
potential of a robust and automated LiDAR method is highlighted. Since LiDAR is an active 
remote sensing tool it is also not dependant on special conditions for natural light and does not 
require user interaction.  
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Abstract  
 
Terrestrial lidar systems provide a means to characterise the structure of a forest canopy. Their 
use to measure foliage area volume density depends on the ability to account for sampling 
effects and intensity calibration of the instrument. This paper presents a theoretical framework 
for the unbiased calculation of foliage amount using a waveform recording lidar instrument to 
simulate point cloud data. The method is initially based on the hemispherical scan configuration 
of the instrument, but is generalised to be applied to point cloud data in a generic coordinate 
system. The theory is tested with the simulated point cloud data as well as data from a 
commercial instrument. Foliage profiles from the terrestrial lidar instruments and airborne lidar 
are compared. 
 
1. Introduction  
 
Leaf area index (LAI) and foliage area volume density (FAVD) are important quantities in the 
study of the structure and function of canopies e.g. light interception, respiration, transpiration, 
photosynthesis in multi-layer canopies all depend on these. While a few options exist for 
ground-based measurement of LAI, profiles of FAVD are more difficult as measurements are 
needed throughout the height of the canopy. This has been done successfully from the air with 
both lidar (e.g. Lefsky et al. 1999) and radar (Imhoff et al. 2000) but these methods often 
require on-ground calibration. Airborne instruments are also limited in the range of angular 
sampling and ability to sense structure through the full depth of a dense canopy. This is where 
ground-based lidar is an attractive option.  
 
Parker et al. (2004) used a simple laser rangefinder to sample vertical gap probabilities along a 
transect and thus calculated vertical foliage profiles. Takeda et al (2005, 2008) also used a 
simple rangefinder system, but incorporated a 2-axis scan platform to allow angular sampling of 
the canopy. Their measurements of plant area density within gridded volume elements (voxels) 
resulted in plant area indices that reflected seasonal variation in the canopy, but significantly 
overestimated the actual amount of plant material. Hosoi and Omasa (2006) acquired multiple 
high resolution scans of single trees and used a ray tracing method to calculate contact 
frequency within voxels. From this they derived profiles of leaf area density which were 
validated against stratified clipping. Van der Zande et al. (2008) extended the Hosoi and Omasa 
(2006) methodology in a simulation study with virtual forest stands. 
 
Jupp et al. (2009) presented a method for estimating LAI profiles using a full-waveform 
ground-based lidar system. The terrestrial lidar system (TLS) used in the study was the 
Echidna® validation instrument (EVI) which has the advantage of scanning the full upper 
hemisphere with no gaps in laser illumination. The geometry of the scan (zeniths and azimuths 
of the outgoing beams) is also recorded along with the intensity profile of all target reflections. 
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In TLS that record discrete target locations, there is still the potential to estimate foliage amount 
and distribution provided sufficient information is recorded to characterise the geometry of the 
scan pattern and the intensity of the returns. In this paper, we summarise the method of Jupp et 
al (2009) and develop an equivalent method using discrete point lidar data, based on the polar 
geometry of the EVI scan. We then develop a voxel-based method for the calculation of the 
foliage amount per voxel using discrete point lidar data in a general coordinate system. We use a 
single EVI scan to illustrate the way in which the waveform-based foliage profile method can be 
modified for use with discrete point data and then use the same data to test the voxel method. 
Scans of the same site using a discrete-point TLS system are also used to test the voxel method. 
 
 
2. Theory 
 
Jupp et al. (2009) present a method of estimating LAI profiles using a vertically resolved gap 
probability distribution, Pgap. 
 
 ( ) ( ) ( )/cos, G L z

gapP z e θ θθ −=  (1) 
 
where θ is zenith angle, z is height, G(θ) is the Ross G-function (Ross, 1981) and L is LAI. 
Provided with an estimate of ( ),gapP zθ , the profile of leaf area can be calculated and thus the 
foliage area volume density which is the derivative of L(z). 
 
We now explore how Pgap can be estimated from TLS data, first following the Jupp et al. (2009) 
method using EVI data, then modifying this for application to discrete point data. 
 
 
2.1 Hemispheric Waveform Method 
 
The EVI waveform data processing uses a quantity called apparent reflectance. This is the 
reflectance of a diffuse target filling the beam of the instrument that would return the same 
intensity as recorded from the actual target. For a waveform recorded at zenith angle, θ, over 
ranges, r, it has the form 
 

 
( )
( )

2

0

,
a

I r R
K R
θ

ρ =
Φ

 (2) 

 
where I is the range-dependent recorded intensity, R is the range to the target, K(R) is a 
calibration function associated with the geometry of the receiver optics and Φ0 is the energy of 
the outgoing pulse. Integrating ρa over range provides a step-wise reduction in the power of the 
outgoing signal brought about by hits on single or multiple targets. This is related to Pgap by 
 
 ( ) ( ) ( )( ), 1 , 1 ,a gapI r p g P rθ θ θ= − −  (3) 

 
where Ia is the integral of ρa, g is the distribution function for facet directions of the targets and 
p is the mean phase function for the varying facets. Jupp et al. (2009) take the phase function as 
the square of the Ross G-function. In general, the phase function is unknown and if possible 
should be estimated from the data. Jupp et al. (2009) use an initial assumption of p=1 and then 
identify two thresholds in the calculated Pgap relating to (i) the maximum Pgap value for targets 
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that fully extinguish the beam (hard target) and (ii) the maximum Pgap value for targets that 
partially extinguish it (soft target), above which all samples are assume to be true gaps. These 
are used to scale the Pgap in a similar way to the two level separation of gap and vegetation that 
can be done in hemispherical photograph analysis (Leblanc et al., 2005). 
 
The value of Pgap calculated from a single waveform is a realisation of an actual gap, rather than 
a probability, therefore it is necessary to average the measured values over some spatial region 
in order to estimate the underlying probability distribution. Using EVI data, it is convenient to 
average over a ring or sector between zenith angle limits. Jupp et al. (2009) describe a method 
for calculation of a mean foliage profile from zenith-ring averages of Pgap. The method uses a 
ratio of cumulative foliage area (L(z)) relative to LAI to provide a profile largely independent of 
clumping. The range-based zenith-ring averaged Pgap data are resampled to common points on 
the height axis, z and the cumulative LAI profile is defined by  
 

 
( ) ( )

( )
log ,

log ,
gap

gap

P zL z
LAI P H

θ

θ
=  (4) 

 
where H is the height of the canopy and the notation θ   indicates that the data are averaged 
over a range of zenith angles, rather than representing a mean angle. The foliage area volume 
density profile is then  
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In these equations the value of LAI can also be estimated from the EVI data either from data 
near the zenith angle 57.5θ ≈ o  or from a simple linear canopy model as shown by Jupp et al. 
(2009). The profiles are calculated for a number of zenith rings i.e. different values of θ , and 
then a mean profile is calculated by weighting each profile according to the solid angle 
subtended by the ring. Jupp et al. (2009) note that the measurements based on the EVI data do 
not separate plant material into leaf and stem. Thus the quantities calculated are in fact plant 
area index and plant area volume density, however we will maintain the notation of the previous 
work. This paper is concerned with the comparison of methods applied to two sets of lidar data 
so the distinction between plant and leaf is unnecessary in this case. 
 
2.2 Hemispheric Discrete Point Method 
 
Waveform EVI data can be converted to (x, y, z) point data by applying a filter based on the 
known shape of the outgoing laser pulse. There may be single or multiple targets identified from 
each waveform. The output records from the conversion process include x, y, z coordinates, 
apparent reflectance, outgoing zenith and azimuth angles, the number of hits from the shot and 
the hit number of the particular point. There is also a record of shots for which no hits were 
detected i.e. sky gaps. This point cloud data retains the geometric and sampling advantages of 
the waveform data but also allows us to demonstrate that it is possible to produce equivalent 
foliage profile information from discrete data. 
 
We now develop a method to calculate Pgap from the point cloud data. It is again useful to 
accumulate data over zenith rings or sectors. We first define an unscaled Pgap term, pg: 
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, 1 ,

1
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r

w

shot

pg r P r
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n vol

θ θ= −

= −
∑  (6) 

 
where hitw is a weighting value for each hit up to range, r, nshot is the total number of outgoing 
pulses in the zenith range and vol is the illuminated volume in the zenith range. The weighting 
of the hits is either the apparent reflectance value of the target points, or a weighting defined by 
the number of hits from a single shot (e.g. points recorded from a waveform with n hits detected 
would each be assigned a weight of 1/n). 
 
The illuminated volume, vol, is a factor that is necessary to take into account the obscuration of 
some regions by targets at closer range to the instrument. It can be calculated from the point 
cloud data by identifying the last hit from each shot and calculating the volume contained within 
these final hits. 
 
The quantity pg needs to be scaled to account for the phase effect. We do this by applying a 
simple linear scale defined to rescale the quantity to achieve a value of Pgap=1 for true sky gaps. 
 

 ( ) ( )( )
( )( )max

, 1
, 1

1 ,
gap

pg r skyratio
P r

pg r

θ
θ

θ

−
= −

−
 (7) 

 
where skyratio is defined within the same zenith ring or sector as the ratio of the number of 
shots where no hits were recorded, to the total number of shots and rmax is the maximum range 
covered by the data. 
 
For each of the zenith rings, we resample the Pgap to common points on the height axis to 
give ( ),gapP zθ  which can be used in equations (4) and (5) in the same way as the 

waveform-based Pgap. 
 
2.3 Voxel Method 
 
In order to develop a more general algorithm that can be applied to point data from different 
TLS instruments, we now develop the theory from the perspective of voxels. We define foliage 
area volume density, ( ), ,f rθ φ  for a voxel at polar coordinates (θ,φ,r) such that 
 

 ( ) ( )
0

, , cos

r L zf r drθ φ θ′ =∫  (8) 

 
where cosz r θ= . Consider now the illumination of the foliage elements in this voxel by a 
laser which has passed through the canopy to this point with a gap probability, ( ), ,gapP rθ φ . 
The observed apparent reflectance of the voxel, ρa can be expressed as 
 
 ( ) ( ) ( ) ( ), , , , ,a gap tG p g P r f rρ θ θ θ φ θ φ ρ= . (9) 
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The total effective area of objects in the voxel is ( ), ,f rθ φ  multiplied by the volume of the 
voxel. It is useful at this point to generalise the expressions by converting to Cartesian 
coordinates, thus 
 

 
( ) ( )

( )
( )

, ,
, , ,

a
V
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G p g P x y z

ρ
θ θ

=  (10) 

 
Where LAV is the leaf area within the voxel and V is the volume of the voxel. If we divide by the 
base area of the voxel, we obtain an expression for a leaf area index of the voxel: 
 

 
( ) ( )
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( )
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V
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G p g P x y z

ρ
θ θ

=  (11) 

 
where hz is the height of the voxel. This can be summed vertically to obtain canopy LAI above 
the base of the voxel. This provides an algorithm to calculate leaf (or plant) area in voxels given 
the apparent reflectance returned from that voxel and an estimate of the gap probability at that 
point in the canopy. This expression is valid only for voxels that are illuminated i.e. not 
obscured from the instrument due to closer canopy elements. It is therefore best applied in 
situations where there are multiple scans that provide consistent illumination and overcome 
obscuration. Where there is incomplete illumination, equation (11) will provide an 
approximation to the true foliage area volume density sampled according to the illumination of 
the volume. If the illuminated volume can be characterised, a correction could be made, 
however it has not been attempted at this stage. 
 
3. Data Collection 
 
Data were collected from 7-10 December 2009 in a tall eucalypt forest near Tumbarumba, 
Australia (35°36'42"S, 148°06'29"E) at the location of the Tumbarumba FLUXNET site 
(Leuning et al., 2005). The forest has a 2-layer canopy and significant ground cover of shrubs 
and grasses. Multiple-return airborne lidar (ALS) were acquired over an area approximately 
6 km by 4 km. Terrestrial lidar data were collected with the EVI waveform lidar and an ILRIS 
discrete return system with settings as shown in Table 1. 
 

Table 1: Terrestrial lidar specifications and settings 
 EVI ILRIS 
Wavelength 1064 nm 1550 nm 
Pulse repetition frequency 2 kHz 2 kHz 
Beam divergence 5 mrad 0.2 mrad 
Beam diameter at 50 m 28 cm 1 cm 
Field of view 360° azimuth, 130° zenith 50° horizontal and vertical 
Number of returns Waveform digitised at 2 GSs-1 Single (last) 
 
 
The EVI dataset is a single hemispherical scan comprising data from the full upper hemisphere 
covering the field of view with no gaps in laser illumination. The direction (zenith and azimuth) 
of the outgoing laser pulse are also recorded. Further details of the EVI instrument are given by 
Jupp et al. (2005). 
 
ILRIS is a tripod-mounted eye safe lidar imaging system manufactured by Optech Incorporated, 
Toronto, Canada. Ranges of over 1 km can be recorded. The settings can be configured either 
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for speed of data collection or for high data density. Spot spacing is a function of the user 
configurable horizontal and vertical field of view and distance from the sensor. A nominal 
spacing at a 50 m range would be on the order of 1 cm. ILRIS scans were undertaken at the 
same location as the EVI as well as from the four cardinal directions looking in towards the EVI 
location at a distance of approximately 80-100 m as illustrated in Figure 1. At each of these 
locations, a ground-parallel and an upwardly inclined canopy-viewing scan were collected, 
recording the last return for each pulse. The location of each ILRIS position was recorded using 
a dGPS rover mounted on top of the sensor head. The dGPS positions were differentially 
corrected to a base station less than 10 km away. However, given the GPS occupations were 
under canopy and the receiver used was a single frequency (L1 only), only one scan was 
positioned to the cm level. The remaining locations are accurate to within approximately 0.5 m. 
 

 
Figure 1: ILRIS scan configuration with 4 scan locations looking into centre of the EVI scan 

location from north, east, south and west ILRIS scan locations. Each ILRIS scan location has two 
scans: one parallel with ground and another inclined vertically and aimed into the canopy. 

 
 
The images in Figure 2 show a comparison of the two terrestrial lidar datasets. The ILRIS data 
are shown for a square subset ±40 m from the EVI location as that data covers a larger area and 
is more dense. The two images are approximately aligned. It is clear that the single viewpoint of 
the EVI data suffers from occlusion in some areas e.g. there are sectors occluded by the trunks 
of central trees. These are evident to some extent in the ILRIS data, but are mostly filled by data 
from different view directions. 
 
4. Demonstration of Results 
 
The EVI waveform data gives us the flexibility to test the theoretical methods using a single 
dataset, processed and sampled in varying ways. The first and baseline foliage profile that we 
derived is the waveform-based profile following the method of Jupp et al. (2009). This is shown 
in Figure 3a as the blue line. It shows a 2-layer canopy as expected and sums to an LAI value of 
2.4 which is comparable to published values for this site (Leuning et al. 2005). Also shown in 
this figure are a foliage profile derived from the ALS data (red line) for a 40 m by 40 m area and 
a mean profile derived from 9 areas of the same size in a 3x3 grid centred on the EVI location. 
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These foliage profiles have been scaled to the expected LAI of the site. Error bars indicate the 
standard deviation of the FAVD. This demonstrates the spatial variability of the site and 
indicates uncertainties that may be expected due to errors in positioning the EVI data within the 
ALS dataset. The FAVD in the understorey is less in the ALS profiles than the EVI profile due 
to occlusion by the upper canopy. 
 

Figure 2: EVI data (left) shown as a point cloud derived from the waveform data and a subset of 
the ILRIS point cloud (right). The extent of the EVI data is approximately 50 m from the centre of 

the plot. The ILRIS data has been subset to 80 m x 80 m. The maximum tree height is 
approximately 40 m. Colours represent intensity of lidar returns. 

 
 

a  b c
 

Figure 3: Comparison of foliage profiles: (a) ALS and EVI waveform; (b) EVI various methods and 
(c) ILRIS foliage profiles compared with the EVI last hit data (right). 

 
Figure 3b shows a comparison of foliage profiles from the EVI data using the waveform, polar 
point cloud and voxel methods. The EVI waveform profile (black line) is the same as that 
shown in Figure 3a. The EVI simulated point cloud data were processed using equation (7) to 
produce gap probabilities for a number of equal zenith angle rings. These are then used in the 
same way as the waveform-based Pgap results to calculate a mean foliage profile over all zenith 
angles (equation (5)). This process has been done using two kinds of weighting in equation (6). 
The primary method of weighting (shown in red in Figure 3b) is the apparent reflectance 
calculated for the point. The alternative, which is of use where calibrated intensity data are not 
available, is to weight points according to the number of hits recorded in the shot. This produces 
a similar result and is not shown here. The point cloud result is not as smooth a curve as the 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 8

waveform result. This may be due at least in part to the calculation of the illuminated volume 
which is based on the assumption that all final hits fully extinguish the beam. This is not always 
true and will introduce some error into the calculation. 
 
The voxel method described in Section 2.1 takes a different approach, calculating the foliage 
area volume density represented by each hit and assigning this to the appropriate spatial voxel in 
a grid. Where multiple points fall into a voxel, the average value is used. The theory has been 
described for multiple-return lidar data, but can also be applied to single returns. This is 
illustrated by application to the full EVI point cloud as well as a reduced point cloud of just the 
last returns from each laser shot. These are shown as the blue and green lines respectively in 
Figure 3b. 
 
The ILRIS point cloud data are last return data and although there is an intensity value recorded, 
it is not calibrated. We have therefore treated each point with equal weighting and used an 
approximated value for the apparent reflectance to generate a foliage profile of close to the same 
magnitude as the EVI data. This is shown in Figure 3c (blue curve) compared with the EVI last 
hit profile (black) as well as a profile calculated from the EVI last hit data with apparent 
reflectance approximated to a constant in the same way as the ILRIS data. 
 
The foliage profiles in Figure 3 all show the 2-layer characteristic of the canopy. There is 
significantly more variation in the foliage amount seen in the understorey layer than in the upper 
canopy. The voxel-based methods produce larger foliage volumes than the waveform and polar 
point cloud method. This is probably due to the fact that non-illuminated volumes have been 
disregarded in this study. 
 
5. Discussion and Conclusion 
 
Simulation of discrete point lidar data from the EVI waveform data has provided a means to test 
the theory presented here. The polar point cloud method was shown to give very similar results 
to the waveform method. Thus we are confident that given the right geometric and radiometric 
information, terrestrial lidar point cloud data can be successfully used to map foliage area 
volume density within a canopy.  
 
Comparing the results of the multiple scan ILRIS dataset with the equivalent calculations from 
the EVI data shows some differences that may be associated with the more complete 
illumination achieved with multiple scans. The EVI profiles from last hits (black and red lines in 
Figure 3c) show a much larger volume of foliage in the lower canopy than is seen in any of the 
other profiles. This is not evident in the ILRIS scan and this is probably due to the extra stability 
provided by the multiple scan locations. The EVI instrument was positioned close to some 
shrubs and trunks which dominate the lower parts of the foliage profile. The trunks in particular 
produce high intensity reflections. It is clear that this is a dominant effect since the uncalibrated 
EVI voxel method, where each point is assigned the same reflectance, produces a profile with 
less material in the understorey. Deploying the EVI instrument at more than one location and 
combining the information from multiple scans would help to overcome such bias. 
 
The voxel-based method shows promise and has produced results that are reasonably consistent 
with the waveform data. However there are aspects of the method that require further 
investigation. In situations where the scan pattern does not provide complete illumination, the 
compensation for non-illuminated volume needs to be investigated. If the scan pattern of the 
lidar is known, then it is possible to map which voxels are illuminated. However, a simple 
adjustment according to the volume illuminated may not provide the solution because the 
patterns of illumination are related to the distribution of foliage elements and thus there is 
inherent bias. 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 9

 
 
Acknowledgements 
 
We are grateful to Darius Culvenor and Glenn Newnham for assistance with EVI operation and 
Vanessa Haverd for assistance with fieldwork and reviewing the manuscript. 
 
References 
 
Hosoi, F. and Omasa, K., 2006. Voxel-based 3-D modelling of individual trees for estimating leaf 

area density using high-resolution portable scanning lidar IEEE Transactions on Geoscience 
and Remote Sensing, 44 (12), 3610-3618. 

 
Imhoff, M.L., Johnson, P., Holford, W., Hyer, J., May, L., Lawrence, W. and Harcombe, P., 2000. 

BioSAR™: an inexpensive airborne VHF multiband SAR system for vegetation biomass 
measurement. IEEE Transactions on Geoscience and Remote Sensing, 38, 1458-1462. 

 
Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., 2005. Evaluation and validation of 

canopy laser radar (LIDAR) systems for native and plantation forest inventory. Final Report 
prepared for the Forest and Wood Products Research and Development Corporation 
(FWPRDC: PN02.2902) by CSIRO. Available as CSIRO Marine and Atmospheric Research 
Paper 020 at http://www.cmar.csiro.au/e-print/open/cmar_rp020.pdf. 

 
Jupp, D.L.B., Culvenor, D.S., Lovell, J.L., Newnham, G.J., Strahler, A.H., Woodcock, C.E., 

2009. Estimating forest LAI profiles and structural parameters using a ground based laser 
called “Echidna®”. Tree Physiology, 29, 171-181. 

 
Leblanc, S.G., Chen, R., Fernandes, R., Deering, D.W. and Conley, A., 2005. Methodology 

comparison for canopy structure parameters extraction from digital hemispherical photography 
in boreal forests. Agricultural and Forest Meteorology, 129 (3–4), 187-207. 

 
Lefsky, M.A., Cohen, W.B., Acker, A., Parker, G.G., Spies, T.A. and Harding, D., 1999. Lidar 

remote sensing of the canopy structure and biophysical properties of Douglas-Fir Western 
Hemlock forests. Remote Sensing of Environment, 70, 339-361. 

 
Leuning, R., Cleugh, H.A., Zeglin, S.J., Hughes, D., 2005. Carbon and water fluxes over a 

temperate Eucalyptus forest and a tropical wet/dry savanna in Australia: measurements and 
comparison with MODIS remote sensing estimates. Agricultural and Forest Meteorology, 129 
(3–4), 151–173. 

 
Parker, G.G., Harding, J.H. and Berger, M.L., 2004. A portable LIDAR system for rapid 

determination of forest canopy structure. Journal of Applied Ecology, 41, 755-767. 
 
Ross, J.K., 1981. The radiation regime and architecture of plant stands. Junk Publishers, The 

Hague, Netherlands. 
 
Takeda, T., Oguma, H., Yone, T., Yamagata, Y. and Fujinuma, Y., 2005. Comparison of leaf area 

density measured by laser rangefinder and stratified clipping method. Phyton – Annales Rel 
Botanicae, 45 (4), 505-510. 

 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 10

Takeda, T., Oguma, H., Sano, T., Yone, T. and Fujinuma, Y., 2008. Estimating the plant area 
density of a Japanese larch plantation using a ground-based laser scanner. Agricultural and 
Forest Meteorology, 148 (3), 428-438. 

 
Van der Zande, D., Jonckhere, I., Stuckens, J., Verstraeten, W.W. and Coppin, P., 2008. Sampling 

design of ground-based lidar measurements of forest canopy structure and its effect on 
shadowing. Canadian Journal of Remote Sensing, 34 (6), 526-538. 



 SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia   

1 

 

Optimal LiDAR gridding parameterization for effective leaf area 
estimation in the boreal forest Yukon Territory, Canada 

 
Heather Morrison1,2, Chris Hopkinson2,1 & Michael A. Wulder3 

 

1Acadia University, Wolfville, Nova Scotia, Canada morrison.h@gmail.com 
2Applied Geomatics Research Group, NSCC Annapolis Campus, Nova Scotia, Canada 

3Pacific Forest Centre, Canadian Forest Service, Victoria, British Columbia, Canada 

Abstract 

The increased availability of LiDAR-based forestry models raises questions about fundamental 
procedural steps undertaken before published models begin. The processing stage being 
investigated in this study is the parameterization of routines used for gridding inputs for forestry 
models. Grids are a valuable format for modelling as they organize scattered point clouds into 
manageable pixels for sophisticated processing. Our objective was to examine the effect of grid cell 
resolution and circular search radii for gridding on resulting leaf area index (LAI) data layers. LAI 
is employed in models at various scales and was therefore of interest for a range of study objectives. 
We generated 16 gridded estimates of LAI using unique combinations of cell resolution and search 
radius for comparison with values measured in the field. Our results determined that cell resolution 
was not important, allowing for more application flexibility without introducing bias, while search 
radius was critical for obtaining the most accurate estimates. This type of scale sensitivity analysis 
is important for any modelled variable that will be applied in a variety of spatial contexts. 

Keywords: DHP, LiDAR, leaf area index, Yukon Territory 

 

1. Introduction 

Leaf area index (LAI), which is defined as half of the total leaf surface area per unit ground area 
(Chen et al., 2006) is an important input for biogeochemical and ecosystem-atmosphere models. For 
most forestry applications estimates of this type are required for large study areas, making direct 
measurement methods practically impossible. Instead, indirect remote sensing solutions are 
becoming more available and affordable for modelling metrics such as effective leaf area index 
(LAIe) which includes both leafy and non-leafy components of the canopy and can be used to 
determine true LAI (Chen et al., 1997). Light Detection and Ranging (LiDAR) data provides a 
three-dimensional representation of the forest canopy that is ideal for modeling LAIe over large 
areas. Generating grids is an important time saving step for summarizing irregularly spaced points 
of LiDAR data and decisions made at this stage will permeate throughout the modelling process. It 
is important to balance maintaining sufficient variability to represent the natural landscape without 
compromising computational efficiency or model robustness and reusability. The goal of this paper 
is to investigate the effect of gridding parameters on estimates of LiDAR-intensity based LAIe and 
to highlight optimal settings for a boreal forest landscape.  

The LAIe model being applied in this study is based on a model for estimating gap fraction 
published by Hopkinson and Chasmer (2007; 2009) that utilizes pulse intensity, range and echo 
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code. This model is based on a Beer’s Law assumption that the canopy can be represented as a 
turbid medium with randomly distributed foliage, which allows for the estimation of LAIe: 

 
  ݁ܫܣܮ ൌ  െlnሺܲሻ   ݇⁄             (1) 

where P is canopy gap fraction and k is extinction coefficient. A model optimization process was 
also developed using field measurements of LAIe in Morrison et al. (2011). 

The few forest-related studies that have used intensity values for forest attribute modeling (e.g. 
Donoghue et al., 2007) generally do not describe under what conditions the data were gridded 
before analysis. For this analysis, grids were prepared by assigning to each cell the sum of the 
intensity values within a specified search radius. Four grid cell resolutions and four search radii 
were used to generate sixteen uniquely parameterized intensity grids to determine optimal gridding 
parameters for calculating intensity-based LAIe estimates. 

 
2.  Study Area 

The study area is located in northern Canada near Watson Lake, Yukon Territory (Fig. 1). The 
Boreal forest in this region is dominated by a mixture of mature spruce and pine with some early 
successional birch and aspen in areas that have been recently cut. This study is part of a larger 
project capturing a broad sample of boreal forest conditions across Canada through the 
collaboration of the Canadian Forest Service, researchers at the University of British Columbia, and 
the Applied Geomatics Research Group (Hopkinson et al. 2011; Bater et al. 2011).   

 
3. Methods 

3.1 Ground estimates of LAIe using hemispherical photography 

Field data were collected July 30 to August 3, 2010. Thirty plots were established along two East-
West transects approximately 850 meters apart. Plots along each transect were at least 100 meters 
apart and included both treed and clearcut areas (Fig. 1). Plot centers were geolocated using 
differentially corrected GPS receivers (Leica SR530, Leica Geosystems Inc. Switzerland) with 
horizontal position quality ranging from 1 cm to 1 m depending on the quality control technique 
used and the canopy density.  

Five digital hemispherical photographs (DHPs) were captured per plot: one at the plot center and 
four located 20 m from the center in cardinal directions (N, E, S, W) using a compass and 
measuring tape (Figure 1). Photos were captured using a Nikon CoolPix 8800VR camera fitted with 
a 180° fisheye lens with the exposure set one ‘f stop’ lower than normal exposure to improve 
contrast between foliage and sky. For all images the camera was levelled on a tripod 1.3 m from the 
ground with the top of each photo oriented towards the north.  
 



 

Figur

Photo
al. (1
within
extent
includ
photo
gener
image
Using
veget
calcul
integr
gener
plot. 

 3.2 L

An ai
2010 
freque
differ
DHP 
points
(Hopk

3.3 G

Four 
griddi
finest
produ
200, 4
assign
search

¯0

^

re 1: Map show

ographs were
999). Image
n the softwa
t. Next the c
ding site top
os for this st
ral area the p
es being pro
g the blue ch
ation and sk
lations and s
rating across
rated for stati

LiDAR data 

rborne LiDA
using an Op
ency,  and 15
rentially corr
acquisition. 

s into groun
kinson and C

Gridding par

grid cell res
ing paramete
t resolution g
ucts. Search 
400 and 800
ning each ce
h radius base

1,000 2,000500 km

wing location 
trans

e processed w
e analysis in 
are the imag
onfiguration 
pography inf
tudy were ca
parameters f

ocessed. The 
hannel, a th

ky. Once an 
save the outp
s zenith angl
istical compa

collection an

AR survey wa
ptech Inc. AL
5° scan angle
rected to the 
The softwar

nd, canopy a
Chasmer, 200

rameters ana

olutions and
er variations 
given the den
radii range w

0 m2). Grids 
ell the summ
ed on the poin

m

SilviLaser 201

n of study area 
sects (center), 

with Gap Lig
GLA requir

ge was regist
 settings wer
formation an
aptured using
for these step

next step w
hreshold was
appropriate c

put. LAIe val
les 0° to 75
arisons by av

nd preparat

as completed
LTM 3100 at
e resulting in
same GPS b

re package T
and echo cod
09).  

alysis 

d four search
(Table 1). C

nsity of LiDA
was selected
were prepar

med intensity 
nt classificati

11, Oct. 16-20, 2

3 

 

in Yukon Ter
and photo cap

ght Analyzer
res a numbe
tered by iden
re edited to s
nd projection
g the same c
ps were save

was to classif
 set for eac
classification
lues obtained
5°. A single 
veraging the

tion 

d by the Appl
t a flying hei
n approximat
base station t
TerraScan (T
de classes in

h radii were 
Cell sizes of
AR returns, 

d to overlap 
red using Su

value for al
ion required 

• •

 

• • • • • • • • • •

••••• • • • • •

2011 – Hobart, 

rritory, Canada
pturing layout 

r (GLA) Ver
er of steps. A
ntifying geo
suit the type 
n distortion 
camera, setti
ed to a conf
fy each imag
h image to 

n was achiev
d from GLA 

LAIe estima
e values for t

lied Geomati
ight of 1500 
ely 1.1 m po
that was used

Terrasolid, Fin
n preparation

selected for 
1, 5, 10, and
up to a size 
common fie
rfer 8 softw
ll returns cap
for model in

0 1,000500

• •••••••

0 1,000500

Australia 

W

a (left), relativ
(right). 

rsion 2.0 dev
After openin

ographic orie
of calculatio
parameters. 

ings, and we
figuration fil
ge into sky 
capture the 

ved the final 
for this stud
ate for each
the 5 nested 

ics Research 
m a.g.l., 50 k

oint spacing. 
d for the fiel
nland) was t
n for intens

this analysis
d 25 m were
comparable 

eld mensurat
are (Golden 
ptured withi

nput. 

2,000
Metres

2,000
Metres

20
 m

N

S

ve position of 

veloped by F
ng the desire
entation and 
ons being per

Given that 
ere within th
e and applie
and non-sky
distinction b
step was to 

dy were estim
h 20 metre p

photos captu

Group on A
kHz pulse re
The point clo
ld plot set up
then used to 
ity-based mo

s, generating
e used to incl

to satellite i
tion plot area

Software, U
in the given 

E

  
the plot 

Frazer et 
ed photo 

circular 
rformed, 

all the 
he same 
ed to all 
y pixels. 
between 
run the 

mated by 
plot was 
ured per 

August 3, 
epetition 
oud was 
p during 
classify 
odelling 

g sixteen 
lude the 
imaging 
as (100, 

USA) by 
circular 

 



 SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia   

4 

 

 

Table 1. Sixteen unique combinations of cell size and search 
radius for gridding treatment layers 

Search radius (search area) 
C

el
l S

iz
e 

 5.6 m 
(100 m2) 

8.0 m 
(200 m2) 

11.3 m 
(400 m2) 

16.0 m 
(800 m2) 

1 m 1m5.6 1m8.0 1m11.3 1m16.0 
5 m 5m5.6 5m8.0 5m11.3 5m16.0 

10 m 10m5.6 10m8.0 10m11.3 10m16.0 
25 m 25m5.6 25m8.0 25m11.3 25m16.0 

3.4 Statistical analyses 

LAIe statistics were extracted for thirty, 20 m radius circular plots coinciding with geo-registered 
plots from field data collection including the minimum, maximum, mean and standard deviation for 
LAIe in each plot. Twenty meter plots were chosen to minimize the spatial uncertainty of the plot 
positions by combining five photos nested together. Further research needs to be done to determine 
the optimal plot size for comparison with DHPs in this context as plot size has been linked to the 
quality of model estimates by Lovell et al. (2003) and Morsdorf et al. (2006) when determining 
forest cover. Statistical analyses were performed using R version 2.11.0 (www.r-project.org). 
Simple linear regression was performed using the 16 gridding parameter LAIe estimates and DHP 
LAIe. All best fit lines were forced through the origin as there was no logical reason for DHP LAIe 
at zero to be different from LiDAR modelled LAIe; i.e. if there is no foliage within a plot, then 
there should also be no laser points above the ground surface. Two statistical tests were used to 
evaluate which gridding parameters produced optimal LAIe estimates. Root mean squared error 
(RMSE) was calculated according to the methodology in Kobayashi and Salam (2000) and 
prediction sum of squares (PRESS) was calculated according to Myers (1986, p106-111). PRESS is 
a statistical test where data are fit n times, and in each iteration one data point is removed, estimated 
based on the linear model, and then the difference between the actual and predicted are summed and 
squared. This provides a type of model validation without incurring extra cost in collecting large 
amounts of field data.   

 

4. Results & discussion 

The RMSE and PRESS results are presented in Figure 2. Both statistical tests demonstrate that 
intensity-based LAIe estimates show no significant difference and are stable across all grid cell 
resolutions for any given search radius. These observations demonstrate that when modeling 
LiDAR-based LAIe, the choice of grid cell size can be made according to the intended use of the 
data, without fear of introducing any systematic bias. Moreover, this insensitivity to grid resolution 
means that LAIe maps generated at multiple spatial resolutions can be directly compared provided 
appropriate aggregation routines are used.  

In both the PRESS and RMSE test, however, predicted LAIe demonstrates systematic variation 
with the size of search radius used during grid creation, regardless of the final grid cell resolution. 
This highlights that the choice of search radius is critical and must be underpinned by some logical 
rationale. Both tests demonstrate that 11.3m produces the lowest overall error and therefore has the 
most accurate LAIe predictive capability when compared to DHP validation plots. 
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Figure 2. Prediction sum of squares (left) and root mean squared error (right) per treatment (unique cell size 

and search radius combinations), n=30 for each bar. 

Given that the optimal point cloud search radius for recreating plot-level DHP-based LAIe is 
approximately 11.3 m, the DHP angular field of view between the top of the canopy and the photo 
capture location can be estimated (Figure 3). While mean plot-level canopy varied between ~ 3m 
and 20m, the average height was approximately 14.3m. With a DHP capture location of 1.3m above 
the ground, the approximate optimal full field of view directly above the photo point is ~80º (±40º). 
While the spatial coincidence of DHP LAIe data and LiDAR point cloud attributes are not directly 
compared here, this does suggest that the domain of DHP LAIe results extends approximately 11.3 
m from the photo location. More search radii need to be tested to see if the correlation between 
point cloud LAIe model results and DHP data continue to diverge as the search radius is enlarged 
beyond 16 m. 

 

Figure 3. Triangle represents the comparable field of view angle for a hemispheric lens. Given a plot radius 
(r), and mean canopy height (h) less the height above ground where the camera is positioned. 
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5. Conclusion 

In this study we have demonstrated that LiDAR-based raster LAIe map products are largely 
insensitive to the final grid cell resolution chosen. This is important because it means high 
resolution maps can be generated at close to the tree stem level are useful while larger grid cells 
comparable to wide area satellite coverage data (e.g. Landsat TM) are equally as valid. This is not 
to say that LAIe will be accurate at, for example, a 1m grid cell resolution, as this cannot be verified 
from data trained at the DHP plot-level. However, it does suggest that when aggregated to a more 
‘plot-level’ scale, a 1m grid will not introduce any bias. Conversely, the choice of search radius to 
be applied to the point cloud during grid creation is important, and is likely influenced by the 
amount of coincident upper canopy surface that can be clearly observed by both the almost planar 
sampling of LiDAR data and the hemispherically projected DHP image. In this particular boreal 
forest context, an 11.3 m radius or 80º vertical field of view appeared to provide overall optimal 
LAIe prediction results and suggests a possible optimal plot size for comparison with DHP imagery. 
Of some interest is that this radius also corresponds to a typical forest mensuration plot of 400 m2. 
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Abstract  
 
Multi-temporal laser scanner data to be used in change detection studies will most likely be 
acquired with different sensors, flying altitudes, and system parameters. Therefore, calibration is 
probably needed in order to make laser returns from vegetation comparable between two laser 
data acquisitions. In this study, two ALS point clouds were acquired with different sensors and 
flying altitudes. The first data set had 11.5 points m-2 and was obtained in 2008 with a TopEye 
MKII scanner and the second with a density of 1.1 points m-2 was obtained in 2010 with an 
Optech ALTM Gemini scanner. The test site was located in Abisko in northern Sweden with 
forest dominated by mountain birch. Six meter radius sample plots were placed in the 
forest-tundra ecotone and assigned one of the following treatments: (1) reference with no 
removal of trees, (2) removal of 50% of the total number of stems above 1.5 m, and (3) removal 
of 100% of the total number of stems above 1.5 m. Histogram matching was used to calibrate 
the two data sets and sample plots were then classified into the three treatments. The overall 
classification accuracy was 82% using only the proportion of vegetation returns from the 
canopy as explanatory variable. Features created from gridded laser data had overall higher 
classification accuracy than laser features created directly from the point cloud. Histogram 
matching made the two data sets comparable by reducing the difference between them. These 
early results show how changes can be detected even with different sensors, flying altitudes, and 
system parameters. 
 
Keywords: Airborne laser scanning, histogram matching, multi-temporal, LiDAR, change 
detection 
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1. Introduction  
 
The effect of ongoing climate change on the sub-arctic and alpine forests has led to interest in 
monitoring potential changes in the forest-tundra ecotone. In addition to climate change, insect 
damages, browsing pressure by herbivores as well as anthropogenic impacts will contribute to 
changes in the sub-arctic forest-tundra ecotone. These changes are difficult to monitor with 
manual methods because of the complex mosaic pattern of the ecotone. 
 
Airborne laser scanning (ALS) could efficiently be used to map the vegetation in the 
forest-tundra ecotone (Nyström et al. 2010). However, so far there is limited research on using 
multi-temporal laser data to detect areas with removed trees or estimation of forest growth. One 
of the few studies is Yu et al. (2004) who used ALS data with a resolution of 10 measurements 
per square meter from two acquisitions with two years in between covering a boreal forest. 
Individual trees detected from the two datasets were linked and harvested trees could be 
identified and tree height growth was estimated. 
 
ALS data sets will in the future become available for the same area for a series of acquisitions 
collected with various resolutions, scanning systems, system parameters, etc. Therefore, 
research is needed to find methods for efficient calibration of multi-temporal data sets. 
Calibration methods have earlier been developed for analysis of optical satellite image data and 
radar data (Coppin et al. 2004; Moser et al. 2004; Olsson 1993). It is of interest to find out if 
these calibration methods are suitable also for analysis of ALS data. 
 
One important task is to find features extracted from ALS data that are useful for detection of 
changes. The features should be efficient for estimation of for example biomass but it should 
also be possible to calibrate the features between the data sets in areas without changes to 
reduce differences. 
 
In this study, we used two laser acquisitions from two time points with different scanning 
systems, system parameters, point densities, and flying altitudes. Between the two laser 
acquisitions, sample plots were placed out and trees cut down to simulate afforestation. The 
objectives were to (1) validate the effect of a simple histogram matching algorithm when 
comparing the two data sets, and to (2) find features from ALS data that are efficient for 
detection of changes in amount of vegetation in the sub-alpine tree line ecotone using 
supervised classification. 
 
 
2. Method 
 
2.1 Study area 
 
The study area is located six km southeast of Abisko in northern Sweden, centered around 
Lat. N 68°20’, Long. E 19°01’ (Figure 1) and dominated by mountain birch (Betula pubescens 
ssp. czerepanovii), but having also some Junipers (Juniperus communis), Rowans (Sorbus 
aucuparia), and Willows (Salix spp.) taller than 1.5 m. The birches in the area were of the 
multi-stem type often with several stems sharing the same root system. Sample plots were 
placed in the ecotone between birch forest and tundra. This area was characterized by a pattern 
of forest and mountain heath vegetation and located at an altitude of 480 - 670 m a.s.l. 
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Figure 1: Map of the Nordic countries, showing the study area in northern Sweden. The red dots in the 

enlarged map are the sample plots and the black polygon is the area used to create cumulative histograms 
to use in the histogram matching. © Lantmäteriet, I 2010/0345. 

 
2.2 Laser data acquisition 
 
Laser data were acquired under leaf-on conditions with two different laser scanners and at two 
occasions (Table 1); the first with a TopEye MkII (denoted TopEye) mounted on a helicopter, 
and the second with an Optech ALTM Gemini (denoted Optech) mounted on a fixed wing 
aircraft. In both cases, scanning was performed in west-east direction. 
 
Table 1: Summary of the laser scanner properties and flight parameters of the two laser data acquisitions. 

 
Parameter TopEye MkII Optech ALTM Gemini 
Scanning date Aug. 1, 2008 Aug. 20, 2010 
Flight altitude (above ground) 500 m 1740 m 
Footprint 0.5 m 0.5 m 
Pulse repetition frequency 50 kHz 70 kHz 
Scan frequency 35 Hz 37 Hz 
Wave length 1064 nm 1064 nm 
Pulse length 4 ns (1.2 m) 6.8 ns (2.0 m) 
Scan type Palmer Oscillating mirror 
Scan width (across flight dir.) ±20° ±20° 
Scan width (along flight dir.) ±14° 0° 
Point extraction Up to 2 per pulse Up to 4 per pulse 
Minimum point density a 3.0 m-2 0.7 m-2 
Average point density a 11.5 m-2 1.1 m-2 
Maximum point density a 34.8 m-2 2.4 m-2 

a based on the 100 sample plots used in this article. 
 
2.3 Field data 
 
The field inventory was performed between the two laser data acquisitions, during four weeks in 
August 2009 (47 sample plots) and two weeks in June 2010 (43 sample plots), see Table 2 for 
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details. Sample plots used from 2009 existed from a previous study in the area (Nyström et al. 
2010). These 47 sample plots had ten meters radius, taller trees and located in areas with older 
forest than the 43 sample plots from 2010. Only six meters radius of 2009 years sample plots 
were used in the analysis. All sample plots were revisited in 2010 to assure they were 
unchanged. In 2010, 43 new sample plots with six meters radius were subjectively positioned to 
match the following criteria: (1) trees in the range 1.5-2.5 m tall, (2) 10% of the stems can be 
taller than 2.5 m, but not taller than 3.5 m, and (3) no dominating field (0-0.5 m) and bush layer 
(0.5-1.5 m) on the sample plot. Figure 2 show one of the sample plots from the field data 
collection in 2010. 
 

 
Figure 2: One of the sample plots from the 2010 years field data collection. This sample plot was 

classified as medium stem density. The yellow/red measuring pole is 3 m tall. 
 
One out of the following treatments was assigned each sample plot: 

1. Reference, no treatment. 
2. Remove 50% of the total number of stems taller than 1.5 m. 
3. Remove 100% of the total number of stems taller than 1.5 m. 

 
Only trees taller than 1.5 m were included in the treatments. Spatial location and height 
distribution of removed stems on the sample plot were as evenly distributed as possible. The 
treatment was extended to seven meters radius to minimize problems with horizontal dislocation 
between field and laser data, but still only six meters was used for the laser data extraction. 
 
Sample plots were divided into three categories depending on total number of stems taller than 
1.5 m inside six meters radius: 

1. Low stem density: 5-10 stems 
2. Medium stem density: 11-50 stems 
3. High stem density: 51-100 stems 

 
In this initial analysis, the results are not separated for the three density categories. Table 2 gives 
a summary of the treatments and densities of the sample plots. 
 
The center position of the sample plot was measured with sub dm accuracy using a Real Time 
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Kinematic GPS (Trimble R7) with the base station placed six km away at the Abisko research 
station. 
 

Table 2: Summary of the field data. 
 

 Treatment (Stem density class: low/medium/high) 
Year collected Reference 50% 100% 
2009 47 (16/14/13) 0 0 
2010 15 (5/5/5) 13 (5/4/4) 15 (6/5/4) 

 
2.4 Laser data processing 
 
TerraScan (Soinen, 2010) from Terrasolid was used to classify the point cloud into ground and 
non-ground points (Axelsson, 1999; Axelsson, 2000) with a setting of maximum terrain angle of 
88 degrees, iteration angle of 6 degrees, and iteration distance 1.40 m. The statistical software 
R (R Development Core Team, 2010) and in house developed programs were used to further 
process the point cloud. No removal of overlapping data was done in either data set. 
 
A DEM with 0.5 m grid size, representing the ground level, was created. Canopy heights (CH) 
were calculated by subtracting the DEM from the z-value of each laser return. A digital surface 
model (DSM) was created by assigning each raster cell the maximum z-value for laser returns 
classified as non-ground. A normalized digital surface model (nDSM) was calculated by 
subtracting the DEM from the DSM. All data points above 15 m were neglected in the nDSM 
and the CH to avoid false reflections (the 15 m limit was chosen while no trees taller than 
10.5 m were found in the area). 
 
A height threshold of 1.0 m was used on nDSM and CH for measures from the ALS point cloud 
above ground (denoted laser features). One reason the commonly used 2.0 m height threshold 
(Nilsson, 1996) was not used here was to obtain reliable laser features for sample plots with 
trees around 1.5 m tall. 
 
All the following laser features were created from both nDSM and CH. Height percentiles 
( ) in steps of 20 were calculated using canopy heights above the height threshold. In 
addition, height percentiles were also calculated for  and  since these are strong 
indicators of the height of vegetation. Ten vertical canopy layers ( ) were estimated in 
accordance to Næsset and Gobakken (2008) using the height threshold as the lower limit and 

 as the upper limit. Standard deviation ( ) and mean ( ) of the canopy heights were 
calculated on values above the height threshold. A sum of squared canopy heights ( ) was 
calculated by taking the sum of the squared laser point’s height divided by the number of laser 
points above the height threshold. Vegetation ratio ( ) was calculated by dividing the number 
of hits above the height threshold with the total number of returns inside the sample plot. Two 
ways of calculating the vegetation ratio were used: (1) all returns (denoted ) and (2) only 
first returns (denoted ). 
 
2.5 Histogram matching 
 
An area of 1.8 km2 (Figure 1) was used to create laser features for 10x10 m pixels. Histogram 
matching was used to calibrate the two laser data acquisitions to a common distribution. 
Cumulative histograms were created for each laser feature in the two data sets using 100 bins 
with minimum and maximum values from each laser feature as bounds. Linear interpolation 
was used when assigning values in the histogram matching. The histogram created from the 
TopEye laser features was used as target histogram and the histogram from the Optech laser 
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features as reference histogram. In total 18450 pixels were inside the bounding box (Figure 1), 
but several pixels had no laser features because no vegetation was present. Therefore only 
10142 pixels were used to create the histograms. 
 
2.6 Multi-temporal comparison 
 
To simulate afforestation, the first laser data collection (2007) was used as “after” and the 
second laser data collection (2010) as “before”. The similarity of the laser features from two 
different time points after histogram matching was evaluated by aid of field reference plots that 
according to a field survey had only normal growth and no unusual changes. The measures used 
were relative RMSE ( ), and relative bias ( ) calculated from the unchanged 
reference sample plots: 
 

  (1) 

  (2) 

  (3) 

  (4) 

where  is the :th observation of a laser feature from the TopEye data and  is the 
:th observation of the same laser feature from the Optech data,  is the number of 

observations, and  is the mean value of the laser feature, i.e. mean value of  and . 
This provided an opportunity to check both the success of the histogram matching, and to obtain 
an indication of which laser features that provided most similar data for the normal developed 
vegetation. 
 
2.7 Classification 
 
In order to also check which laser features that best discriminated changed vegetation from 
unchanged vegetation, sample plots were classified into the three treatments using Linear 
Discriminant Analysis (LDA) in the statistical software R (R Development Core Team, 2010). 
The MASS-package (Venables, 2002) was used for the classification. Prior probabilities were 
set to 1/3 for each of the three classes. Cross-validation was used when calculating the 
classification accuracy. As explanatory variable a relative difference between the laser features 
from the two data sets was used and calculated for sample plot  as: 
 

  (5) 

where  is a laser feature from the :th sample plot in the TopEye data and  is the 
same laser feature and the :th sample plot in the Optech data. 
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Figure 4: One-to-one plot of vegetation ratio created from nDSM ( ). In the left plot is Optech 

data not calibrated and the right plot is Optech calibrated using histogram matching. The black line is the 
one-to-one line. When histogram matching is used, the data bend is removed. 

 
Table 3: Relative RMSE and relative bias calculated from the laser features using Equation (2) and (4). In 
each of the following four categories , , , and , only the feature with lowest 
relative RMSE after histogram matching is presented.  and  were calculated only using 
the 62 reference sample plots. The classification accuracy is the overall classification accuracy in the 
three treatment classes. The table is ordered after -values calculated after histogram matching 

was performed. The abbreviations of the laser features are explained in section 2.4. 
 

  (%)   (%)  Classification acc. (%) 
Laser feature Hist. match Not cal.  Hist. match Not cal.  Hist. match Not cal. 

 15.6 15.5  -2.5 0.9  80 81 
 17.8 19.9  2.7 10.4  79 78 
 18.2 17.9  -1.6 2.7  72 70 

 18.8 21.4  2.1 12.4  78 76 
 19.5 22.9  -3.8 7.6  82 82 

 20.9 19.3  -3.3 -2.3  68 63 
 24.9 27.0  -5.2 -12.9  58 28 

 25.2 30.9  -2.9 7.2  79 79 
 26.8 32.1  -3.7 9.0  79 78 
 28.0 49.2  -4.7 -31.9  59 30 
 29.8 43.1  -5.8 19.7  79 79 

 30.4 30.5  -7.9 -7.6  21 56 
 35.0 61.4  -8.4 -31.9  13 56 

Mean: 23.9 30.1  4.2* 12.0*  - - 
* Mean value calculated using absolute values. 
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Table 4: Error matrix for supervised classification using height percentile 60 created from nDSM 
( ) as explanatory variable. 

 
  True   User’s 

accuracy   Ref. 50% 100% 

Pr
ed

ic
te

d Ref. 59 9 2 84.3% 
50 % 0 0 0 0% 
100% 3 4 13 65.0% 

Prod. accuracy 95.2% 0% 86.7% 80.0% 
 
Table 5: Error matrix for supervised classification using vegetation ratio created from nDSM ( ) 

as explanatory variable. 
 

  True   User’s 
accuracy   Ref. 50% 100% 

Pr
ed

ic
te

d Ref. 56 4 1 91.8% 
50 % 2 4 0 66.7% 
100% 4 5 14 60.9% 

Prod. accuracy 90.3% 30.8% 93.3% 82.2% 
 
 
4. Discussion 
 
The cumulative histograms (Figure 3) created for the vegetation ratio from nDSM ( ) 
are almost identical when using histogram matching. The one-to-one plot before and after 
histogram matching (Figure 4) shows that after histogram matching the data is better aligned to 
the one-one line and the bend in the data is eliminated. 
 
Reltative  and relative  (Table 3) were calculated to evaluate the similarity 
between the two data sets. It is clear that features created from nDSM are more similar when 
comparing the two data sets. Histogram matching reduces the difference for most features. Bias 
has always a low value when histogram matching is used, but not always lower than not 
calibrated. 
 
High classification accuracy could be achieved using only one laser feature as explanatory 
variable. When using only one height percentile, none of the 50% treatment sample plots were 
correctly classified (Table 4). The reason is that trees taller than 1.5 m still remain on the sample 
plots and therefore the height percentiles remain almost the same as before removal of the trees. 
When using vegetation ratio, a difference in density of trees can be detected and therefore it is 
possible to detect some of the sample plots with 50% treatment, but still the class with largest 
classification error (Table 5). In future studies it should be considered to use more than one laser 
feature in the classification, e.g. a measure of heights (e.g. height percentile) in combination 
with a measure of density (e.g. vegetation ratio). 
 
The laser features created using nDSM values has higher classification accuracy and lower 
RMSE than features created from point cloud data (CH). Some sample plots were not evenly 
covered with stems, which can cause large differences in the vegetation ratio feature if the laser 
data is unevenly distributed. Multi-temporal data therefore requires measures normalized at each 
time point to avoid problems with uneven distribution of laser points. An example of 
normalization method is features created from the nDSM. It is of highest importance to further 
research on normalization methods when analyzing multi-temporal data. 
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The footprint was about 0.5 m with both laser scanners regardless of the difference in flying 
altitude. This causes the Optech scanner with low point density to omit vegetation because the 
ground is not fully illuminated. How this affected the results in this study is hard to say, but 
when comparing the 3D point clouds from the two acquisitions it is clear that the denser TopEye 
data clearly show the spatial pattern of the vegetation while the same pattern not is visible in the 
more spare Optech data. 
 
The sample plot radius was chosen to be relatively small (6 m) to achieve sample plots with 
evenly distributed trees and tree heights. Only 43 sample plots were found in the area fulfilling 
the requirements described in the methods. Therefore 47 sample plots from a previous field 
inventory were also used as reference plots (not treated). All sample plots from the previous 
field inventory were revisited in 2010 to check if changes occurred. 
 
If we would like to quantify the changes, histogram matching can be a good method to use and 
also if we want to interpret a difference image. Table 3 indicate that histogram matching reduce 
the difference between the two data sets in most of the cases, only a few laser features had 
higher difference when histogram matching was used. Thus, histogram matching might be a 
useful method for creating difference images from different laser data acquisitions. A relative 
calibration, for example histogram matching, will however not necessarily improve an 
automated classification of changes. 
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1. Introduction 
 
In this study, we compare LiDAR-derived estimates of canopy height, crown closure and 
fractional cover collected over a three hour period on July 16, 2005 using variable LiDAR 
survey configurations. Pulse repetition frequency (PRF) was systematically varied over three 
regenerating and two mature Acadian mixed-wood forest plots in Nova Scotia, Canada. The 
objective of this study is to determine if differences in PRF influence typical LiDAR-derived 
raster representations of canopy structure. The three raster representations of canopy structure 
that are investigated here are: the canopy height model, crown closure, and fractional cover.  
 
Accurate mapping of vegetation structure has important implications for natural resources 
management and forest harvesting activities (Dubayah & Drake, 2000; Lim et al. 2003), 
assessing the impacts of natural and anthropogenic change on ecosystems (e.g. Weishampel et al. 
2007), carbon, water, and energy cycling (Lefsky et al. 2005; Chasmer et al. 2011). In most 
cases, applications of LiDAR data for monitoring and ecosystem assessment require that: 1) 
vegetation metrics accurately represent forest attributes so that validation exercises may be 
limited or no longer required for a range of species types and ages; and 2) temporal datasets can 
be compared over a period of years to assess ecosystem change. Variations in LiDAR-derived 
data products due to differences in LiDAR survey configurations, points processing, or 
rasterisation procedures may vary in magnitude depending on foliage and branching structure of 
vegetation or vegetation height (e.g. Hopkinson, 2007; Naesset, 2009). When LiDAR data 
metrics are used within ecosystem or biogeochemical models, slight differences in canopy 
structural attributes used to parameterize the model could result in compounding errors over 
time.  
 
Several studies have examined the influence of LiDAR survey configurations on the distribution 
of laser returns within the canopy (e.g. Holmgren et al. 2003; Naesset 2004; Chasmer et al. 
2006; Hopkinson 2007; Lim et al. 2008; Naesset, 2009). In addition to data acquisition settings, 
the amount of pulse penetration into and through the canopy varies due to the structural 
characteristics and density of the foliage and ground cover encountered. It has been reported 
that surveys configured using lower PRFs (typical of older data collections) tend to result in 
lower laser pulse frequency distributions in the upper quantiles when compared with higher PRF 
(or more recent) surveys (Hopkinson, 2007; Lim et al. 2008). Notwithstanding laser pulse 
energy plays an important role (e.g. Chasmer et al. 2006; Hopkinson, 2007), increasing point 
density with PRF also increases the probability of sampling tree tops. However, the influence of 
PRF-induced shifts in the canopy point cloud on derivative raster canopy attributes are not well 
understood. The objective of this study is to investigate whether or not raster canopy height, 
crown closure and fractional cover attributes are stable across four different PRF settings over a 
forested Acadian mixed wood landscape. 
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2. Method 
 
2.1 Study area 
 
The site is located approximately 5 km south-east of the town of Middleton, within the 
Annapolis Valley, Nova Scotia, Canada (N 44º 54’ 59”, W 65º 04’ 41”) (Figure 1). The area 
flown is approximately 1 km long by 0.5 km wide, and twenty extraction plot locations 
equalling approximately 1 hectare in area were defined within this area (Figure 1). The Acadian 
mixed-wood forest is characteristic of many mixed-wood forests found in Nova Scotia, and 
comprises of mainly Acer saccharum Marsh., Pinus strobus L., and Betula alleghaniensis Britt.  
 

 

 
 

Figure 1: Study area showing fractional cover (33kHz, 1000m altitude, narrow beam) and 20 x 1 hectare 
LiDAR canopy attribute extraction plot locations. 

 
2.2 Airborne LiDAR data collection and analysis 
  
Airborne LiDAR data were collected during a single flight on July 16, 2005 using an Optech Inc. 
ALTM 3100, discrete four pulse return system owned and operated by the Applied Geomatics 
Research Group (AGRG), Nova Scotia. Four LiDAR configurations were flown by varying 
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PRF (Table 1), and keeping all other data collection parameters equal. All data collections were 
conducted at 1000 m a.g.l. using a narrow (0.3 mRad) beam divergence (1/e) and a scan angle 
of ±20 degrees from nadir. 
 

Table 1. Flight configuration parameters for four data collections. 
 

Configuration PRF 
(kHz) 

Point 
Density/m2 

1 33 0.92 
2 50 1.30 
3 70 1.83 
4 100 2.32 

 
Laser returns were classified into ground, below canopy (1.5m threshold) and all hits files 
within the Terrascan software package (Terrasolid, Finland). Ground returns were used to derive 
a 1 m resolution digital elevation model (DEM), using an inverse distance weighting approach. 
A digital surface model (DSM) was created based on a localized maxima algorithm, which uses 
returns at the maximum height within a specified search radius (in this case a 2.5 m search 
radius was adopted for all datasets to ensure no data voids). Canopy height surfaces were 
determined by subtracting the DEM from the DSM to create a canopy height model (CHM) at 1 
m resolution for each configuration. Canopy fractional cover was determined as the ratio of the 
canopy points above 1.5 m to all hits (throughout the canopy to ground). Hopkinson and 
Chasmer (2009) investigate four LiDAR-based models of canopy fractional cover, and the 
simple ratio method was adopted in this case as it is widely used and straightforward. 
Additionally, the CHM was thresholded at 5 m and reclassified into crown (>5 m) and 
non-crown (<5 m) to develop a binary mask of crown closure. The choice of 5 m was arbitrary 
and a priori not optimal for all canopy conditions but it was chosen by trial and error as a 
median canopy height and is used for the sake of illustration. A more in depth analysis is needed 
to identify an optimal threshold selection based on local canopy conditions but this approach 
was adequate for the purpose of identifying any systematic PRF dependence. 
 
3. Results and Discussion 
 
Comparisons were performed on plot-level means and maxima of the CHM, fractional cover 
and crown closure. The 33 kHz data were selected as the baseline datasets, and all observed 
PRF-dependent differences in the raster canopy attributes were tested for significance using a 
paired t-Test. In all comparisons the differences were significantly different at the 99% level of 
confidence (Table 2). Table 2 illustrates the progression of mean height determined by the 
CHM’s, increasing with an increase in PRF. The 33 kHz setting gives the lowest height, and 100 
kHz the highest, confirming the anticipated result that to detect higher elements of the canopy, a 
higher density of pulses is required. Deviations of canopy height per PRF, compared with data 
collected at 33 kHz are shown in Figure 2. 
 
Figure 3 illustrates canopy height derived from the 33 kHz data and the grid-level height 
residual between canopy heights derived from 33 kHz and 100 kHz. Differences between the 
PRFs are emphasized at the edges of crowns, and 99% of the change falls in the range of -3.8 m 
to +3.8 m. This also illustrates the PRF sampling influence on crown morphology in that the 
lower sampling density associated with 33 kHz completely fails to sample many smaller 
individual crown elements in some of the more open areas of the study area. 
 
Table 2 illustrates the percentage of change in mean crown closure, determined above a canopy 
height threshold of 5 m, from 33 kHz to 50, 70 and 100 kHz, respectively. In general, crown 
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closure increases slightly with an increase in PRF. Where complete crown closure exists, an 
increase in PRF deviations in crown closure are often less than 1 percent (Figure 4). However, 
as canopy openness increases, increases in PRF shows increased variability of crown closure up 
to 7% (Figure 4).  
 
 

Table 2. Statistical descriptions of canopy height and fractional cover derived using different PRFs 
   

 CHM mean plot height 
statistics 

Fractional 
Cover   Crown Closure plot statistics 

PRF Mean (stdev) Max 
Mean  

cover %  
(stdev) 

Mean  
cover % 
(stdev) 

Mean 
difference 
from 33 
kHz % 
(stdev) 

Maximum 
mean 

difference 
from  

33 kHz 
33 13.01m (5.93) 22.74m 71 (18) 79.7 (28.2) - - 
50 13.41m (5.94) 22.79m 82 (11) 81.1 (27.3) 1.4 (1.5) 4.6 
70 13.50m (5.96) 22.86m 78 (12) 81.3 (27.2) 1.6 (1.8) 5.6 
100 13.63m (5.96) 22.93m 82 (10) 81.7 (26.8) 2.0 (2.2) 6.6 

 
 

 
33 kHz Canopy Height (m) 

 
 

Figure 2. Plot-level mean and maximum canopy height model residuals by PRF (50, 70, 100) from 33 
kHz.  
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Figure 3: a) Subset of CHM for a mixture of Acadian mixed wood regeneration and mature stands  
generated from the 33 kHz LiDAR data; b) CHM difference image (100kHz - 33kHz)  

 
Increases in PRF do not systematically cause increases in canopy fractional cover (Table 2). For 
example at 70 kHz, estimates of fractional cover are lower than that derived from data collected 
at 50 kHz. However, when compared with 33 kHz, fractional cover derived using higher PRFs 
are greater and all differences are significant at the 99% level of confidence. The largest 
difference is at 100 kHz, where canopy fractional cover is 11% greater than at 33 kHz. The 
deviations of fractional cover per PRF, compared with data collected at 33 kHz are shown in 
Figure 5. The variation in the type of plots sampled (varying age and openness, amount of 
understory) and the presence of mid-canopy returns representing canopy cover all influence 
depth of penetration of pulses into the canopy. Moreover, it has earlier been demonstrated that 
pulse power plays a critical role in controlling the level of pulse penetration and detection with 
canopies (Chasmer et al. 2006; Hopkinson, 2007), so it is important to emphasise that canopy 
representation is not a simple function of sampling point density. The observations here of a 
variable simple ratio-based fractional cover appear to be indicative of behaviour that is 
influenced both by pulse power and sampling density. For example, while it is known that 
increased pulse power increases the chances of ground level returns in continuous canopy cover 
(Hopkinson, 2007), increased sampling density will increase ground level representation in 
regions of more open canopy.   
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Figure 4.  Percent deviation of crown closure from 33 kHz. 
 

 
 

Figure 5.  Percent deviation of fractional cover from 33 kHz. 
 
Crown closure can be compared to fractional cover in that crown closure considers the gaps 
between individual tree crowns, whereas fractional cover is an index of all canopy gaps whether 
inside or between tree crowns. In theory, then, fractional cover should illustrate a smaller value 
than crown closure for an equivalent height threshold. In this study, different height thresholds 
were used (1.5 for fractional cover and 5 m for crown closure) for practical reasons, so the 
results are not directly comparable. Nonetheless, crown closure does illustrate a slightly higher 
cover at both 33 kHz (80% as opposed to 71%) and 70 kHz (81% as opposed to 78%). However 
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differences between crown closure and fractional cover at 50 kHz and 100 kHz are not 
significant. These observations suggest that fractional cover results are less systematically 
influenced by changes in PRF (and sampling density) than crown closure derived from 
thresholded CHMs.  
 
4. Conclusion 
 
The results of this study show that LiDAR-derivative raster canopy attributes are not stable with 
PRF. Higher canopy elements (such as tree tops) are more frequently sampled at higher PRF due 
to the increased sampling density, which also causes an upward shift of the CHM. This is 
important to verify because it is also known that increased PRF coincides with reduced pulse 
power and weaker detection capability within and below the canopy (Hopkinson, 2007). 
Average differences in mean canopy height per plot between 33 kHz and 50 kHz, 70 kHz, and 
100 kHz are 0.40 m, 0.49 m, and 0.62 m, respectively, and for max plot-level heights are 0.05 m, 
0.12 m and 0.19 m, respectively. Differences in the distribution of laser returns through the 
canopy also affect canopy fractional cover, whereby higher PRFs display some tendency to lead 
to higher fractional cover estimates by up to 11% on average compared with lower PRFs (e.g. 
33 kHz). It is speculated that this increase in the simple ratio fractional cover is more associated 
with reduced return representation at ground level than it is due to increased detection within the 
canopy (e.g. Hopkinson, 2007).  
 
Vertical shifts in laser returns throughout the canopy combined with variable sampling coverage 
of the outer canopy surface caused by varying PRF will result in significant systematic 
differences in gridded canopy height and CHM thresholded crown closure but equally 
significant but less systematic differences in canopy fractional cover. Therefore, we conclude 
that LiDAR derived raster canopy attributes are not stable with PRF and such settings must be 
considered and accounted for when conducting multi-temporal change detection or site to site 
comparison studies. Furthermore, these settings should be accounted for (or error margins 
calculated) if developing and applying LiDAR-based models of vegetation structure, growth or 
biomass across many different datasets. 
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1. Introduction 
 
Natural tropical Peat Swamp Forests (PSF) are important for their rich biodiversity and because 
they represent important carbon pool (Page et al. 2002). However, PSF are decreasing due to 
conversion into farm land, by excessive draining, the use of shifting cultivation on a large scale, 
pal oil plantation, illegal logging and forest fire. This increases the interest for understanding in 
an ecological point of view and mapping such environments as they are recognized as an 
important source of carbon released in the atmosphere (Sorensen 1993, Page et al. 2002, 
Jaenicke et al. 2008, Ballhorn et al. 2009, Boehm et al. 2010). 
According to Hyde et al. (2007) airborne Light Detection And Ranging (LiDAR) data is 
nowadays the best remotely sensor to investigate biophysical parameters (e.g. tree height and 
canopy diameter which are strongly correlated with above-ground biomass and leaf area index 
(LAI) (Hajnsek et al. 2009). In peatland areas the great variety of ecosystems and its ecological 
rule is still not fully understood. The influence of selective logged areas (e.g. species 
composition, their structures and canopy properties) on global change issues also remains 
therefore a big challenge. Consequently, to optimize the biophysical properties characterization, 
a better understanding of how LiDAR measurements could be useful for ecological studies in 
such critically endangered forests is still necessary.  
 
In August 2007 we mapped by helicopter different PSF transactions with Riegl LiDAR 
Technology LMS-Q560 in Central Kalimantan, Indonesia. In this study, our main objectives 
were: a) to evaluate the peat surface/profile and their associated domes; b) to estimate the 
dependence of tree canopy height with both peat dome thickness and peat dome slope 
variations; c) to estimate Above Ground Biomass (AGB) variations based on tree canopy height 
and physiognomy variations according to optical remotely sensed spectral signatures and field 
inspection; and d) to demonstrate the applicability of LiDAR technology to detect logging 
activities in tropical peat swamp forest environments. Additionally, we would like to 
demonstrate first results of our second LIDAR survey made in August 2011. We found that in an 
undisturbed tropical PSF area the average tree-height increased from 15.32m to 17.18m by 
difference of 1.86m which is 12%.    
 
2. Study Area Description 
 
Our study areas consist on one LiDAR transects located inside the Central Kalimantan province, 
Indonesia (Figure 1). One Landsat image acquired on July 16, 2000 shows the remaining forest 
in the region in different green colour for 2000. In fact, PSF over the region were impacted with 
extensive logging activities in the 90th using railways in the swaps for logging roads by the big 
concessions. The logging leads to severe peat damages with reasonable amount of carbon 
released to the atmosphere, especially during peat fires in 1994, 1997, 2002, 2006 and 2009. 
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Figure 1: Study area location. (a) Indonesia and (b) subset of Landsat image for Central Kalimantan and 
the yellow line indicates the LiDAR transect. 

 
The selected LiDAR transect is located between Katingan river and the transmigration village 
Habaring Hurung (Figure 2). This PSF was selective logged by the concession in the 90th. 
According to MODerate Imaging Spectroradiometer (MODIS) products, the Leaf Area Index 
(LAI) of the logged peat swamp forest at the region is in average close to 4, typical for tropical 
rain forested areas although close to 6 in undisturbed areas (Liesenberg et al. 2010). Areas of 
pasture, small agricultural fields, small villages at the rivers and actual degraded forest resultant 
from selective logging can be also observed in the surroundings of the selected area. 
 
 
 
 
 
 
 
 
 
 

Figure 2: Peat Surface profile of the selected LiDAR transect. 
 
Peat surface profile of the analyzed transect starting left from the river Katingan (23m) reaching 
to the transmigration village Habaring Hurung, right (Figure 2). A double peat dome is found at 
38m and 41m. Between the kilometres 10 and 23 a high plateau is also visible. More south to 
this a small river can be monitored on the peat area, which is draining the high water content. 
The transect shows an asymmetrical peat dome on the right with a terrain peak close to 41m; 
Table 1). The peat surface increases quickly with a maximum of 1.8m/km and an average of 
1.0m/km from the Katingan to the first peat dome with 38m. 

Table 1: Summary of the LiDAR transect under study 
 

Transect River 
Level Peat Domes Transect 

Length 
Max. Slope Av. Tree 

Height 
Max. Tree 

Height 

Katingan – Rungan 23m 38m to 41m 26km 1.8m/km 15.8m 34.5m 
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2.1 Material and Methods 
 
2.1.1 LiDAR Data Processing 
 
The airborne LiDAR transects were acquired on August 8th, 2007 in a helicopter campaign 
conducted by Kalteng Consultants and Milan Geoservice GmbH. We collected for the above 
described tracks approx. 1300ha of PSF with approx. 1.4 laser beams per square meter. The 
Riegl-airborne laser-scanner LMS-Q560 was mounted under the Bell 206 helicopter. Small 
footprint LiDAR data was collected for a flight altitude of approx. 500m with a scan angle of 
60° with produced a swap-width of approx. 500m (Boehm et al. 2007, Boehm and Frank, 2008). 
We used for this analysis the first and last pulse Laser echoes only, but the full-wave data are 
available for more detailed analyzes. The Laser scanner had a pulse rate of 66kHz resp. 100kHz 
with a beam divergence of 0.5mrad or a footprint of 0.25m. The ground backscattering in PSF 
through the canopy was responsible for 1 to 3% of the 0.5mrad Laser beams.  
Complementary we explore a second LiDAR dataset acquired on August 5th, 2011 using the 
same sensor system as 2007 in order to demonstrate change detection over the time. 
 
The DGPS reference station was located at the airport of Palangka Raya which has an elevation 
of 25.0m above sea level. The position and orientation of the LiDAR system on the helicopter 
was measured by an Inertial Navigation System (INS) and a GPS located on the tail boom with 
256Hz. The Riegl LMS-Q560 airborne Laser scanner system itself allows height measurements 
with an accuracy of ±0.02m. After the correction of the attitude of the helicopter, the elevation 
accuracy of each Laser beam was ±0.15m with a root mean square error (RSM) of ±0.5m in 
both x- and y-direction. The processed laser beams were divided into ground surface and over 
ground classes and converted in order to digital terrain model (DTM) and digital surface model 
(DSM), respectively, at a spatial resolution of 1m.  
 
2.1.2 Data Analysis 
 
2.1.2.1 Peat Drilling, Peat Surface and Landsat signatures 
 
A total of 31 peat drilling measurements were conducted in order to determine the peat depth of 
our selected transect. The spatial distribution of the samples keeping an average distance of 
600m as well as the peat depth results is shown in Figure 3.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 3: (a) Spatial distribution of the Peat Drilling Samples over the LiDAR transect. Arrows indicate 
the first and last sample of the peat depth. (b) Results of the Peat drilling measurements showing the Peat 

depth results up to 10m. 
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According to this figure, we observe a high variability with the highest values occurring close to 
the Katingan River and a double dome is also visible compared to peat surface showed in Figure 
2. We related the peat drilling measurements with the tree canopy height establishing 1-ha plot 
over each measurement and the peat dome slope as described better in the next section. A 
detailed explanation about the procedures in the field may be found in Page et al. (2004). 
 
Complementary, we also conducted peat drilling analysis in a second transect whose spatial 
distribution as well as peat depth is shown in Figure 4. In this figure, 91 peat drillings along the 
Kalimantan highway from Kasongan to Tangkiling were measured and related with chemical 
properties (Boehm et al., 2006). 
 

 
 

Figure 4: a) Results of the Peat drilling measurements showing the Peat depth results up to 8.1m parallel 
to the highway Kasongan to Tangkiling with 500m distance. (b) Spatial distribution of the Peat Drilling 

Samples over the LiDAR transects Kasongan to Tangkiling and Katingan and Habaring Hurung.  
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Digital Numbers (DN) from Landsat images covering different dates including pre- and after 
LiDAR acquisition were converted to radiance data and then converted to surface reflectance 
(hemispherical directional reflectance factor, HDRF) using the Fast Line-of-Sight Atmospheric 
Analysis of Spectral Hypercubes (FLAASH) algorithm. Input data for the radiative transfer 
code were collected by instruments in a tower maintained by the Asia Flux Network inside the 
study area as well as MODIS products. We selected different regions based on our LiDAR 
transect in order to characterize different spectral patterns. 
 
2.1.2.2 Tree Canopy Height vs. Peat Dome Slope Analysis 
 
We calculated the peat dome slope by counting the difference between the DTM values of two 
sample plots with 1-ha each and converting the altitude difference (e.g. m per km) in an 
equidistance of 250m. We proceed with the extraction of tree height for the DSM in four 
sub-plots (e.g. 50mx50m) where we just account for the signal coming from the dominant trees. 
The sub-plots were used in order to take a sample of each quadrant. The data from each transect 
was divided into training (70%) and validation (30%) datasets for statistical purposes (Boehm et 
al. 2010). 
 
The relationship between tree height and peat dome slope employed a linear regression analysis 
(i.e. yj=ax+b). The slope value for each sample plot was used as the predictor for tree height 
determination. The linear regression analysis was applied to the test dataset in order to perform 
the accuracy statistics. The accuracy statistics include the root mean square error (RMSE), Bias 
and their relative counterparts RMSEr and Biasr as described and explained in Muukkone and 
Heiskanen (2005). As the peat drilling procedure is very difficult to be determined in the field, 
we proceed with the analysis twice. The first approach was keeping a distance of the 600m as 
described in the section 2.1.2.1 and the second one the distance of 250m. 
 
2.1.2.3 Biomass Determination 
 
Above Ground Biomass (AGB) were compiled from sample plots of 1-ha collected in the flown 
acquisition of the transect keeping a distance of 250m between sample plots. We extract both 
DTM and DSM values for each measured sample plot. Concerning to the DTM, we only 
account for the lowest values in order to minimize the inclusion of the return signal coming 
from tree trunks and branches lying on top of the peat surface. Tree Canopy height was 
determined by subtracting the DSM and the DTM. The AGB was obtained using an allometric 
equation proposed by Lefsky et al. (1999) (Eq. 1) and Uhl et al. (1988) (Eq. 2). Diameter at the 
Breast Height (DBH) was retrieved using the relationship with tree height (r2=0.754) 
considering field measurements. Finally, tree height and AGB values were plotted for the 
selected LiDAR transect and also related with the peat dome attributes.  

2)(512.1 averagehAGB ×=  Lefsky et al. (1999) (1) 

)39.0ln)(02.1ln17.2exp( 2 HDBHAGB ++−=
 

Uhl et al. (1988) (2) 

 
2.1.2.4 Characterization of Logging Activities using LiDAR 
 
Since logging activities are a common practice in tropical rain forest environments, we 
evaluated the complementary use of both DTM, DSM and Aerial ortho-photographs acquired 
during the LiDAR survey to detect such practices. We compared it with Landsat images and the 
procedure was based on both visual interpretation and texture analysis (e.g. GLCM). Since no 
complementary information was provided by local agencies, such as concession information for 
forest exploitation, we did not classify whether such practices were legal or illegal. 
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3. Results and Discussion 
 
3.1 Relationship between Peat Dome Depth and Tree Canopy Height 
 
Linear regressions were carried out to establish the correlation between Peat Depth and both 
Tree Canopy height and Peat Dome Slope and are shown in Figure 5. A weak relation between 
the variables was found and explained up to 31% of the variation of the forest attributes (e.g. 
tree canopy height) and up to 16% the peat depth surface in the selected transect. As observed 
by Boehm et al. (2010) the results may reflect the high degree of forest intervention by previous 
logging activities in the region. In this transect, both predictors height (e.g. tree canopy height 
averaged and dominant) were similar. 

Figure 5: Relationships between (a) Peat Dome Depth and Tree Canopy Height; (b) Peat Dome Depth and 
Peat Dome Slope. 

 
The relation between Tree Canopy height and Peat dome slope was not affected by the changing 
the distance between the peat drilling plots (e.g. 600m) and the sample plots (e.g. 250m). Figure 
6 shows the relationship between Peat dome slope and both Tree canopy height and AGB. The 
relationship explains in both situations up to 30% of the variation. At least two non-mutually 
exclusive hypotheses for positive increase in tree canopy height with peat dome slope can be 
raised here: (1) soil properties and drainage; and (2) previous disturbance regimes that will be 
investigated in near future with additional LiDAR data from 2011 as well as field inventory 
data. 

Figure 6: Relationships between (a) Peat Dome Slope and Tree Canopy Height; (b) Peat Dome Slope and 
Above Ground Biomass. 

 
Landsat signatures showed significant differences in their spectral profiles given samples from 
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different parts of the peat dome (not shown). The highest differences were observed in the near 
infrared reflectance which increased from the beginning, middle to the top of the peat dome. 
This may be an indicative for the occurrence of different physiognomies and canopy 
architecture changes in the vegetation.  
Peat dome slope as a result of the surface topography and peat thickness variations, explains 
only up to the 30% of the tree canopy height and AGB. Since it does not such forest attributes 
directly, it may also operate through changes that they may bring about or promote in other 
characteristics of the peatland, especially related to hydrology, chemistry and organic matter 
dynamics (balance between peat accumulation and peat degradation) (Jauhiainen et al., 2005, 
Nishimua et al., 2007). An evaluation taken into account several LiDAR transects sampling 
different peat characteristics and forest under different disturbance levels should be evaluated 
for a better assessment of such ecological issues. 
 
3.2 Estimation of Forest Attributes 
 
Several 1-ha sample plots were obtained at the LiDAR transect. We noticed that the average tree 
height varies from 11 to 20m, whereas the dominant tree canopy height up to 30m (Figure 7a). 
The lowest tree canopy heights were found close to Katingan river. AGB varies in average from 
15 to 200 Mg/ha (Figure 7b). Although a proper field campaign is still necessary to validate the 
results, an indicative of the LiDAR potential is at least here demonstrated. We intend in near 
future investigate the potential of the full wave acquisition for the AGB determination instead of 
using only the first and last LiDAR pulse. A proper LiDAR campaign at ground level with 
ground LiDAR systems will certainly show promising results, since the accuracy of the AGB is 
strongly dependent on allometric equations that are normally neither common nor available in 
tropical regions (Hyde et al., 2007). 

 
 
 
 
 
 
 
 
 

 
 

 

Figure 7: Forest attributes for the 1-ha sample plots from river Katingan to Habaring Hurung considering 
(a) DTM, average tree height and max. tree height; (b) Average Above Ground Biomass (AGB). 

 
The spatial distribution of the forest attributes extracted from the selected LiDAR transect, such 
as the Tree Canopy height and AGB are shown in Figure 8. AGB are shown in Figure 9 and 10 
employing the two different allometric equations, respectively. The figures show high variability 
results due to previous selective timber exploitation. 
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Figure 8: Tree Canopy height variations over the selected LiDAR transect. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Above Ground Biomass (AGB) variations over the selected LiDAR transect (with Eq. 1).  

 
Figure 10: Above Ground Biomass (AGB) variations over the selected LiDAR transect (with Eq. 2). 
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3.3 Characterization of Logging Effects 
 
Small logging effects on the forest were evident on LiDAR DTM than LiDAR DSM. An 
assessment of aerial ortho-photographs was also very useful to identify small patches used for 
wood storage and camping. On the other way, Landsat images were not sufficient to capture 
such small details besides large and structured channels. The use of texture parameters (e.g. 
GLCM) and other spectral techniques were also experimented on Landsat images. Figure 11 
shows a subset of the LiDAR transect. In this figure, we observe that LiDAR DTM (Figure 11a) 
capture better the logging tracks than LiDAR DSM (Figure 11b). Such information on regular 
basis may help local environmental agencies for the monitoring of the endangered forest as well 
as for REED/MRV practices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Subset of (a) LiDAR Digital Terrain Model (DTM); (b) LiDAR Digital Surface Model (DSM); 

and (c) Subset of Aerial Ortho-photograph indicated by yellow square. A yellow line indicates logging 
channel. 

 
4. Final Remarks 
 
Results showed that LiDAR is an interesting instrument to analyze peat profiles, biomass 
estimation and relationship between peat dome slope, peat dome depth and tree canopy height. 
Information on such variables may be useful to assess the dependence of biophysical properties 
(e.g. tree height, stem diameter and above ground biomass) in distinct peatlands environments. 
Since peatlands act as a carbon sink, human interventions due to drainage practices for 
agriculture and selective logging practices of the peat swamp forest may have a stronger impact 
in the carbon release than relative flat areas that still has to be more investigated with LiDAR 
technology which we did in a new survey conducted last August 2011. 
 
Nonetheless, further research is being conducted in order to test the dependence of other 
biophysical parameters to peat dome slope and feature selection techniques for LiDAR data in 
different vegetation types in Central Kalimantan, Indonesia. In this regard, we will perform a 
proper analysis with field inventory data conducted from middle July to August 2011. This will 
allow us to evaluate multi-temporal analysis and to determine the growth or loss of vegetation 
as well as the peat surface changes. 
 
In our ongoing analysis, we found out that the tree height changes for a selected transect at 
Sabangau Forest in Central Kalimantan after a period four years was in average up to 2m. This 
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represents a change of 12% (e.g. from 15.32m to 17.18m, difference of 1.86m). The analysis 
was performed measuring 20 sample plots of 1ha over a 12km transect for 2007 and 2011. This 
clearly shows the forest recovery capacity in secondary tropical peat swamp forest under 
protected conditions (e.g. conservation status).  
 
The presented LiDAR-methodology can be promising in the frame of the REDD (Reducing 
Emissions from Deforestation and forest Degradation) knowledge of tropical peat swamp 
forests.  
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Abstract 
 
The spatial pattern of trees in a forest can be defined as the locations of the trees in relation to 
each other. The spatial arrangement of a point (e.g. tree) pattern may be random (Poisson), 
clustered or regular. In this study the spatial pattern of trees was determined at the plot level by 
using L function, which is a square root transformation of Ripley's K function. The spatial pattern 
of tree was summarized into three classes: regular, random and clustered. The study was carried 
out with 79 sample plots located in a managed forest area in eastern Finland. Tree maps were 
produced with the individual tree detection (ITD) and semi-individual tree detection (Semi-ITD) 
and spatial patterns of trees were calculated from the tree coordinates. The spatial pattern of trees 
was also predicted directly by using patch metrics calculated from the canopy height model as 
explanatory variables (AREA). The low resolution airborne laser scanning (ALS) data was used 
in the AREA and the high resolution data in the ITD and Semi-ITD. The Kappa value for the ITD 
was almost zero, which indicates virtually random classification. The AREA and Semi-ITD 
methods were clearly more accurate than the ITD. Kappa values for the Semi-ITD and AREA 
were 0.34 and 0.24, respectively, which nevertheless cannot be considered to be very good. 
However, determining the spatial pattern of trees by ALS is somewhat unexplored field of study. 
It should be studied how well the spatial pattern of trees can be determined in different type of 
forests. 
 
Keywords: individual tree detection, canopy height distribution 
 
1. Introduction 
 
The spatial pattern of trees in a forest can be defined as the locations of the trees in relation to 
each other. It can be regular, random, clustered or any combination of them (e.g. Pielou 1960, 
Tomppo 1986). Commonly the spatial pattern is compared to a statistically random pattern, so 
called Poisson forest (Diggle 1983). Field work for determining the spatial pattern of trees is 
laborious and expensive. Therefore explicit information about the spatial pattern of trees, such as 
spatial pattern indices, tree location maps, or competition indices, are quite rarely used in growth 
and yield models or in any other use case except in scientific research. 
 
Trees within a stand affect development and survival of their neighbours. Therefore it is not a 
priori acceptable to treat trees and their attributes as independent random variates (Penttinen et al. 
1992). In forestry the spatial pattern of trees is mostly considered implicitly. For example, in 
thinning one aim is to produce regular spatial pattern of trees on stand-level in order to optimize 
the use of growing space (Pukkala 1990). In that the case spatial pattern is taken into account 



SilviLaser 2011, Oct. 16-20, 2011 – Tasmania, Australia 

 2

although it’s not specifically determined and expressed in numerical form.   
 
Although remote sensing is an obvious tool to determine the spatial patterns of trees in a forested 
environment there are only very few studies about it. Coops and Culvenor (2000) related scene 
texture variance to a statistic describing spatial pattern of trees. The study was carried out with 
simulated high spatial resolution imagery. Their conclusion was that it is possible to estimate the 
spatial pattern of trees with the employed method if crown size is provided a priori. Uuttera et al. 
(1998) estimated the spatial pattern of trees by segmenting single trees from high resolution aerial 
photographs (1:5000). Their conclusion was that the usability of aerial photographs seems to be 
limited because clustered spatial patterns were misclassified as regular patterns, and regular 
patterns as random patterns. The most obvious way to use ALS data in the determination of the 
spatial pattern of trees is the individual tree detection (ITD). However, Mustonen (2002) seems to 
be the only study in which the spatial pattern of trees obtained by ITD has been examined. He 
reported that the detection of clustered spatial pattern of trees is very difficult with the employed 
method. 
 
The objective is to investigate if the spatial pattern of trees can be determined with different ALS 
based forest inventory techniques. Some methodological development was done in order to 
obtain tree positions or direct estimates of the spatial pattern of trees. The spatial pattern of trees 
may be estimated in addition to conventional tree or plot level attributes used in forest inventory.  
 
2. Method  
 
2.1 Material and study area 
 
The study area is a typical boreal managed forest area in Kiihtelysvaara in eastern Finland. The 
field measurements were carried out on May-June, 2010. Altogether 79 field plots were placed 
subjectively, attempting to record the species and size variation over the area. Sample plot size 
varied between 20x20 and 30x30 meters according to stand development class. Scots pine (Pinus 
sylvestris L.) is the dominant tree species. It represents 73% of the volume, Norway spruce 
(Picea abies [L.] Karst.) 16% of the volume and deciduous trees altogether 11% of the volume. 
The characteristics of stand attributes at the plot level are presented in Table 1. 
 

Table 1: Mean, Standard Deviation (SD), Minimum and Maximum of stand attributes at the plot level. 
 

 Mean SD Min Max 
DBH 15.0 4.0 8.1 28.4 
Height 14.4 3.3 8.7 24.1 
Stem number 1259 566 467 2875 
Volume 197.6 74.6 79.5 502.2 

 
The high resolution ALS data were employed in the mapping of the trees. First, a tree map was 
produced using the individual tree detection method described in section 2.3. The tree locations 
were verified in the field and the undetected trees were positioned using angle and distance 
observations to the ALS-detected trees. The coordinates for the small trees were then calculated 
using these observations in a least squares adjustment as explained by Korpela et al. (2007). All 
trees with either DBH ≥ 4 cm or height ≥ 4 m were mapped. 
 
High resolution ALS data were collected on June 26, 2009 using an Optech ALTM Gemini laser 
scanning system. The test site was measured from an altitude of approximately 600 m above 
ground level using a field of view of 26 degrees and side overlap of 55%. Pulse repetition 
frequency was set to 125 kHz. This resulted in a swath width of approximately 320 m. Side 
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overlap of 55% means that each location is covered from two flight lines. This kind of special 
configuration was used in order to maximize the probability that trees have ALS hits each side, 
i.e. that there are no shadowed areas behind trees along the line from the laser scanner to a tree.   
A nominal sampling density is about 12 measurements per square meter. 
 
Low resolution ALS data were collected on July 18, 2009 using the same Optech ALTM Gemini 
instrument as high resolution data. The test site was measured from an altitude of approximately 
2000 m above ground level using a field of view of 30 degrees and side overlap of 20%. Pulse 
repetition frequency was set to 50 kHz. This resulted in a swath width of approximately 1050 m 
and a nominal sampling density of about 0.65 measurements per square meter. 
 
2.2 Determining the spatial pattern of trees 
 
The spatial pattern of tree locations was determined by plots in three classes: regular, random and 
clustered. The spatial point pattern of a plot was decided by using Ripley's L function, which is a 
square root transformation of the Ripley's K function. The L-functions were estimated using 
Lest-function in the R package spatstat (Badeley and Turner 2005). An isotropic edge correction 
method was used in all estimations. The interpretation of the L-function is based on the 
comparison of the L-function estimated from the data (in our case the tree locations (Lesttrees)) 
and L-function of a random xy-locations (Lrandom). If Lesttrees < Lrandom the spatial point pattern is 
regular, if Lesttrees > Lrandom the spatial point pattern is clustered, and if Lesttrees = Lrandom the spatial 
point pattern is random. Lesttrees practically never equals to Lrandom, and there is no general 
statistical test for interpreting the difference between Lesttrees and Lrandom. Thus, Monte Carlo 
method was employed in an interpretation of the functions using the following process: 
L-function was estimated from random xy-pairs generated for the plot from a uniform 
distribution (Lestrandom). The number of generated xy-pairs was always the same as the number of 
trees in the plot and the simulation was repeated 1 000 times for each plot. The simulation data 
was then used to estimate 70% lower and upper confidence levels (Lestlowerx, Lestupperx) for the 
random point pattern for each plot separately. For example, the lower 70% confidence level is the 
15th percentile and the upper 70% confidence level is the 85th percentile of the distribution. Then 
the Lesttrees were compared to the estimated confidence levels. If Lesttrees < Lestlowerx the plot was 
classified as regular, if Lesttrees > Lestupperx the plot was classified as clustered, and otherwise the 
plot was classified as random with the confidence level of 70%. The spatial point pattern was 
investigated with the search distance (r) of 1–5 meters, and therefore, the final classification was 
based on determining the areas delineated by Lesttrees, Lestlowerx and Lestupperx at distances 1-5. The 
plot was classified to the class that holds the largest area. For instance, if the area delineated by 
Lesttrees and Lestupperx above Lestupperx is larger than the area delineated by Lesttrees, Lestlowerx and 
Lestupperx, and Lesttrees and Lestlowerx below Lestlowerx the plot is classified as clustered. The spatial 
pattern was regular in 26 plots, random in 38 plots and clustered in 15 plots. 
 
This approach was used to determine the spatial pattern of trees in the field data and in both of 
the individual tree detection methods (ITD and Semi-ITD). 
 
2.3 Individual tree detection (ITD) 
 
In ITD the high resolution ALS data was used. First a preliminary Canopy Height Model (CHM) 
was interpolated using a pixel size of 50 cm by taking the maximum ALS point height within a 
pixel. The pixels that had no ALS hits within their area were marked with a NoData label. The 
numbers of NoData pixels and pixels considered as hole pixels were then reduced with a median 
filtering in local windows of 3 by 3 pixels. Each NoData pixel that had at least n height values 
within its 8-neighborhood was replaced with the median of the height values of the neighbours. 
Further, a pixel was considered to be a hole pixel, if at least seven of the eight-neighbours 
exceeded the height value of the center pixel by more than five meters. The hole pixels were also 
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replaced with the median of the values of the neighbour pixels exceeding the five meters 
threshold. 
 
Trees were located on the final CHM using watershed segmentation. Before segmentation, the 
CHM was low-pass filtered with height based filtering (Pitkänen et al. 2004), in which the scale 
of filtering increases along with the height of the pixel being processed. The aim is that after 
filtering each tree top would contain one local maximum on the CHM. In practice we selected 
eight height ranges and used Gaussian filters with different scale parameters for those. Values of 
the scale parameter σ for smallest and largest trees were selected based on visual comparison by 
trying a few scale values and then looking at the local maxima of the filtered CHMs on top of the 
CHM. The first height range was 0–4 m and the selected σ was 0.3. The last height range was 
over 28.6 m and σ was 1.0. Other six height ranges had equal width of 4.1 m and their σ values 
were scaled linearly between 0.3 and 1.0. 
 
A height filtered CHM was then used in watershed segmentation, in which watershed regions 
associated with the local minima in the negative image of the filtered CHM were identified using 
a drainage direction following algorithm (Gauch 1999, see also Narendra and Goldberg 1980). In 
this variant of watershed segmentation, each local minimum is first labeled with unique region 
identifier. For each of the remaining pixels, the eight-neighbours of a pixel are examined to link 
the pixel to the steepest downhill direction. The links are then followed to a minimum to get a 
region label for each pixel. The segmentation divides the whole image area to segments. To get 
boundaries between tree crowns and background, pixels lower than two meters on the height 
filtered CHM were masked out from the crown segments. Finally small segments, at most three 
pixels in size, were combined to one of the neighbour segments, being it a tree crown or 
background, based on the smallest average gradient on the segment boundary between two 
segments. 
 
In ITD tree locations were obtained from the location of the pixel having highest value within 
each segment.  
 
2.4 Semi individual tree detection (Semi-ITD) 
 
In the Semi-ITD the idea is that instead of assuming that one segment corresponds to one tree 
from 0 to n trees are imputed to each segment (Breidenbach et al. 2010). Therefore it does not 
implicitly produce tree coordinates. In this study the field measured trees were intersected with 
the segments obtained with the ITD (2.3) and for each tree a relative position (angle & distance) 
was calculated with respect to the segment’s height maximum. In the prediction phase the tree 
locations were defined using the angle and distance relative to the height maximum of target 
segment. 
 
The nearest neighbors were searched for using the Random Forest (RF) method implemented in 
the R package yaImpute (Crookston & Finley 2008) with segments' total volume and stem 
number as response variables. A large number of features from the first-return ALS data were 
tested, discarding those of low value according to the RF variable importance score. The final 
combination included 120 ALS features, containing the percentiles and densities calculated at the 
both segment and plot level, intensity values at 0-40% height down from the treetop, and volume 
and area of the point clouds below 10, 20, ..., 100% height. The volume and area were derived 
from the convex hull of the ALS data, calculated in either 2D (area) or 3D (volume); otherwise, 
the computation of these features is explained in detail by Vauhkonen et al. (2010). The 
imputation was carried out in a leave-out-one-plot fashion, i.e. the segments belonging to the 
same plot as target segment were not available as nearest neighbors. 
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2.5 Area based approach to determine the spatial pattern of trees (AREA) 
 
In AREA the low resolution ALS data was employed. First a CHM was interpolated using a pixel 
size of one meter by taking the maximum point height within a radius of 1.6 meters from a centre 
of a pixel. Remaining NoData pixels were filled with the median of the height values in the 
8-neighborhood. Filling was repeated recursively until all NoData pixels were filled. Then the 
CHM was thresholded to represent lower and upper canopy. Lower canopy contains also ground 
pixels. After preliminary tests thresholding was carried out by plots using an adaptive threshold 
value: 
 

t = hmax ˗ hstd,  (1) 
 
where hmax is the maximum height in a plot and hstd is the standard deviation of first echoes in a 
plot. The mean threshold value was about 70% of the maximum height in a plot. Metrics 
calculated from the thresholded image were used as candidate predictors in the classification of 
the spatial pattern of trees. Metrics are listed in Table 2. These metrics describe the patchiness, 
the properties of patches and their interconnections. Patch is a spatial concept that describes a 
continuous area of the same class; here patch is comparable to segment created by thresholding. 
Patch metrics are common in landscape ecology in which landscapes are analyzed as mosaics of 
discrete patches (Turner et al. 2001). In Table 2 P refers to all patches, LP refers to patches 
representing lower canopy and UP refers to patches representing upper canopy.   
 

Table 2: Metrics used in the classification of the spatial pattern of trees in AREA. 
 

Metric Description 

Pdensity, LPdensity, UPdensity the number of patches per hectare; i.e. patch density 
Pave, LPave, UPave the average size of the patches 
Psd, LPsd, UPsd the standard deviations of the areas of patches 

LPN, UPN the average number of pixels in 4-neighborhood belonging to the same 
patch type  

 
In AREA the spatial pattern of trees was predicted by Linear Discriminant Analysis (LDA) using 
the field determined spatial pattern as response (Venables and Ripley 2002). Prediction was 
carried out by Leave-one-out Cross-validation (LOOCV) in order to avoid too positive results. In 
LOOCV LDA parameters were repeatedly estimated by ignoring the observation for which the 
prediction is done. The predictor variables to the LDA model were selected by testing all the 
combinations from 1 to 3 variables. Adding more than 3 predictors did not improve the accuracy 
any more.  
 
3. Result 
 
Figure 1 presents tree locations obtained by the ITD, Semi-ITD and the ground truth in a 
clustered and regular plot. Tree locations are overlaid on the top of CHM and ground truth trees 
are depicted by circles according to the stem diameter. In the regular plot both ITD and Semi-ITD 
produced somewhat similar map of trees but in the clustered plot predictions differed 
considerably. The same tendency is observable in most of the plots. The Semi-ITD produced 
5188 trees altogether which is considerably higher than 3165 trees obtained by the ITD. However, 
the true number of trees is 5827 thus even the Semi-ITD underestimated stem number. Visual 
examination of tree locations produced by the Semi-ITD reveals that in clustered plots predicted 
tree locations do not correspond very well with the ground truth. However, in terms of the spatial 
pattern of trees the Semi-ITD produced much more realistic map of trees than the ITD. 
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Figure 1: CHM overlaid with tree locations. Blue circles  denote ground truth (radius according to stem 
diameter), red dots  denote ITD trees and green dots  denote Semi-ITD trees. The spatial pattern of 
trees is clustered in the left plot and regular in the right plot. 
 
The Overall Accuracy (OA) and Cohen’s Kappa (κ) for the predictions of the spatial pattern of 
trees are presented in Table 3. The AREA and Semi-ITD methods were clearly more accurate 
than the ITD. The κ value of ITD was almost zero, which indicates virtually random 
classification. In terms of OA the Semi-ITD and AREA were almost equal but in terms of κ 
Semi-ITD was somewhat better. However, the obtained κ values 0.24 and 0.34 for the AREA and 
Semi-ITD methods cannot be considered to be very good.  
 
 
Table 3: The Overall Accuracy (%) and Cohen’s Kappa for the predictions of the spatial pattern of trees for 

the ITD, Semi-ITD and AREA methods. 
 

 Overall Accuracy (%) Cohen’s Kappa 
ITD 38.0 0.05 
Semi-ITD 57.0 0.34 
AREA 55.7 0.24 

 
The error matrices for the predictions of the spatial pattern of trees are presented in Table 4. The 
ITD did not detect any clustered plot and also most random plots were classified as regular. Thus 
the ITD tends to coerce random and clustered patterns to regular. The Semi-ITD method detected 
all the clustered plots correctly but also 9 random plots were misclassified as clustered. Yet it 
seems to be impossible to discriminate regular and random plot by the Semi-ITD. By the AREA 
method most random plots were classified correctly whereas most regular and clustered plots 
were misclassified. 
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Table 4: The error matrices of the spatial pattern of trees for the ITD, Semi-ITD and AREA methods. 
 

   Predicted 
   Regular Random Clustered Total 

ITD 

 O
bs

er
ve

d Regular 26 0 0 26 
 Random 34 4 0 38 
 Clustered 8 7 0 15 
 Total 68 11 0 79 

Semi-ITD 

 O
bs

er
ve

d Regular 13 13 0 26 
 Random 12 17 9 38 
 Clustered 0 0 15 15 
 Total 25 30 24 79 

AREA 

O
bs

er
ve

d 

Regular 10 15 1 26 
 Random 7 30 1 38 
 Clustered 3 8 4 15 

 Total 20 53 6 79 

 
 
4. Discussion 
 
The spatial pattern of trees can be obtained in ALS based forest inventories several ways. In the 
ITD tree coordinates are an essential part of the inventory procedure and the spatial pattern of 
trees can be calculated from the tree coordinates. The Semi-ITD does not implicitly produce tree 
coordinates. Therefore we extended original Semi-ITD by specifying how tree coordinates can be 
imputed too. In the area based method tree coordinates are not produced as a part of the inventory 
procedure but the spatial pattern of trees must be predicted separately at the plot, cell or stand 
level. Here the spatial pattern was predicted by patch metrics common in landscape ecology. 
Initial tests indicated that patch metrics are better predictors of the spatial pattern of trees than e.g. 
traditional height and density metrics used in the area based method. 
 
It is difficult to make a fair comparison of different methods in terms of the spatial pattern of 
trees because in the AREA method a classification model requiring time consuming field 
measurements is needed and in the ITD and Semi-ITD methods tree coordinates (i.e. the spatial 
pattern) are obtained as a part of the inventory procedure. It must also be taken into account that 
in many use cases the information about the spatial pattern of trees is used jointly with primary 
attributes (basal area, stem volume, etc.) and that these must be predicted by the same approach. 
Here the accuracy of primary attributes was ignored entirely although it varies among ITD, 
Semi-ITD and AREA. 
 
The Semi-ITD provided the most accurate prediction in terms of the spatial pattern of trees. The 
AREA method was almost as accurate as the Semi-ITD. However, the predictions of the AREA 
and Semi-ITD methods differed considerably which can be seen in error matrices in Table 4. The 
Semi-ITD was able to detect clustered patterns quite well although some commission was 
introduced. The ITD provided the least accurate classification. It tends to force everything toward 
the regular pattern. This is a logical outcome because an inherent property of the ITD is to detect 
only those trees which are clearly visible from the above. Results are also consistent with 
Mustonen (1992) although there are considerable differences in the forest structures of the study 
areas. 
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In this study spatial pattern information was analyzed similarly for all the plots of the study area. 
In the real use case the importance of the information on spatial pattern is different in different 
stand development stages. In seedling stands the recognition of single trees is usually not possible 
but (area based) spatial information could still be used, for example, to determine the success of 
regeneration. In young stands prior to first thinning it is especially important to recognize 
clustered stands since the timing of the silvicultural operation is considerably different in those 
stands. In older stands the most important use of spatial pattern information is in spatial growth 
models. This information can be in the form of tree coordinates in distance dependent growth 
models, competition indices or just some spatial variable in the model. In multilayered forests, 
such as clustered plot in Fig.1 the detection of spatial information is, once again, very difficult 
but on the other hand there is no primary forest management use for such information. All in all, 
determining the spatial pattern of trees by ALS is somewhat unexplored field of study. Therefore 
it should be studied how well the spatial pattern of trees can be determined in different type of 
forests. 
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Abstract 
 
The discontinuous permafrost zone of north-western Canada is characterised by a heterogeneous 
landscape of tree-covered permafrost plateaus that rise 0.5 m to 2.0 m above the surrounding 
fens and bogs. The depth to permafrost or “frost table” is influenced to some extent by 
vegetation canopy cover, which drives complex feedbacks related to permafrost thaw. Spectral 
remote sensing offers the possibility of large area mapping of canopy and ground surface 
characteristics that may be used as a proxy for permafrost thaw within remote northern areas. 
However, this depends on whether or not spectral bands can be used to identify slight variations 
in vegetation characteristics. The following study compares vegetation and topographic 
characteristics obtained using airborne Light Detection And Ranging (LiDAR) with high spatial 
resolution WorldView-2 spectral bands and in situ transect measurements of the depth to frost 
table. The results of this study indicate that the depth to the frost table is related to above ground 
vegetation cover and tree height, yet relationships are complicated by canopy and understory 
characteristics, topographic derivatives, and the position of the measured frost-table transect 
within the fragmented plateau. Comparisons between vegetation structural characteristics and 
WorldView-2 spectral bands are also examined so that confidence can be applied to depth of 
frost table estimates from WorldView-2 based on canopy characteristics. Discrete WorldView-2 
pixels are related to depth to frost table (bands red, near infrared 1,2) and canopy 
metrics/topography obtained from airborne LiDAR. Variability is due, in part to absorption of 
near infrared by shadow fractions observed within WorldView-2 pixels, and spectral reflectance 
of ground vegetation visible within mixed pixels. High resolution spectral imagery, therefore, 
provides a link to processes controlling spatial variability of the depth to frost table.  
 
Key Words: permafrost, discontinuous permafrost zone, multi-spectral remote sensing, 
WorldView-2, airborne LiDAR, vegetation structure. 
 
1. Introduction  
 
The southern boundary of discontinuous permafrost found in north-western Canada is highly 
sensitive to increases in air temperature via global warming in this region. Several studies have 
shown unprecedented permafrost thaw and the conversion of permafrost plateaus into bog and 
fen land cover types using historical aerial photography (e.g. Shur and Jorgenson, 2007; 
Quinton et al. 2010; Chasmer et al. 2010, 2011a). The conversion of plateaus into 
permafrost-free peatlands (ombrotrophic flat bogs and channel fens) strongly affects the 
hydrological nature of the watershed. Permafrost controls water storage and drainage processes 
by obstructing and re-directing the movement of water through channel fens and bogs (Quinton 
et al. 2010). The depth to permafrost, herein referred to as the “frost table”, is influenced to 
some extent by radiation loading (Tarnocai et al., 2004; Chasmer et al. 2011a), whereby up to 
40% of the variance in frost table depth can be explained by the variation in canopy openness 
(Hopkinson et al. in review). Localised increases in shortwave radiation cause preferential thaw 
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of the active (or seasonally thawed) layer, which may result in a depression within the 
permafrost. Water drains towards the depression, resulting in a local increase in soil moisture 
and thermal conductivity (Hayashi et al. 2007).  
 
Spatial variability of the existence of and depth to the plateau frost table has important 
implications for northern development and resources extraction, hydrology, and carbon and 
methane cycles. Given that permafrost underlies approximately 50% of the Canadian landmass, 
and that peatlands, which characterise a large proportion of northern ecosystems, contain 
approximately 1/3 of the global soil C pool (Gorham, 1991), large area mapping and assessment 
of proxies of permafrost change (e.g. plateau forest cover) is important. The following study 
examines relationships between the depth to frost table, vegetation and topographical 
characteristics measured using airborne Light Detection And Ranging (LiDAR), and spectral 
bands obtained from high spatial resolution WorldView-2 imagery across a permafrost plateau 
located within a typical watershed found in the Canadian discontinuous permafrost zone. The 
results of this study have implications for scaling and assessment of permafrost dynamics over 
broader areas using lower resolution multi-spectral satellite imagery.     
 
2. Methods 
 
2.1 Study area  
 
The site is located approximately 50 kms south of Fort Simpson, within the Scotty Creek 
watershed (61° 18'N, 121° 18'W), Northwest Territories, Canada (Figure 1). The watershed is 
typical of the continental high boreal discontinuous permafrost/peatland region (National 
Wetlands Working Group, 1997). A supervised classification of IKONOS imagery (2000) 
(Quinton, et al. 2003) showed that approximately 43% of the watershed consisted of permafrost 
plateaus, ombrotrophic flat bogs (24%), channel fens (21%), lakes (9%), and isolated bogs (4%). 
Plateau extents are diminishing at an alarming rate (14% aerial reduction since 1970); with 73% 
of that area converting into bog as opposed to fen land cover types (Quinton et al. 2010; 
Kenward et al. in review). Permafrost plateaus support Picea mariana Mill. (black spruce) and a 
variety of shrubs and lichens. The mean annual temperature measured at Fort Simpson is -3oC, 
while mean annual precipitation is 369 mm (1971 to 2000).  
 
The depth to frost table was measured on August 2nd, 2010 along four ground-survey transects 
traversing north to south (one transect) and east to west (three transects) across a typical 
permafrost plateau (Figure 1). Depth to frost table was measured using a graduated steal 
measurement rod. The rod was pushed into the peat until it encountered frozen ground and 
could not be pushed in any further. Markings on the rod were used to determine the depth to 
frost table. Every measurement of frost table depth was geographically located using 
survey-grade differential GPS measurements (> 10 cm accuracy).  
 
2.2 LiDAR data collection and processing  
 
Airborne LiDAR data were collected by the authors (Applied Geomatics Research Group) for 
the entire Scotty Creek watershed on August 2nd, 2010 using an Optech Inc. ALTM 3100 
four-pulse return system. The survey was parameterised for an averaging flying height of 1500 
m a.g.l., with 50 kHz pulse repetition frequency, and a scan angle of ±20o. Returns were 
classified into ground and non-ground (vegetation) within TerraScan software (Terrasolid, 
Finland) (Axelsson, 2000). Ground returns were used to create a 2 m resolution digital elevation 
model (DEM) using an inverse distance weighting approach. A digital surface model (DSM) 
was created based on the maximum laser pulse return (localised maxima) within a 2 m search 
radius. Canopy height was determined by subtracting the DSM from the DEM. Finally, gap 
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fraction was estimated as the ratio of the sum of all laser pulse returns between -1 m and + 0.5 
m of the ground surface divided by the sum of all returns within a 1 m search radius.  
 

 
 
Figure 1: Depth to frost table measurement locations along four transects traversing the western edge of a 

permafrost plateau displayed as: a) WorldView-2 pan sharpened false colour composite of permafrost 
plateau, where red channel is WorldView band 6 (red edge), green channel is band 5 (red), and blue 

channel is band 3 (green); b) sub-area of watershed with LiDAR and WorldView-2 data collections. False 
colour composite in ‘a’ shown. Green areas = highly productive fen, red areas = treed permafrost plateaus, 

yellow = less productive bog; c) location of the study site in the Northwest Territories, Canada; LiDAR 
derived: d) canopy height model; e) gap fraction model; f) digital elevation model.    

 
2.3 WorldView-2 image collection and orthorectification  
 
Space-borne WorldView-2 (DigitalGlobe Corp.) was tasked for imaging of the Scotty Creek 
watershed between September 17 and October 1, 2010 (resulting in two cloud-free images) via 
MDA Corp. Canada. WorldView-2 data were obtained as a standard, radiometrically corrected 
ortho-ready bundle including a 0.65 m panchromatic image (400-900 nm) and eight narrow 
spectral bands: coastal (400-450 nm), blue (450-510 nm), green (510-580 nm), yellow (585-625 
nm), red (630-690 nm), red edge (705-745 nm), near infrared 1 (NIR1, 770-895 nm), and near 
infrared 2 (NIR2, 860-1040 nm) at 2 m pixel resolution. The look angle was 20o maximum off 
nadir. Data were processed to UTM coordinates matching that of the LiDAR data (NAD83 
CSRS). The watershed was divided into 2 km x 2 km tiles and imported into Geomatica 
OrthoEngine (PCI Inc. Canada) using the WorldView-2 mosaic and colour-balancing tool. The 
colour-balanced, mosaiced imagery was then orthorectified using the LiDAR DEM, 2 m 
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resolution gridded ground surface laser return intensity and 23 tie points located within both 
datasets at the intersections of trails and seismic lines. The images were orthorectified to better 
than 1 m accuracy using a second order polynomial transformation in OrthoEngine. Table 2 
provides summary statistics of WorldView-2 spectra per band along transects. Pixel digital 
numbers (DN) were then converted to top-of-atmosphere spectral radiance (Wm-2 sr-1 µm-1) 
based on absolute radiometric calibration factors (Wm-2 sr-1 count-1) provided per band to get a 
band-integrated radiance (Wm-2 sr-1). This is then divided by effective bandwidth to get spectral 
radiance. 
 
2.3 Statistical analysis 
 
LiDAR vegetation (CHM, gap fraction) and elevation (DEM) metrics, and WorldView-2 
spectral bands were compared with depth to frost table measurements within 1 m and 2 m radii 
of the measurement location (pixel/cell averages, maximum, minimum, and standard deviations 
presented) (Morrison, et al. this issue of SilviLaser). Only depth to frost table measurements 
located on the plateau (as opposed to plateau edges) are described. Processes associated with 
permafrost thaw at the edge of plateaus can differ from those within plateaus, and therefore, 
measurements at the edge of plateaus were excluded from this analysis. (A more comprehensive 
assessment of the LiDAR and frost table depth spatial correlations is presented in Hopkinson et 
al. in review). The numbers of measurements included along transects were: 13 (N-S transect), 6 
(E-W transect 1), 6 (E-W transect 2) and 9 (E-W transect 3) for a total of 34 measurements. 
Comparisons were made using linear and non-linear (where required) regression and tests of 
significance.  
 
3. Results and Discussion 
 
3.1 General observations along transects  
 
The results of this study provide some promise as to the use of WorldView-2 spectral imagery 
for detecting i) areas underlain by permafrost; and ii) the relative depth to permafrost as a 
function of canopy cover. In many cases, airborne LiDAR data may not be needed. This could 
extend the application of this study to other remote northern environments not surveyed by 
LiDAR.  
 
Measurements along transects that have tallest trees, fewer within canopy gaps, and slightly 
upraised elevation are characterised by frost table depths not far below the ground surface (on 
average) (Table 1, characteristic transects in italics). Along one transect, however (E-W Transect 
3), close proximity to the southern edge of the plateau, shorter trees, and greater within canopy 
gaps may have contributed to increased thaw down of the frost table. This is especially evident 
along parts of the transect that traversed the plateau near an area of plateau collapse and an 
overland flow channel (Table 1, normal text).  
 

Table 1: Depth to frost table, vegetation and ground surface elevation summary statistics (average and 
standard deviation (σ)) for transects. Statistics are based on LiDAR metric extractions within 1m of frost 

table depth measurement locations.  
 

Transect Average (σ) 
depth to frost 

table (m) 

Average (σ)  
canopy height 

(m) 

Average (σ) 
gap fraction 

Average (σ) 
elevation (m) 

N-S Transect -0.47 (0.08) 4.9 (0.9) 0.75 (0.11) 284.5 (0.32) 
E-W Transect 1 -0.52 (0.07) 5.0 (1.3) 0.81 (0.10) 284.6 (0.32) 
E-W Transect 2 -0.50 (0.06) 4.5 (0.95) 0.79 (0.10) 284.5 (0.40) 
E-W Transect 3 -0.56 (0.09) 3.2 (1.5) 0.87 (0.12) 284.5 (0.30) 
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Comparisons of average (and σ) band radiance between transects illustrate some variability 
associated with canopy, understory and ground surface characteristics. Optically bright reindeer 
lichen (Cladina mitis; Cladina rangiferina), and senescing short deciduous shrubs (Oxycoccus 
microcarpus; Ledum groenlandicum) found along Transects 1 and 3 (E-W) have contributed to 
increased reflectance in green, red edge, NIR1 and NIR2 bands. Reduced spacing between trees 
and increased within canopy shadows along transects N-S and E-W 2 may have resulted in 
reduced reflectance in NIR1 and 2 bands. Are variations in spectral radiance a proxy indicator of 
frost table depth between transects?  
  
Table 2: WorldView-2 spectral radiance (Wm-2 sr-1 µm-1) summary statistics within 1 m radius of depth to 

frost table measurements per transect. 
 

Transect Ave. (σ) 
WV2 B1 
(coast) 

Ave. (σ) 
WV2 B2 

(blue) 

Ave. (σ) 
WV2 B3 
(green) 

Ave. (σ) 
WV2 B4 
(yellow) 

Ave. (σ) 
WV2 B5 

(red) 

Ave. (σ) 
WV2 B6 

(red 
edge) 

Ave. (σ) 
WV2 B7 
(NIR1) 

Ave (σ) 
WV2 B8 
(NIR2) 

N-S 
Transect 

32.11 
(6.31) 

27.96 
(3.75) 

17.74 
(1.59) 

12.19 
(1.66) 

9.18 
(1.26) 

13.88 
(1.60) 

14.41 
(1.27) 

10.11 
(0.92) 

E-W 
Transect 1 

32.30 
(6.35) 

28.18 
(3.78) 

9.17 
(0.82) 

13.12 
(1.79) 

9.46 
(1.30) 

15.65 
(1.81) 

16.30 
(1.44) 

12.25 
(1.11) 

E-W 
Transect 2 

32.09 
(6.31) 

27.66 
(3.71) 

17.35 
(1.56) 

12.29 
(1.68) 

8.95 
(1.23) 

13.65 
(1.58) 

13.50 
(1.19) 

11.10 
(1.01) 

E-W 
Transect 3 

32.64 
(6.41) 

28.62 
(3.84) 

18.66 
(1.67) 

13.57 
(1.85) 

10.41 
(1.43) 

16.62 
(1.92) 

16.38 
(1.45) 

12.61 
(1.14) 

 
3.2 Correspondence between WorldView-2 bands and variability in frost table depth   
 
Variability in frost table depth across all transects did not correspond well with radiance from 
WorldView-2 spectral bands. At best, increased reflectance in red wavelengths corresponds 
significantly, but not strongly with increased depth to permafrost (r2 = 0.09, p <0.001, RMSE 
=0.07 m for red band). Thus, WorldView-2 spectral radiance is confounded by within and below 
canopy averaging within pixels and variability when examined across transects. Mixed pixels 
caused by narrow black spruce canopies and leaning trees (as permafrost thaws), poorly drained 
and dry upraised peat soils, and groups of shrubs and reindeer lichen alter within pixel spectral 
reflectance. The location of transects on the plateau surface, and feedbacks between soil 
moisture (at the edge of plateaus), and fragmentation also confound relationships. Yet, within 
transects, some interesting relationships between vegetation/ground surface structure, spectral 
reflectance, and depth to frost table can be found. 
 
3.3 Comparisons between airborne LiDAR metrics and WorldView-2 along transects  
 
Within transects, airborne LiDAR metrics of canopy height, elevation, and to a lesser extent gap 
fraction correspond significantly with WorldView-2 spectral bands. However, coefficients of 
variation (r2) often explain up to only one third of the variability, indicating some complexity 
remains unexplained: 
 

1. Mean canopy heights within 2 m of individual frost table depth measurements are 
negatively related to mean reflectance in the red band (r2 = 0.34, p < 0.001, RMSE = 
1.44 m). Red reflectance decreases with greater pixel fractions containing trees (often 
positively related to canopy cover (r2=0.19).  

2. Variability of maximum canopy gaps within 1 m radius of frost table depth 
measurements are positively related to increased variability in NIR2 band (r2 = 0.21, p 
<0.001, RMSE = 9%) due to reduced within canopy shadowing. 

3. Variations in elevation within a 2 m radius of frost table depth measurements are 
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explained by between pixel standard deviation in the red band, where increased 
variability often results in increased red reflectance (r2 = 0.21, p <0.001, RMSE = 0.09 
m). 

 
Within individual transects, spectral radiance may be used to estimate variability in the depth to 
frost table, depending on vegetation and ground surface characteristics defined by LiDAR. 
Taller trees found along N-S Transect are associated with increased reflectance in the green 
band (r2 = 0.52, p <0.01), increased ground surface shadowing, and reduced depth to frost table 
(Table 3). Along E-W Transect 1, green reflectance from the ground, as opposed to that from 
widely spaced trees may be linked to increased tree bole illumination and sensible heat inputs 
from tree boles into the ground surface (thereby increasing permafrost thaw; Chasmer et al. 
2011; Hopkinson et al. in review). Similar results were also found along E-W Transect 2, which 
was characterised by some ground surface shadowing and absorption in NIR bands. Spectral 
reflectance within red edge wavelengths was indicative of senescing black spruce trees, 
successive deciduous shrub development, and tall grasses often found at waterlogged plateau 
edges and within areas of plateau slump (Table 3).  
 

Table 3: Strongest relationships between depth to frost table and WorldView-2 bands within transects.  
 

Transect WorldView 
band 

r2 (p) RMSE 
(m) 

Distance from depth to frost 
table measurement 

N-S Transect Green 0.18 (0.008) 0.06 1 m, minimum radiance 
E-W Transect 1 Green 0.94 (<0.001) 0.02 1m, minimum radiance 
E-W Transect 2 NIR2 0.81 (<0.001) 0.03 2m, minimum radiance 
E-W Transect 3 Red Edge 0.71(<0.001) 0.05 2m, σ 

 
4. Conclusions 
 
This study compares measurements of the depth to frost table with high resolution multispectral 
WorldView-2 imagery and vegetation structural/topographic metrics derived from airborne 
LiDAR data. The purpose was to determine if structural/topographic metrics that influence the 
spatial variability of the depth to frost table can be examined using spectral remote sensing 
imagery at the end of the growing season. This study has shown that variability in depth of frost 
table can be estimated using green and NIR bands, however, the strength of the relationships 
vary with spatial variability of local canopy height, spacing between vegetation, shadows, and 
proximity to plateau edge (within up to 2 m from the frost table depth measurement). 
WorldView-2 spectral bands, red and NIR2 can also be used to estimate canopy height, canopy 
gaps, and elevation. 
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Abstract 
 
The climate change has been related to the increase of forest insect damages in the boreal zone. 
The prediction of the changes in the distribution of insect-caused forest damages has become a 
topical issue. The common pine sawfly (Diprion pini L.) is regarded as a significant threat to 
boreal Scots pine (Pinus sylvestris L.) forests. Efficient and accurate methods are needed for 
monitoring and predicting changes in insect defoliation. In this study, the field work has been 
carried out in 2009 in Eastern Finland, where D. pini has caused considerable damage in 
managed Scots pine forests. Altogether 95 sampling plots were used in the analysis. A high 
density ALS data was acquired simultaneously with the field work. The aim of the present study 
was to test the accuracy of the plot level needle loss predictions determined from the area based 
and single tree ALS features separately. The Random Forest method (RF) was utilized in the 
estimation. The best classification accuracy for the test set was 67.4% (area based features). The 
best plot level accuracy using the tree-wise features was 60.6%, respectively. 
 
Keywords: ALS, Random Forest, defoliation, Diprion pini, forest disturbances 
 
1. Introduction  
 
Evergreen coniferous forests dominate the landscape in Finland, covering about 76 % of the 
land. Forests have been profoundly altered by human activities and most of the massive 
old-growth forests have been replaced with younger, even-aged managed forests. Climate 
change and its effects in Finland may be the most serious environmental issue threatening the 
health of forests. Average annual temperatures have increased more in northern latitudes than 
the global average temperatures. Ecological balance of forests has been interrupted, causing 
wide pest damages in managed forests (Moore and Allard 2008). Substantial changes in patterns 
of forest disturbance have been observed to cover larger areas than ever before (e.g. 
Lyytikäinen-Saarenmaa and Tomppo 2002). Outbreaks of defoliating insects have increased 
sharply in the two past decades (Kantola et al. 2010, Karjalainen et al. 2010).  
 
There is an increasing need to map and monitor the area, estimate severity and detect spatial 
location of the hazard (Lyytikäinen-Saarenmaa et al. 2008, Karjalainen et al. 2010). The remote 
sensing (RS) methods have related differences in spectral responses to chlorosis, foliage 
reddening or foliage loss over time, aiming to interpret, classify or correlate to damage caused 
by pest insects. RS can produce data for large areas of remote, inaccessible forest lands quickly 
and with a higher cost-efficiency rate than ground surveys (Hall et al. 2007). 
 
Rapid development of airborne laser scanning (ALS) techniques has provided new perspectives 
to the forest inventory, as well as forest health survey. With the capability of directly measuring 
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forest structure, including canopy height and crown dimensions, including changes in foliage 
mass, ALS is increasingly used for forest inventories at different levels (e.g. Maltamo et al. 
2004, van Aardt et al. 2008,). ALS is also a promising method for monitoring forest hazards. 
There are several recent studies for more accurate ALS-based biomass detection (Sohlberg et al. 
2006, 2010, Hawbaker et al. 2009). The accuracies for detection of defoliated individual trees 
have already been proposed (Kantola et al. 2010). Single tree biomass and defoliation level 
gained high correlation by means of terrestrial laser scanning (see e.g. Hyyppä et al. 2009). 
 
2. Material and methods  
 
2.1. Study area  
  
We carried out the present research in Ilomantsi, eastern corner of Finland (62°53´N, 30°54´E). 
Dry or dryish forest site types mainly dominate the 34.5 km2 wide study area. The dominance 
of Pinus sylvestris is 99.5%. The majority of stands on the area are young to middle-aged stands, 
having a mean age of 53 years and mean diameter of 14.7 cm. The initial outbreak of the 
Common pine sawfly (Diprion pini L.) was launched in western cost side of Finland in 1997, 
and was firstly visible in 1999 on the Palokangas area. Since then, the outbreak range in 
Palokangas has spatially fluctuated between 10 000 to 15 000 ha during the last 12 years. 
Population density and damage intensity has been fluctuating between years, showing now a 
chronic nature. The first spots with dead trees appeared in 2008-09, due to severe defoliation 
during several years.  
 
2.2 Field data 
 
The field measurements were carried out in May and early June 2009 before elongation of 
current needles, representing the defoliation status of the fall 2008. Total of 113 mature, 
maturing or seedling felling sampling plots were measured using adaptive cluster sampling 
(ACS) as an inventory method (see more details from Talvitie et al. 2011). The visual 
assessment of defoliation intensity was performed simultaneously with tree-wise measurements.  

 
Figure 1. The distribution of the defoliation level of sampling plot in training and test sets. 

 
The sampling plot centres were located with a Trimble Pro XH (Trimble Navigation Ltd., 
Sunnyvale, CA, U.S.), which can reach up to 30 cm precision. Differential post processing was 
applied. The individual trees were also located. The defoliation intensity of a single tree was 
visually assessed from different directions according to Eichhorn (1998). An accuracy of 10 % 
was used in the assessment of needle loss. The defoliation levels of the plots were calculated as 
an average of the needle losses of the trees of the two dominant canopy levels.  
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Altogether 95 sampling plots were used in the analysis. A total of 1377 trees from upper canopy 
layers were identified. The amount of individual tree detection (ITD) trees per plot varied from 
1 to 31. The defoliation levels of the plot varied between 0 and 50 (Figure 1.) and the defoliation 
levels of the single trees varied between 0 and 100. Most of the trees and plots had 10 to 30% as 
a level of the needle loss. The data was divided randomly to training and test sets. Training set 
consisted of 49 plots and 707 trees and the test set of 46 plots and 670 trees. 
 
2.3 Remote sensing material 
 
The ALS data was acquired in October 2008 with a Leica ALS50-II SN058 laser scanner (Leica 
Geosystem AG, Heerbrugg, Switzerland). The flying altitude was 500 m at a speed of 80 knots, 
with a field of view of 30 degrees, pulse rate of 150 kHz, scan rate of 52 Hz and size of the laser 
footprint on the ground of 0.11 m. The density of the returned pulses within the field plots was 
approximately 20 pulses per m2. ALS data were classified into ground or non-ground points 
using the standard TerraScan approach as explained by Axelsson (2000). A digital terrain model 
was created using classified ground points. Laser heights above ground (normalized height or 
canopy height) were calculated by subtracting the ground elevation from corresponding laser 
measurements. Heights greater than 2 m were considered as vegetation returns, and only these 
were used for tree feature extraction. 
 
2.4 Plot level feature extraction 
 
In the area based approach the canopy height or vertical distribution of laser returns were used 
for estimating plot-level defoliation. The laser returns within each plot were extracted from the 
laser data for the radius of 8 m. Descriptive features were derived individually per plot from the 
normalized point height for the vegetation points (first and last). The features derived were 
minimum height (Hmin), maximum height (Hmax), mean height (Hmean) calculated as the 
arithmetic mean of the laser heights, standard deviation of laser heights (Hstd), coefficient of 
variation (CV), penetration, percentiles calculated from 10% to 100% of the canopy height 
distribution at 10% intervals (h10−h100), canopy cover percentiles expressed as proportions of 
the first returns below a given percentage (10% to 90%) of the total height (p10−p90). 
 
2.5 Individual tree detection and feature extraction 
 
A raster canopy height model (CHM) was created from normalized data for individual tree 
detection and crown segmentation. Single tree segmentations were performed on the CHM 
images using a minimum curvature-based region detector (Yu et al. 2010). During the 
segmentation processes, the tree crown shape and location of individual trees were determined. 
The procedure consisted of four steps. 1.) The CHM was smoothed with a Gaussian filter to 
remove small variations on the crown surface. 2.) Minimum curvatures were calculated. 3.) The 
smoothed CHM image was scaled based on the computed minimum curvature resulting in a 
smoothed yet contrast-stretched image. 4.) Local maxima were searched for in a given 
neighbourhood.  
 
Each segment was considered to present a single tree crown. The identification rate was 83 %. 
Laser returns falling within each individual tree segment were extracted and the canopy heights 
of these returns were used to derive the tree features. The first returns were used in this study as 
well as the intensity values of the returns (Table 1). The intensity calibration was achieved by 
linear regression for modelling the relationship between intensities of two different datasets 
(Vain et al. 2010) using 3 gravel targets placed in the test area during the campaign. 
 
Table 1. Features extracted from ALS data for individual trees. 
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Feature Description 
Hmax Maximum laser height 
Hmean Arithmetic mean of laser heights 
Hstd Standard deviation of heights 
CH Crown height 
CA Crown area as a convex hull 
CV Crown volume as a convex hull in 3D 
P10-90 Percentile of canopy height distribution 

CCP10-90 
Canopy cover percentile as propertion of returns below  
a given percentage of total height 

MaxD Maximum crown diameter when crown was considered as a ellipse 
min Intensity features 
max           " 
range           " 
std           " 
skewness           " 
kurtosis           " 
COV           " 
P10.1-90.1 Percentile of intensity 
 
2.6 Random Forest 
 
The RF algorithm, proposed by Breiman (2001), is a nonparametric estimation approach. The 
method is composed of a set of regression trees that are constructed from bootstrapped training 
data. The bootstrapped data consist in general of sets of samples taken randomly with 
replacement from the original training set. A regression tree is built for each of the bootstrap sets. 
Random forests are created by averaging over trees. A regression tree is a sequence of rules that 
split the feature space into partitions having similar values to the response variable. A method 
based on a classification and regression tree is usually adopted to generate regression trees. At 
each node of a regression tree, data are split until the leaf nodes contain fewer samples than 
some preselected value, or the sum of squares of distances to the mean value of the respective 
group is less than the threshold. RF is described and used for the estimation of tree variables 
(e.g. in Yu et al. 2010). The R yaImpute library (Crookston and Finley 2007-2010) was applied 
in the RF estimations. Total of 2000 regression trees were fitted in each RF run to gain more 
consistency. 
 
2.7. Classifications 
 
The defoliation levels of the plots were estimated with RF using two different classifications. 
The first approach was using two classes (Two classes), having a defoliation level under or 20% 
or more. The second estimation was made using the 10% accuracy of the needle losses (10% 
classes). The plot level estimation using the ITD features was made also with the same 
classifications. The estimation accuracies were tested using the first returns, the last returns and 
both of them together. The results were studied further in case of the first returns. 
 
3. Results  
 
3.1 Plot level estimation 
 
The best plot level classification accuracy was gained using the first returns with two classes 
(93.9% for training set and 67.4% for test set) (Table 2.). The best classification accuracy for 
test set in 10% classification using first returns was 47.8% (79.6% for training set). The 
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accuracies between different sets of features varied relatively little. The best explanatory 
features were penetration and different canopy cover percentiles and height features (Figure 2.)   

 

 
Figure 2. Importance of features in classifying defoliation level of the sampling plots using first returns 
(two classes on the left and 10% classification on the right side). A high value of a feature indicates an 

importance to the classification. For feature descriptions, see paragraph 2.4. 
 

Table 2. The plot level classification accuracies (%) for training and test sets with both classification 
methods using first, last or both returns.  

  Two classes   10 % classes   
 First  Last Both First  Last Both 
Train set 93.9 91.8 93.9 79.6 85.7 89.7 
Test set 67.4 58.7 67.4 47.8 47.8 43.5 

 
3.2 Tree level estimation 
 
In the second approach the plot level estimates were conducted from single tree needle loss 
estimates (ITD trees). The best classification accuracy for training set was 94.7% (first returns) 
and for test set 60.6% (both returns) (Table 3.). The tree-wise accuracies were evidently better 
using first classification. The best tree-wise explaining features using first returns were different 
intensity features, max diameter, max height and crown features (Figure 3.)  
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Figure 3. Importance of features in classifying defoliated trees using first returns (two classes on the left 
and 10% classification on the right side). A high value of a feature indicates an importance to the 

classification. For feature descriptions, see Table 1. 
 

Table 3. The tree-wise classification accuracies (%) for training and test sets with both classification 
methods using first, last or both returns.  

  Two classes   10 % classes   
 First  Last Both First  Last Both 
Train set 94.7 93.9 93.3 87.6 85.9 88.7 
Test set 58.1 60.3 60.6 36.1 33.9 37.8 

 
The plot-wise defoliation levels were calculated as an average of the defoliation levels of the 
ITD trees. The mean defoliation level of the ITD trees varied moderately from the field 
estimation because all the trees were not identified (Figure 4 and table 3). The best classification 
accuracy for test set was 60.9 (two classes). Using 10% classes the accuracy was 58.7% for the 
test set. The trend of minor underestimation of the defoliation level was evident (see Figure 4).  
 

 

 
Figure 4. The plot level defolation levels from the field (blue line), counted as an average from the 
identified trees (red line) and an average from the estimated defoliation of single trees (green line). 

 
Table 4. Plot level classification accuracies (%) between field estimation, ITD trees and Random Forest 

estimation based on to different classification using first returns. 
    Two classes 10% classes 
    ITD trees Field ITD trees Field 
IDT trees Trainig set 100 77.5 100 77.5 
 Test set 100 78.3 100 71.7 
Estimated Trainig set 91.8 73.5 83.7 77.5 
  Test set 69.6 60.9 60.9 58.7 

 
4. Discussion  
 
In the present study statistical ALS features were tested for classification of mean defoliation of 
sampling plots. The RF method was applied for two different approaches. The analyses for both 
approaches were made with two classifications (Two classes and 10 % classes). To the best of 
our knowledge this was the first study using ALS features for estimating plot level defoliation. 
In several studies ALS data has been used in forest characteristics estimation other than 
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defoliation at stand level (see e.g. Korpela et al. 2010). In the field of forest disturbances the 
utilization of ALS has been less studied (see e.g. Vehmas et al. 2009 and Solberg 2006). Kantola 
et al. (2011) tested the ALS data for tree-level defoliation prediction. The classification accuracy 
was 77% for two defoliation classes (threshold 30% of defoliation).  
 
The results of this study are in some ways comparable with the other studies using RS data in 
needle loss prediction. Ilvesniemi (2009) used the same Palokangas study area, when 
investigating the usability of aerial photographs classifying plot level defoliation. The 
classification accuracies varied between 38% (9 classes) and 87.3% (2 classes).Testing data was 
not used. Karjalainen et al. (2010) used multitemporal ERS-2 and Envisat satellite images and 
calculated the SAR backscattering intensities of 400m x 400m grid cells to estimate defoliation. 
A classification accuracy of 67.8% for test set (two classes) was obtained.  
 
Comparing our results to previous studies with other RS materials ALS does not seem provide 
much additional information. If defoliation is estimated using are-based approach variation in 
plot-level basal area hinders the detection of defoliation effect, i.e. basal area dominates pulse 
penetration. For accurate defoliation detection effect of basal area has to be calibrated. Also the 
effect of distributions of the ALS features of different fertility classes need also be 
studied although the variation of different site types was small in the study area. The 
distribution of the defoliation level of the sampling plots was not even on the study area. The 
larger proportion of trees of having severe needle loss category could improve the classification 
accuracy. The more even distribution would also have provided possibility for testing different 
threshold values for classification. 
 
The results of the present study may give an important finding for detecting and mapping insect 
damages and improving the inventory of damages by defoliators. ALS based system for 
monitoring forest health is under interest since operational forestry is adapting ALS inventories 
in the operational forestry. The classification accuracies might have been presumably lower 
applying low density ALS data, commonly used at the operational level. However, the pulse 
densities are assumingly increasing in the future also in practical implementations.  
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Abstract 
 
Changing climate is expected to have a significant impact on temperature-sensitive ecosystems 
like the forest-tundra ecotone. In Norway, this ecotone constitutes a large proportion of the total 
land area and effective monitoring techniques are required. It has been indicated that height and 
intensity data from airborne laser scanning may hold potentials for monitoring of small trees. In 
the present study, Voronoi polygons and variograms were employed in order to assess the spatial 
patterns of trees and non-tree objects located in the forest-tundra ecotone. Patterns both for trees 
and non-tree objects could be recognised using Voronoi polygons in combination with height 
and intensity values. Furthermore, variograms and cross-variograms revealed different 
characteristics for trees and non-tree objects, however, limited to large individual objects located 
on flat terrain. 
 
Keywords: Forest-tundra ecotone, ALS, intensity, Voronoi, variogram, cross-variogram   
 
1. Introduction 
 
Currently, there is a strong focus on the effects of a changing climate. An increase of mean 
temperature will affect most ecosystems and the interaction between them (Stenseth et al. 2002; 
Woodall et al. 2009) and for example the growth in forest ecosystems is expected to be affected. 
The relatively largest effects of increasing temperatures will happen in forest ecosystems were 
temperature is the limiting factor, such as in the forest-tundra ecotone. Increased growth (Zheng 
et al. 2002) and migration of trees into the current alpine zone (Opdam and Wascher 2004) are 
predicted. It is of great interest to develop methods for monitoring these changes, both for 
carbon reporting and ecological reasons.  
The forest-tundra ecotone constitutes a large proportion of the total land area of Norway and 
monitoring requires that some remote sensing technique is used. However, it is challenging to 
use such techniques in these areas because the objects of interest – trees – are both small in size 
and sparsely distributed. Thus, they are easily confused with other non-tree objects such as 
rocks and hummocks.  
Airborne laser scanning (ALS) data is nowadays frequently used for forest inventory (e.g. 
Næsset 2007). Studies that utilize ALS data for change estimation have been conducted (e.g. 
Næsset and Gobakken, 2005). There have also been studies dealing with tree migration into the 
alpine zone using ALS data (Næsset and Nelson 2007). Most of these studies have only utilised 
the height information of individual echoes of the ALS point cloud. However, since the ALS 
data also include information about the intensity of each echo, it might be possible to 
discriminate between trees and other objects based on this spectral information. Further, the 
spatial structure of the data may also help discriminating between different types of objects. 
Spatial correlation or dependency is demonstrated by a variety of biological phenomena (Rossi 
et al. 1992), and often emerges in patches (Fry and Stephens 2010). Therewith, it is also likely 
that the spatial variation of ALS echoes classified as vegetation echoes is different around trees 
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and non-tree objects. For example, if the probability of finding a tree is larger in the close 
proximity of another tree compared to a non-tree object, this can be exploited to distinguish 
trees from non-trees. The aim of this study was to test the capability of ALS data to distinguish 
between trees and non-tree objects in the forest-tundra ecotone using laser height and intensity 
information and spatial correlation analyses. 
 
2. Materials and Methods 
 
2.1 Study area 
 
The study was carried out using data from a 1,500 km long and approximately 180 m wide 
longitudinal transect stretching from Tromsø in the northern part of Norway (69°3’ N 17°5’E) to 
Tvedestrand in southern Norway (58°3’N 9°0’E) (see Figure 1). Literately hundreds of 
mountain forest/alpine elevation gradients were encompassed by the transect. Sample plots were 
laid out as ground reference in several transitions between mountain forest and the alpine zone, 
the forest-tundra ecotone. The prevalent tree species were Norway spruce (Picea abies (L.) 
Karst.), Scots pine (Pinus sylvestris L.), and mountain birch (Betula pubescens ssp 
czerepanovii). Rounded forms with certain occurrences of hummocks, rocks and boulders 
characterised the terrain surface in most localities along the transect. 
 

 
 

Figure 1: Overview of the study area with the selected field sites (black points). The 1,500 km long 
transect (black line) stretches from to 69°3’ N 17°5’ E to 58°3’ N 9°0’ E. 

 
2.2 Field data 
 
The field work was conducted during summer 2008 in order to provide in situ tree data within 
the transect. 
The overall field dataset for the entire transect was collected at 36 different field sites allocated 
along the transect. However, in this first explorative study, only four of these sites were selected 
for analysis. The selection of these four sites among the 36 was conducted by visual inspection 
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of digital aerial imagery (Statens kartverk 2009) in order to cover a fairly large range of 
topographic conditions (see Figure 1). 
At the four sites, sample trees were selected according to a modified version of the point-centred 
quarter sampling method (PCQ) (Cottam and Curtis 1956; Warde and Petranka 1981) with a 
maximum search limit of 25 m. For each sample tree, tree height, stem diameter at root collar, 
crown diameter, and tree species were recorded individually. The precise position of each tree 
was determined using real-time kinetic differential Global Navigation Satellite Systems 
(dGNSS) employing two Topcon Legacy E+ 20-channel dual-frequency receivers observing 
pseudo range and carrier phase of both GPS (Global Positioning System) and GLONASS 
(Global Navigation Satellite System) satellites with an expected precision of 3–4 cm. In total, 
70 trees were sampled in the four sites, i.e., 54 mountain birch, 12 Norway spruce, and 4 Scots 
pine. A summary of tree metrics is given in Table 1. 
 

Table 1: Summary of field measurements of trees. 
 

Tree species Characteristics n Mean Min Max 
Mountain birch Height (m) 54 1.14 0.07 4.90 
 Diameter at root collar (cm) 53 3.05 0.20 10.60 
 Crown area (m²) 54 0.78 0.002 4.96 
Norway spruce Height (m) 12 1.44 0.07 4.60 
 Diameter at root collar (cm) 12 5.60 0.20 16.10 
 Crown area (m²) 12 1.43 0.006 5.29 
Scots pine Height (m)  4 0.31 0.16 0.72 
 Diameter at root collar (cm)  4 0.88 0.30 1.70 
 Crown area (m²)  4 0.04 0.008 0.11 

 
 
2.3 Laser data 
 
Airborne laser scanner data were acquired in two separate acquisitions in July 2006 and July 
2007. The first acquisition was conducted in Southern and Central Norway with an Optech 
ALTM 3100C laser scanning system, whereas the remaining part in Northern Norway was 
scanned with a Gemini upgraded version of the Optech ALTM 3100C laser scanner, denoted as 
ALTM Gemini. An 80 km long overlap zone was flown at approximately 65°N with both 
systems for comparison reasons. 
The lasers were carried by Piper PA-31 Navajo aircrafts at an average flying altitude of 800 m 
a.g.l. and a flight speed of approximately 75 ms-1. Furthermore, the scan frequency was 70 Hz, 
maximum half angle was 7°, and the average footprint diameter was 20 cm for both acquisitions. 
Pulse repetition frequency (PRF) however, was 100 kHz for the ALTM 3100C and 125 kHz for 
the ALTM Gemini, which resulted in mean pulse densities of 6.8 m-2 and 8.5 m-2, respectively. 
Pre-processing of the laser data was conducted by the contractor (Blom Geomatics, Norway). 
Planimetric coordinates (x and y) and ellipsoidal height values were computed for all laser 
echoes. Laser echoes labelled “last-of-many” and “single”, hereafter denoted as LAST, were 
used for the derivation of the terrain model. Ground echoes were classified from the planimetric 
coordinates and the corresponding height data of the LAST return echoes, and a triangulated 
irregular network (TIN) was derived with an iteration angle of 9° using the TerraScan software 
(Terrasolid 2010). Laser echoes labelled as “first-of-many” and “single”, hereafter denoted as 
FIRST, were used in the analyses of the current study. Therefore, FIRST return echoes were 
projected onto the TIN surface and the corresponding terrain height values were interpolated on 
these locations. For the spatial analyses, the differences between FIRST return echo heights and 
the corresponding interpolated terrain height values were computed and stored. Merely FIRST 
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return laser echoes with positive height values were included in the spatial analyses since these 
represent the sole indicators for the presence of objects on the terrain surface. 
 
2.4 Assessing spatial variation 
 
For the assessment of the spatial point pattern of the FIRST return laser echoes, Voronoi 
polygons were used. Voronoi polygons are used in point pattern analysis in numerous 
disciplines (Boots and Getis 1988). Thereby, a continuous space is divided into regions ensuring 
that each location in the space is associated with the closest point of the point pattern (Okabe et 
al. 2000) (see Figure 2). This means “that each Voronoi polygon consists of an area that is closer 
to a given point than any other point.” (Wulder et al. 2006). 
 

 
 

Figure 2: General example of Voronoi polygons. 
 
An adequate area was defined for each field site for the computation of Voronoi polygons in 
order to avoid edge effects at the sample plot borders. Voronoi polygons were computed for the 
FIRST return laser echoes and both laser height and intensity values were assigned to the 
corresponding polygons for spatial pattern analysis of the distinct parameters. Furthermore, the 
Voronoi polygons were overlaid with the locations of the tree and non-tree objects in order to 
find patterns characterising these objects. For this purpose, rocks representing non-tree objects 
were visually identified on digital aerial imagery and localised in a GIS environment prior to 
analysis.  
Furthermore, tree and non-tree objects were defined for assessing the behaviour of the FIRST 
return laser echoes using geostatistical techniques. Geostatistics in general can involve three 
interrelated stages of characterising the spatial correlation, interpolating unknown values at each 
location and random simulation. In this study, the focus was on the first component where the 
spatial data is characterised by means of semivariogram analysis in order to find differences of 
the behaviour of spatial correlation between tree and non-tree objects. For this purpose, the 
spatial dimensions of all field-measured trees were defined by a 6 m buffer around their 
individual positions in order to provide sufficient point pairs for the geostatistical analysis. Thus, 
also more distant locations were included for being able to detect the change in the spatial 
correlation since nearby values are more likely to be similar than values further off (Fry and 
Stephens 2010). The same procedure was performed for the non-tree objects for the inclusion of 
an adequate number of point pairs. 
A semivariogram, which is usually referred to as a variogram, represents a graphical illustration 
of the spatial variability of a variable. The spatial correlation of a variable is measured by 
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calculating the semivariances of multiple pairs of observations as a function of their separation 
distance (Isaaks and Srivastava 1989) and is referred to as an experimental variogram. The 
separation distances are usually divided into various distance classes, referred to as lag. The 
semivariances of a dataset are computed as 
 
ොሺ݄ሻߛ ൌ ଵ

ଶሺሻ
 ∑ ሾݖሺݔሻ െ ݔሺݖ  ݄ሻሿଶሺሻ

ୀଵ                                          (1) 
 
where ߛොሺ݄ሻ is the estimated semivariance estimator for lag ݄ and ݊ሺ݄ሻ the number of data 
points separated by ݄ (Rossi et al. 1992). 
For investigating a spatial co-variability of two variables, the semivariance model is extended to 
the so called cross-variogram that is computed as 
 
ො௨௩ሺ݄ሻߛ ൌ

ଵ
ଶሺሻ

 ∑ ൣ൫ݖ௨ሺݔሻ െ ݔ௨ሺݖ  ݄ሻ൯൫ݖ௩ሺݔሻ െ ݔ௩ሺݖ  ݄ሻ൯൧ሺሻ
ୀଵ                    (2) 

 
where ߛො௨௩ሺ݄ሻ is the estimated cross-variance of the two variables for lag ݄. 
Univariate experimental variograms are characterised by an increase in semivariance with 
distance ݄ when spatial dependence is present. The experimental cross-variogram however can 
be a decreasing function when the two variables are negatively correlated. Both experimental 
univariate and cross-variograms may reach the so called sill where the semivariance levels off 
or increase ad infinitum. The so called nugget effect is characterised by a semivariance value >0 
at the origin and represents spatial variability due to measurement errors or distances shorter 
than the sample spacing. 
Prior to the geostatistical analysis, the two laser-derived variables under investigation, positive 
height values and normalised intensity, were centred and scaled. For each tree and non-tree 
object, the corresponding laser echoes were extracted using the 6 m buffers and stored 
separately for further analysis in the statistical computing software R (R Development Core 
Team 2007). Experimental variograms and cross-variograms were calculated individually using 
the gstat spatial package (Pebesma 2004). Distance classes were defined as follows since lags 
closer to 0 are expected to provide more information then lags further off: 0 m, 0.5 m, 1 m, 1.5 
m, 2 m, 2.5 m, 3 m, 4 m and 5 m.   
Second-order stationarity was assumed, implying constant mean, variance and covariances due 
to separation only (Webster and Oliver 2001). Furthermore, isotropy was assumed for the spatial 
distributions of the two variables under investigation. 
 
3. Results and Discussion 
 
The spatial point pattern that was investigated using Voronoi polygons showed promising results 
concerning polygon sizes in combination with both the laser height values and the normalised 
intensity. In general, small-sized polygons indicate a high density of FIRST return laser echoes 
in the neighbourhood (see Figure 2) which further suggests tree or non-tree objects in that area. 
Large polygons indicate random laser echoes which actually merely are representing noise in 
the laser data. 
Regarding positive laser height values, the spatial pattern characterising trees strongly depended 
on the terrain surface. For areas with relatively flat terrain and only a few steep slopes, single 
trees from the field data exceeding certain heights (~ 1.5 m) and crown areas (~ 2 m2) could be 
recognised in the spatial pattern. Concerning trees with crown areas under 1 m2 and heights 
lower than 1 m, no spatial pattern could be found. For trees between 1 and 1.5 m, a wide crown 
area is essential for the indication of a potential tree using Voronoi polygons. In quite rugged 
terrain with some flat areas but also steep slopes, even trees with crown areas around 2.3 m2 
were hard to identify in the spatial pattern. Furthermore, areas with flat rocky surfaces had low 
indications for trees by means of the Voronoi polygons. Almost all non-tree objects had a 
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characteristic spatial pattern independent of the terrain surface. This result was expected since 
these objects were merely located using aerial imagery by which large sizes – especially in 
diameter – are required for identification. 
For the normalised intensity, distinct differences in the spatial pattern for tree and non-tree 
objects were found. Even though the intensity values for tree and non-tree objects are similar, 
trees are characterised by a very heterogeneous pattern of intensity values inside the tree crown, 
whereas non-tree objects showed a more homogeneous pattern (see Figure 3). 
 

     
 

Figure 3: Voronoi polygons with assigned height (left) and intensity (right) values. Red markers label 
non-tree objects, coloured ellipses trees measured in field. 

 
Concerning the experimental variograms and cross-variograms for tree and non-tree objects, 
merely variograms with sufficient point pairs were included in the analysis. Some authorities 
consider 30 to 50 comparisons as sufficient, whereas Webster and Oliver (2001) suggest a 
minimum of 100 sampling points for isotropic variation. Due to sparse point data, especially for 
non-tree objects, one tree and eight non-tree objects were discarded. Furthermore, based on the 
findings using Voronoi polygons, also trees smaller than 1 m were excluded from the 
geostatistical analysis. This resulted in a total of 31 tree and 15 non-tree objects used in the 
geostatistical analysis employing experimental variograms and cross-variograms. 
Trees are expected to have slightly higher semivariances for both height and intensity values in 
short distances which furthermore are increasing with increasing distance. This is caused by the 
more heterogeneous pattern of the height and intensity values inside the tree crown (see Figure 
3). Non-tree objects in the forest-tundra ecotone are mostly represented by hummocks, rocks 
and boulders which are usually solid and compact objects with a more or less homogeneous 
surface (see Figure 3). Therewith, one would expect low semivariances for short distances and a 
sudden increase in semivariance for longer distances both related to height and intensity values. 
Concerning individual trees located in flat terrain, the experimental variograms for height and 
intensity and the cross-variogram for both parameters revealed the expected pattern (see Figure 
4) with a clear nugget effect followed by a constant increase with increasing distance for the 
individual variograms. The cross-variogram showed a constant decrease with increasing 
distance due to the negative correlation between height and intensity. For distinct non-tree 
objects located in flat terrain, both the individual experimental variograms clearly showed the 
expected pattern (see Figure 4) with low semivariances within 2 m and an abrupt increase for 
distances larger than 2 m. The cross-variogram reveals the same characteristics involving the 
negative correlation between the two parameters. 
For smaller trees located in more rugged and varied terrain, both the individual experimental 
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variograms and cross-variograms got noisier. Furthermore, surrounding trees affect the 
semivariances of the trees under investigation. Non-tree objects in more rugged terrain in 
combination with flat rocky surroundings did not show a very clear spatial pattern both 
concerning the individual variograms for height and intensity and the cross-variograms between 
these two parameters. 

     
 

Figure 4: Experimental variograms and cross-variograms for an individual tree (left) and a distinct 
non-tree object (right). 

 
4. Conclusion 
 
The analysis of Voronoi polygon sizes in combination with positive laser height and normalised 
intensity values showed promising results in regard to the indication of objects located above 
the terrain surface. Investigating the spatial pattern of the height and intensity values for 
small-sized polygons and their neighbourhood, pre-measured trees and non-tree objects could 
be clearly recognised. 
Furthermore, experimental variograms and cross-variograms for tree and non-tree objects 
revealed characteristics one would expect based on the precedent analysis of the Voronoi 
polygons. The individual experimental variograms for height and intensity showed a clear 
nugget effect for trees followed by a constant increase with increasing distance, whereas the 
cross-variogram revealed a negative correlation between the two parameters with a decreasing 
function of distance. Distinct non-tree objects revealed low semivariances on short distances 
followed by a sudden increase for increasing distances in the individual experimental 
variograms for height and intensity. Furthermore, the cross-variogram followed the same trend 
with a decreasing function due to the negative correlation of the two parameters. 
To conclude, the Voronoi polygon investigation as well as the geostatistical analysis showed 
promising results for the identification and classification of objects on the terrain surface. 
However, clear results are limited to flat terrain and large individual objects in order to 
discriminate between tree and non-tree objects. Further investigation involving for example 
neighbourhood and terrain properties is needed for being able to better distinguish objects in 
areas like the forest-tundra ecotone. For this purpose, fitting theoretical variograms using 
different models in order to obtain nugget, sill and range values might be useful.  
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Abstract 
 
Airborne Laser Scanning (ALS) data can be used to accurately determine tree and stand 
characteristics. We hypothesize here that three-dimensional ALS data can also be used for 
characterizing the horizontal forest structure like the spatial pattern of trees. This kind of 
information is of primary interest in forest management. The objectives of this study were (1) to 
identify ALS point cloud metrics and horizontal texture and landscape metrics, which can be 
used to determine the spatial pattern of trees and (2) to study how well the clustered spatial 
pattern of trees can be separated from others. 
 
The field data consisted of 28 microstands, of which 11 were clustered and 17 random or 
regular. Linear discriminant analysis was used to classify the microstands by means of the 
metrics calculated from ALS data. The best ALS metrics to determine the spatial pattern of trees 
were determined by the best overall accuracies (OA) and kappa-values (k) and based on the 
significance tests of models and the correlation matrices of metrics. 
 
The classification of the spatial pattern of trees succeeds well based on ALS metrics, with the 
overall accuracy being 0.89 and kappa-value 0.77. Especially the calculated landscape metrics 
were found good predictors of the spatial pattern of trees, for example: the number of the 
ground patches per hectare, the average size of the tree patches and the standard deviations of 
the size of all patches in the microstand. To conclude, our results were encouraging to detect the 
spatial pattern of trees based on low density ALS data.  
 
Keywords: Airborne Laser Scanning, spatial pattern of trees, texture metrics, landscape metrics  
 
1. Introduction  
 
In even-aged forestry, one aim of forest management is to produce a regular spatial pattern of 
trees at stand level in order to maximize the use of growing space (e.g. Pukkala 1990). The 
spatial pattern of trees in forest can be defined as the locations of the trees in relation to each 
other. It can be regular, random, clustered, or any combination of them (e.g. Pielou 1960; 
Tomppo 1986). The scale used in analysis also affects this classification. The determination of 
the spatial pattern of trees, based on the tree locations in a two-dimensional space, can be 
estimated statistically. It can be done based on sampling with dedicated sampling designs or by 
measuring the exact locations of all trees. Commonly the spatial pattern is compared to a 
statistically random pattern, the so-called Poisson forest (Diggle 1983). Because the field work 
for measuring the spatial pattern of trees is rather laborious and expensive, the spatial pattern 
has not been widely utilized in the growth and yield models for simulation of stand development 
and in forest planning, despite its effects on the pattern of tree growth (e.g. Kilkki et al. 1985; 
Gavrikov and Stoyan 1995; Pukkala et al. 1998; Coops and Culvenor 2000).  
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High resolution remote sensing methods can provide the means to get estimates of the spatial 
pattern of trees without expensive field work. For example, Coops and Culvenor (2000) and 
Uuttera et al. (1998) have determined the spatial pattern of trees from high spatial resolution 
imagery and aerial photographs, respectively. Existing ALS studies have concentrated on the 
vertical structure of forests. Probably the most obvious way to use ALS data in the 
determination of the spatial pattern of trees would be ITD (individual tree detection), in which 
the positions of the tallest trees can be located (e.g. Mustonen 2002). However, it is not 
currently applied in the practical forest inventories, which are operated with the area based ALS.  
 
From the methodological point of view, the landscape and texture metrics are tools for the 
description of horizontal variation. The landscape metrics are usually used to describe the 
features, the structure, and the variations of landscape: for example area, fringe, shape, 
neighbourhood and consistence of landscape (McGarigal and Marks 1995). The landscape 
metrics calculated from satellite images and aerial photographs have commonly been applied 
during the last two decades especially for detection of changes in forest coverage, forest 
fragmentation, and habitat patches (e.g. Hargis et al. 1998; Sachs et al. 1998; Kouki et al. 2001). 
Similarly, texture metrics (Haralick et al. 1973) have also been widely calculated based on 
different remote sensing materials (e.g. Shang and Waite 1991; Tuominen and Pekkarinen 
2005). It has been noted that certain statistical dependences exist between forest characteristics 
and the spatial distribution of the grey tones (e.g. Wulder et al. 1998; Packalen and Maltamo 
2006). 
 
The objectives of this study were to (1) identify point cloud metrics and horizontal texture and 
landscape metrics from ALS data, which can be used to determine the spatial pattern of trees 
and (2) to study how well the clustered spatial pattern of trees can be separated from others. 
 
2.  Material and methods  
 
2.1 Field and ALS data and spatial indices 
 
The field data consisted of 28 microstands measured in Janakkala, Southern Finland, in August 
2009. The term ‘microstand’ refers to stand that is produced by segmentation using ALS based 
canopy height model and is smaller that stands in silvicultural sense (here 0.2 and 0.7 hectares). 
All the microstands were at first thinning phase but not yet thinned. The microstands were 
dominated by Scots pine (Pinus sylvestris) or by Norway spruce (Picea abies). T-square 
sampling was carried out in each microstand, offering efficient and statistically coherent 
measurements to define the spatial pattern of vegetation in the field (Besag and Cleaves 1973). 
It is based on point-to-point distance measurements: distances are measured between each 
sample point and the nearest tree, and between it and its nearest tree in that half of the sampling 
space. Sample points were located in the crossings of a randomly placed systematic grid at the 
intervals of about 10 m. For tree measurements a minimum diameter of 5 cm at breast height 
was used. 
 
The classes of the spatial pattern of trees for the microstands were defined with spatial indices 
based on the distance measurements (Diggle 1983). Besags and Cleaves’ tN-index (1973) 
appeared to be the most suitable for the T-square measurements. Very large or small values of 
the tN-index suggest clustered or regular spatial pattern, respectively. When the tN-index has a 
value near to 0.5 the spatial pattern is random (Poisson forest). The M-index (Bartlett 1937) can 
be used as a test statistic for the tN-index. These statistics were calculated as follows: 
 

tN= n-1 ∑ xi
2൫xi

2+0.5zi
2൯-1n

i=1 ,     (1)   
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M = 48n (n logሺāሻ-∑ log ai)(13n+1)ିଵn
i=1 ,   (2)  

         
where n is the number of the observations, xi is the distance from a sample point i to the nearest 
tree, and zi is the distance from the nearest tree to the nearest tree, ai=xi

2+0.5zi
2, and aത=n-1 ∑ ai

n
i=1 , 

i=1, 2,…, n. Based on calculated spatial indices, only two regular microstands existed in the 
data. Because we were especially interested in clustered one, microstands were finally classified 
only into two classes (clustered and random/regular). Thus, the spatial pattern of the trees was 
random or regular in 17 and clustered in 11 of the measured microstands.  
 
The ALS data were collected in summer 2007 using an Optech ALTM3100 laser scanning 
system at a flight altitude of 2400 m above ground level, a flight speed of 75 m/s, and a scan 
angle of 30°. This resulted in a swath width of 1560 m and a nominal sampling density of about 
0.62 measurements per m2. The measurements of pulses were reclassified to represent first and 
last echoes. A digital terrain model (DTM) was generated from the ALS data and the ALS 
heights were converted to an above-ground scale by subtracting the DTM from the orthometric 
heights. 
 
2.2 ALS metrics 
 
Predictor variables were classified into three groups: 1) point cloud metrics calculated from 
ALS point cloud and 2) texture and 3) landscape metrics calculated from rasterized canopy 
height model (CHM). The point cloud  metrics considered are: the proportion of laser hits on the 
vegetation (veg5, vegetation limit of 5 m above ground), the proportional canopy densities of 
1%, 5%, 10%, 20%, …, 90%, 95%, 99% (p1, …, p99), and the standard deviation (hstd) and the 
average height of the canopy hits (havg). The metrics were calculated separately for the first (f) 
and the last (l) echo data. 
 
First echo data were used to generate CHM for the microstands. CHM was interpolated by 
taking the maximum height at above-ground scale within a certain radius from the pixel centre. 
The used radius was 2 m and the pixel size 1 m. The created CHM was classified into two 
classes to enable the calculation of texture and landscape metrics. The classes were tree pixels 
(height above 5 m) and ground pixels (height under 5 m). The metrics were calculated for each 
microstand based on the pixels inside the boundaries of a microstand. 
 
A normalized grey-level co-occurrence matrix was calculated following the principles presented 
by Haralick et al. (1973). The texture metrics were calculated as an average of all the directions 
(0, 45, 90, and 135 degrees) with a lag value of 5 pixels. Only one gray tone spatial dependence 
matrix was created for each plot by direction. The landscape metrics were calculated within a 
microstand based on ground patches (GP) and tree patches (TP) that are comprised of 
neighbouring ground and tree pixels in 4-neighbourhood, respectively. The used texture and 
landscape metrics are presented in Table 1.  
  



SilviLaser 2011, Oct. 16-20, 2011 – Tasmania, Australia 
 

4 
 

Table 1. Description of texture and landscape metrics. GP = ground patches, TP = tree patches and P = all 
patches. 

Texture metric Description 
ASM angular second moment 
cont contrast 
corr correlation 
text_var variance 
idm inverse difference moment (homogeneity) 
savg sum average 
svar sum variance 
sentro sum entropy 
entro entropy 
dvar difference variance 
dent difference entropy 
avg the normal average of grey-levels  
std the normal variance of grey-levels 
Landscape metric  
GP%, TP% 
 

the proportions of the total area of a microstand that are areas of ground patches 
and tree patches 

GPdensity, TPdensity the number of patches per hectare 
GPave, TPave the average size of the patches (m2) 
GPsd, TPsd the standard deviations of the size of patches (m2) 
GPN, TPN the average number of neighbouring pixels belonging to the same class 
Pdensity, Pave,  Psd 
 

the number, the average size and the standard deviations of the size of all 
patches 

 
2.3 Classification of microstands and variable selection  
 
In this study we used linear discriminant analysis (e.g Lebart et al. 1984) to classify the 
microstands (clustered or random/regular) by means of the metrics calculated from ALS data. 
Wilks lambda (e.g Mardia et al. 1979) was used to test the significance of models. The 
accuracies of the classifications were calculated by means of overall accuracy (OA) and 
kappa-value (k) (Rosenfeld and Fitzpatrick-Lins 1986). The goodness of the estimated 
classification was tested by comparing it with the corresponding classification based on the 
measured field data.  
 
The maximum number of variables in discriminant functions was fixed at three because of the 
small number of the microstands. Models were built separately in the three variable groups 
(point cloud, texture and landscape metrics) by means of testing all the possible combinations of 
the metrics within each group (including logarithmic, square root, inverse and power two 
transformations of metrics). The three best metrics were selected from each of the variable 
groups according to the best overall accuracies and kappa-values of classifications, and based on 
the significance tests of models and the correlation matrices of the metrics. These metrics were 
selected into new variable group. Then we built new models with three predictors based on 
metrics from the mixed groups. Because we were not able to test our models with independent 
test data, all models were built using leave-one-out cross-validation.  
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3. Results 
 
3.1 Classification of the spatial pattern of trees  
 
In the most accurate classification model based on landscape metrics the overall accuracy was 
0.89 and kappa-value 0.77. Two clustered microstands and one random/regular microstand were 
classified incorrectly (Table 2). Respectively, in the most accurate classification model based on 
texture metrics the overall accuracy was 0.75 and kappa-value 0.47 and based on point cloud 
metrics same values were 0.79 and 0.54. Six clustered microstands and one random/regular 
microstand were classified incorrectly based on texture metrics and four clustered microstands 
and two random/regular microstands based on point cloud metrics (Table 2). The most accurate 
model for the classification of the spatial pattern of trees based on metrics from the mixed group 
was exactly the same as the most accurate model based on the landscape metrics only (Table 3).  
 

Table 2. The ten most accurate classification models based on three different predictors selected from a 
group of landscape, texture or point cloud metrics, the overall accuracies and the kappa-values of the 
classifications and the number of correctly classified microstands. The order of the variables does not 
indicate the relative importance of the metrics.  * = Model statistically significant at the level p=0.05. 

Metrics Overall  
accuracy 

Kappa-value Correct, 
clustered 

Correct, 
random/regular 

Landscape metrics     
ln(GPdensity) + 1/(TPave) + Psd 0.89 * 0.77  9/11 16/17 
(TPdensity) 2 + 1/(Pave) + Psd 0.89 * 0.77  9/11 16/17 
1/( TPave) + 1/(Pave) + Psd 0.89 * 0.77  9/11 16/17 
Pave + TPN + (Psd

 )2 0.89 * 0.76  8/11 17/17 
(TPdensity)2 + ln(Pdensity) + Psd 0.86 * 0.70  9/11 15/17 
TPN + (Pdensity) 2 + √Psd 0.86 * 0.70  9/11 15/17 
GP% + ln(Pave) + (Psd )2 0.86 * 0.69  8/11 16/17 
TP% + ln(GPdensity) + Psd 0.86 * 0.69  8/11 16/17 
GPave + ln(Pave) + (Psd )2 0.86 * 0.69  8/11 16/17 
ln(TP%) + ln(TPave) + (Psd

 )2 0.86 * 0.69  8/11 16/17 
Texture metrics     
ln(ASM) + idm2 + avg2 0.75 0.43 5/11 16/17 
1/(ASM) + cont2 + ln(savg) 0.75 0.43 7/11 14/17 
ln(ASM) + √cont + avg2 0.71 0.36 5/11 15/17 
ln(ASM) +ln(dvar) + ln(avg) 0.71 0.34 4/11 16/17 
tex_var + sentro2 + avg2 0.71 0.34 4/11 16/17 
svar2 + sentro2 + dvar2 0.71 0.34 4/11 16/17 
svar2 + sentro2 + √dent 0.71 0.34 4/11 16/17 
ln(ASM) + cont2 + svar 0.71 0.31 3/11 17/17 
√avg + std2 + sentro2 0.68 0.29 5/11 14/17 
tex_var + svar2 + std2 0.68 0.27 4/11 15/17 
Point cloud metrics     
√f_veg5 + √f_p30 + l_p502 0.79 0.54 7/11 15/17 
ln(f_havg) + f_p20 + l_p402 0.79 0.54 7/11 15/17 
√f_veg5 + f_p702 + ln(l_veg5) 0.75 0.47 7/11 14/17 
ln(f_veg5) + √f_p20 + l_p402 0.75 0.47 7/11 14/17 
ln(f_veg5) + f_p60 + 1/(l_veg5) 0.75 0.47 7/11 14/17 
√f_havg + ln(f_p20) + √l_p30 0.75 0.47 7/11 14/17 
1/(f_havg) + f_p30 + l_p502 0.75 0.47 7/11 14/17 
f_hstd + f_p10 + l_p302 0.75 0.47 7/11 14/17 
f_hstd + √f_p20 + l_p402 0.75 0.47 7/11 14/17 
f_hstd + √f_p5 + √l_havg 0.71 0.38 6/11 14/17  
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Table 3. The ten most accurate classification models based on metrics from mixed group of landscape, 
texture and point cloud metrics, the overall accuracies and the kappa-values of the classifications and the 

number of correctly classified microstands. The order of the variables does not indicate the relative 
importance of the metrics.  * = Model statistically significant at the level p=0.05. 

Metrics Overall  
accuracy 

Kappa-value Correct, 
clustered 

Correct, 
random/regular 

ln(GPdensity) + 1/(TPave) + Psd 0.89 * 0.77 9/11 16/17 
(Psd)2  + avg + l_p50  0.86 * 0.71 10/11 14/17 
(Psd)2 + ln(GPdensity) + 1/(f_veg5) 0.86 * 0.69 8/11 16/17 
(GPdensity

 )2 + (Psd)2 + idm  0.82 * 0.63 9/11 14/17 
ln(GPdensity) + (Psd)2 + f_p30  0.82 * 0.62 8/11 15/17 
(Psd)2 + ln(ASM) + ln(l_p50)  0.79 * 0.56 9/11 13/17 
(Psd)2  + f_veg5 + 1/(l_p50)  0.79 * 0.55 8/11 14/17 
Psd + 1/(idm) + ln(l_p50) 0.79 * 0.55 8/11 14/17 
(GPdensity) 2 + (Psd)2 + ASM 0.79 * 0.55 8/11 14/17 
GPdensity + (Psd)2 + avg  0.79 * 0.55 8/11 14/17 

 
3.2 The best combinations of the metrics  
 
The three best selected landscape metrics were GPdensity, TPave and the Psd (ignoring the 
transformations). All three metrics gave generally lower values for the microstands which were 
clustered. The three best selected texture metrics were ASM, idm and avg and all they gave 
generally slightly lower values for the microstands which were clustered. The three best selected 
point cloud metrics were f_veg5, f_p30 and l_p50. Metric f_veg5 gave generally slightly lower 
and f_p30 and l_p50 slightly higher values for the microstands which were clustered. 
 
In the classification of spatial pattern of trees the most accurate model based on the selected 
metrics from three variable classes was the same as most accurate model based on only the 
landscape metrics (Table 3). The predictor variables were: the number of the ground patches per 
hectare in logarithmic scale (ln(GPdensity)), inverse of the average size of the tree patches 
(1/(TPave)) and the standard deviations of the size of all patches (Psd). In the ten most accurate 
models the most common metrics was Psd (ignoring the transformations), which was found as 
predictor in all models. Also GPdensity and l_p50 were quite common (Table 3).  
 
4. Discussion and conclusion  
 
The aim of this study was to identify ALS based metrics which can be used to determine the 
spatial pattern of trees. In this study the classification of microstands was highly accurate and 
we found potential horizontal ALS metrics to determine the spatial pattern of trees.  However, 
unfortunately we were not able to test our models with independent test data, and our data were 
quite limited (only 28 microstands). 
 
Previous studies on the determination of the spatial pattern of trees have used remote sensing 
imagery and the ITD method with high density ALS. For example, Uuttera et al. (1998) found 
that if the scale is equal to or less than 1:5000, aerial photographs cannot be used to accurately 
determine the spatial pattern of trees. Coops and Culvenor (2000) have indicated that it is 
possible to derive the spatial pattern of trees within a high spatial resolution forest scene 
provided that the crown size is estimated a priory. Additionally, they pointed out that the total 
foliage cover of the canopy will affect the ability to predict spatial distribution based on texture 
variance. Furthermore, in the study by Mustonen (2002) single tree detection with ALS 
provided correct spatial pattern for the majority of the plots, excluding the clustered plots. Due 
to differences in the study materials and the methods applied, the results of these previous 
studies cannot be directly compared to this study. 
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Especially the landscape metrics had significant role in the identification of the spatial pattern of 
trees. For example, in the most accurate model all the predictors were landscape metrics: the 
number of the ground patches per hectare in logarithmic scale (ln(GPdensity)), inverse of the 
average size of the tree patches (1/(TPave)) and the standard deviations of the size of all patches 
(Psd). Additionally, in each of the ten most accurate models based on metrics from mixed group 
was as at least one landscape metric.  
 
The more detailed analysis of the best landscape metrics shows that there is lower number of 
ground patches per hectare (GPdensity), smaller average size of the tree patches (TPave) and lower 
standard deviation of the size of all patches (Psd) in clustered microstands compared to 
random/regular microstands. This suggested that clustered microstands consisted of ground 
pixels, which are forming not many but large and continuous ground patches and tree pixels, 
which are forming tree patches (group of trees) surrounded by the ground patches. On the other 
hand, random/regular microstands consisted of large continuous tree patches and small ground 
patches. The standard deviation of the size of all patches is higher in random/regular 
microstands, because in random/regular microstands the tree patches are large and the ground 
patches small, but in clustered microstands the ground patches are quite large and the tree 
patches are not very small, because they consist on groups of trees.  
 
Also the results based on the texture metrics and point cloud metrics were quite accurate, but the 
interpretations of these metrics are not very clear. Three best texture metrics (ASM, idm and 
avg) gave generally slightly lower values for microstands which were clustered, which means 
that random/regular microstands are more orderly (ASM is higher, when window is very 
orderly), homogeneous (idm is higher when the values of grey-level co-occurrence matrix have 
attended to diagonal) and have higher average of grey-levels. Reason for this could be that 
random/regular microstands consist of large continuous tree-areas. From point cloud metrics 
f_veg5 gave lower values in clustered microstands, which suggests that more ALS hits lay near 
to the ground than in random/regular microstands. The f_p30 and l_p50 gave higher values in 
clustered microstands, which mean that more ALS hits lay under the 30 % or 50 % of the 
cumulative heights of vegetation. This might suggest that there is more gap-area in the canopy 
in clustered microstands and in the random/regular microstands most of the ALS hits lay up to 
the canopy.  
 
We showed a first attempt to determine the spatial pattern of trees and the need for first thinning 
based on the use of horizontal ALS metrics (textural and landscape metrics), which in the 
context of ALS are still quite rare. This is despite the fact that there exist wide possibilities for 
their use, for example, in studies concerning tree competition, tree species recognition, and site 
classification. In this study we didn’t use the height percentiles of point cloud metrics because 
there is no theoretical base for that height would affect to the spatial pattern of trees. Our results 
were promising in regard to the identification of the spatial pattern of trees with low pulse 
density ALS data. In our study material the microstands consisted of rather young and equally 
sized trees of same tree layer which may have had effect to the results. However, the approach 
used should still be studied in more detail in order to generalize the results with larger sample 
size and especially to find out which are the best ALS metrics for identifying all the three spatial 
patterns of trees. The information regarding the spatial pattern of trees could be further applied 
in forest planning including growth simulations and optimization of the timing of forest 
treatments.  
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Abstract 
 

The advance of commercial airborne lidar systems from discrete-return to waveform recording 

instruments has made repeatable estimates of biophysical variables from these different methods 

questionable. Using an experimental airborne waveform lidar dataset acquired in an Australian 

savanna, this study presents a method for the derivation of canopy/ground backscatter 

coefficients from waveform lidar and a comparison of discrete return and waveform approaches 

to the estimation of fractional cover. Despite limited validation, the results indicate that 

waveform estimates of fractional cover can provide consistently higher accuracy than discrete 

return estimates under varying survey properties. Ongoing work using raw waveform data 

across larger areas and 3D radiative transfer simulations aims to develop a quantitative 

understanding of the impact of disparate sensor and survey properties on the detection of change 

in vegetation structure using commercial lidar instruments. 

 

1. Introduction 
 

The fractional cover of woody vegetation, defined as one minus the gap fraction at a zenith 

angle of zero degrees, is an important description of plant canopy structure in the biophysical 

remote sensing and ecological literature. Crown cover projection (CCP), foliage projective 

cover (FPC) and leaf area index (LAI) are all a function of the spatial and angular distribution of 

gaps and are common canopy metrics used in mapping, monitoring and modelling applications 

by natural resource management agencies in Australia (Scarth et al., 2008). Field-based 

estimates of canopy metrics are difficult to acquire consistently over large areas and there is 

often insufficient resources to accurately capture the spatial and temporal variability in structure, 

especially for scaling up to satellite remote sensing (Asner, 2009). Airborne lidar has shown 

potential to enable scaling between in situ and satellite monitoring of vegetation change (Asner, 

2009; Lucas et al., 2010) and also provide a viable alternative to traditional field techniques 

(Armston et al., 2009). 

 

Height and directional gap fraction (one minus the fractional cover) are the only canopy metrics 

that can be directly retrieved from airborne lidar measurements, with other canopy metrics and 

above-ground biomass subsequently modelled using different expressions, combinations or 

spatial variance of these parameters (e.g., Ni Meister et al., 2010). Error is introduced in the 

estimation of canopy metrics from airborne lidar when empirical methods are applied to 
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different regions, sensor or survey properties than for which they were developed (Næsset, 

2009). As a result, many published empirical relationships between field and lidar estimates of 

vegetation cover have limited wider application unless recalibrated using field measurements 

(e.g., Solberg et al., 2010; Armston et al., 2009; Rosette et al., 2009). The rapid advance of 

commercial lidar sensor technology from single discrete return to waveform recording systems 

has resulted in often disparate lidar datasets over time and exacerbated this problem. Long-term 

monitoring programs that employ lidar derived metrics, from often disparate sensor and survey 

configurations, need to determine if these can replicate the same change observed over space 

and time using direct field methods. Waveform lidar is required to validate our understanding of 

the impact of sensor and survey properties, especially for discrete return datasets (Disney et al., 

2010; Næsset, 2009). 

 

Methods for estimating fractional cover and related canopy metrics have been developed for 

discrete return and waveform lidar (Lovell et al., 2003; Ni-Meiseter et al., 2001). However no 

studies have demonstrated an improvement in fractional cover estimates derived using 

waveform data in Australian vegetation communities dominated by eucalypt tree species. 

Discrete return sensors typically only record intercepts, which can be interpreted as a binary 

measure of signal intensity. Therefore estimates of fractional cover do not account for gaps 

smaller than the size of the footprint (Liu et al., 2008) and only a limited number of returns 

above a noise threshold can be recorded. Waveform sensors digitize the entire return signal at a 

particular temporal sampling interval so do not suffer the same limitations. However estimates 

of fractional cover are sensitive to canopy/ground reflectivity and therefore the wavelength of 

the sensor (Ni-Meister et al., 2001). Estimates of fractional cover from both classes of lidar 

require ground and canopy returns to be separated, which is sensitive to lidar sensor and survey 

properties and their interaction with canopy structure. An assessment of the relative importance 

of these differences on estimates of fractional cover in Australian environments is lacking. 

 

The objective of this study was to compare waveform and discrete return estimates of fractional 

cover for a savanna woodland in northern Queensland, Australia. This paper presents an initial 

investigation of these objectives through empirical analysis of data currently available from an 

experimental RIEGL LMS-Q680 waveform lidar survey acquired over an existing monitoring 

site with repeat field and lidar measurements. These data were used to simulate coincident 

waveform and discrete return datasets for comparison. 

 

2. Data and Methods 
 

2.1 Study site 
 

The study site is located near Charters Towers in northern Queensland, Australia, and is within 

the Einasleigh Uplands region at approximately 400 m elevation. This is a region of savanna 

and woodlands and is subject to livestock grazing. This study utilised three structurally 

contrasting savanna open woodland field plots (CHAT0101, CHAT0102, CHAT0103; Figure 1) 

that are part of a larger network of monitoring sites in Queensland for calibration and validation 

of Landsat-derived woody and herbaceous fractional cover products (e.g., Armston et al., 2009). 

 

The woodlands at CHAT0101 (20.0047°S, 145.6224°E) were dominated by Eucalyptus 

drepanophylla with Corymbia dallachiana sub-dominant in the 12–20 m height canopy. 

Petalostigma pubescens and Maytenus cunninghamii are also occasionally present in the 

understorey (3–7 m height). Within CHAT0102 (19.9796°S, 145.6490°E), Eucalyptus 

melanophloia dominated the sparse canopy (8–19 m height), with Corymbia setosa and E. 

melanophloia also present. P. pubescens dominates a higher density understorey compared to 

the other two sites. The canopy at the CHAT0103 (20.0230°S, 145.6029°E) site was very sparse 
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with Eucalyptus brownii forming the overstorey and the occasional Acacia salicina and Acacia 

farnesiana in the understorey. CHAT0101 and CHAT0102 were located on sand plains with 

relatively uniform grass cover. CHAT0103 was located on basalt plains with occasional surface 

basalt boulders and grey to black cracking soils. The grass cover is clumped at CHAT0103 with 

large areas of bare soil exposed. The terrain at all three sites was flat. 

 

 
 

Figure 1: CHAT0101 (left), CHAT0102 (centre) and CHAT0103 (right) near the time of the airborne 

waveform lidar surveys. 
 

 

2.2 Field and lidar surveys 
 

The lidar surveys used in this study were acquired on two different dates as shown in Table 1. A 

RIEGL LMS-Q680 waveform lidar survey was acquired on the 18
th
 June 2010 to 

quasi-simultaneously capture a range of survey properties (A2−A4). In consultation with the 

data provider, the A2−A4 survey properties were designed to capture a range of sensor and 

survey configurations within limits recommended by RIEGL for instrument operation over 

vegetation. Parallel flight tracks were designed to have 60% overlap at each altitude to ensure a 

multi-angular airborne dataset over the field sites. Multiple flying heights were designed to 

capture the changing footprint size and signal to noise level of received waveforms due to the 

inverse square loss of power per unit area with range. Only the centre flight track at each 

nominal altitude was used in this study, as directly measured fractional cover validation data 

was only available at a zenith angle of zero degrees. A RIEGL LMS-Q560 survey was also 

acquired on the 3
rd

 November 2008 as part of ongoing monitoring at the study site (A1). This 

survey was acquired with the same centre flight track as the A2−A4 surveys. 

 

A range of coincident measurements were collected at the three 100 m × 100 m field sites. 

However for the present study, estimates of fractional cover at a nominal zenith of zero were 

directly measured using three 100 m point intercept (1 m spacing) transects oriented 0°, 60° and 

120° from magnetic north. At each 1 m interval along each transect, vertical intercepts were 

recorded from the overstorey (woody plants greater than or equal to 2 m height) and the 

understorey (woody or herbaceous plants less than 2 m height) using a GRS densitometer ™. 

This instrument employed a mirror, two bubble-line levels and a centred cross-hair to project an 

exact vertical line-of-sight from the sample point in the canopy to the observer. Fractional cover 

was then calculated as the fraction of observations that were overstorey leaf or wood intercepts. 
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Table 1: Survey properties for the RIEGL airborne waveform lidar datasets used in this study. 
 

Survey A1 A2 A3 A4 

Acquisition date 2008/11/03  2010/06/18 2010/06/18 2010/06/18 

RIEGL sensor LMS-Q560 LMS-Q680 LMS-Q680 LMS-Q680 

Nominal altitude (m) 600 450 900 1200 

No. parallel flight lines 1 3 3 3 

Swath width (m) 497 520 1039 1386 

Pulse rate (kHz) 100 200 200 150 

Scan rate (Hz) 60 113 80 63 

Pulse density (pulse / m
2
) 2.65 3.50 2.10 1.11 

Footprint diameter (m) 0.30 0.23 0.45 0.60 

Maximum zenith angle (°) 22.5 30.0 30.0 30.0 

 

 

2.3 Processing lidar waveforms and discrete returns 
 

At the time of this work, the data provider was unable to deliver waveform data for the RIEGL 

LMS-Q680 surveys. GPS time, Cartesian coordinates (easting, northing, elevation), Gaussian 

parameters (range, amplitude and width) and pulse parameters (scan zenith, range) produced for 

each return using the RIEGL RiAnalyze software were available. The Cartesian coordinates 

were input to a modified version of the progressive morphological filter by Zhang et al. (2003) 

to classify ground and non-ground returns. Discrete return datasets were generated using the 

Cartesian coordinates of the Gaussian peaks above the noise threshold. Pulses from each 

acquisition were randomly sampled to a density of 1 pulse / m
2
 to avoid any potential 

differences in the height distribution of returns. 

 

By assuming the Gaussian model captures the shape of the received waveforms ( )(tI ), as 

outlined by Wagner et al. (2006), the waveforms were reconstructed using the Gaussian 

parameters. Limited validation of the Gaussian model for the study site was performed using 

raw waveform data from the A1 survey (Table 1) that was only recently made available without 

matching RiAnalyze products. Estimates of the Gaussian parameters were derived using 

non-linear least-squares fitting (Levenberg–Marquardt method) to Equation 1: 

 

( )
( )

2

2

2

1

i

i

s

tt
N

i

ieAtI

−

=

∑+= ε      (1) 

 

where for each return,ε is the noise level, 
iA  is Gaussian amplitude, ti is the time (or range) 

and si is the Gaussian standard deviation. Starting parameters were determined from the 

zero-crossings of the waveform first derivative that were aboveε . False returns due to “ringing” 

in the transmitted pulse were omitted from the starting parameters if their amplitude was less 

thanε plus the value from an exponential time decay function on the amplitude of earlier local 

maximums. Theε parameter was set to the same default constant value of 9 used by RiAnalyze 

(Matthew McCauley, Atlass Pty. Ltd., pers. comm.). It is also important to note that several 

details on the Gaussian decomposition procedure performed by RiAnalyze are proprietary 

knowledge and therefore exact replication was unlikely. 

 

Examples of the transmitted and received waveforms and corresponding Gaussian model fits are 
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shown in Figure 2. The gain for the transmitted waveform is unknown and different from the 

received and therefore cannot be directly used to calibrate waveforms to apparent reflectance. 

The RIEGL LMS-Q560 and LMS-Q680 instruments record waveform samples in 60 ns sample 

blocks, with recording of blocks initialised by the signal exceeding a noise threshold. The 

missing data between 2.5 and 6 m in the received waveform was the result of this “dead time” 

(RIEGL, pers. comm.). For direct comparison of the ground (Ig) and canopy (Iv) components of 

the raw and Gaussian model received waveforms, their separation was at the first occurrence of 

the minimum signal between the ground and canopy Gaussian model peaks.  
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Figure 2: Measured (thin black line) and Gaussian model (dashed red line) transmitted (left) and received 

(right) waveforms from a single pulse over the CHAT0101 field plot. The waveforms are normalized by 

the maximum signal and the noise level is shown (dotted grey line). Three canopy returns were derived 

from the received waveform with peaks at heights of 8.55, 11.44 and 12.36 m above the ground. 

 

 

2.4 Estimation of fractional cover 
 

Studies that have used discrete return lidar sensors typically estimate fractional cover as the 

proportion of returns intercepted by the canopy within a data bin (Lovell et al., 2003): 

 

( )
N

C
zP

zz

iz iv

er

∑
=

==

)max(

,

cov
     (2) 

 

where Cv is the number of returns from the top of canopy down to height z and N is the total 

number of canopy and ground returns. We assume here that all pulses are at a zenith of zero 

degrees. Equation 2 was applied to two categories of discrete returns often used to calculate 

fractional cover: first returns only (D1) and all returns (D2). 

 

Waveform recording instruments digitise the received waveform and, assuming single scattering 

only, can be separated into vegetation and ground backscatter components: 

 

vg III +=       (3) 
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where Iv is the integrated vegetation backscatter component of the waveform and Ig the 

integrated ground return. Disney et al. (2006) showed greater than 80% of reflectance at the 

nadir hotspot is single scattered photons and since green foliage typically has low reflectance at 

1550 nm, it is reasonable to assume negligible multiple scattering. Following Ni-Meister et al. 

(2001) and assuming the recorded lidar signal is linearly related to the receiver power, fractional 

cover can then be estimated from uncalibrated waveforms by: 

 

( )
( )

( )
g

v

gv

v
er

II

zI
zP

ρ

ρ
+

=

0
cov

     (4) 

 

where Iv is the integrated vegetation backscatter component of the waveform from the top of the 

canopy down to height z. Since the returned backscatter is a function of the apparent reflectance, 

phase function and leaf angle distribution of canopy and ground targets as well as the gap 

fraction, we need some prior knowledge of the canopy/ground backscatter coefficient 

ratio
gv ρρ to obtain unbiased estimates of fractional cover from waveform data. Previous 

studies have suggested using a constant (e.g., 2 for 1064 nm; Lefsky et al., 1999), however 

canopy and ground properties often change between stands. Therefore a method to derive 

gv ρρ from waveforms is required in order to avoid field calibration, especially in savannas 

where estimates of fractional cover will be most sensitive to
gv ρρ due to sparse canopies and 

variable backgrounds. 

 

The canopy backscatter component of the waveform is the product of the fractional cover at the 

zenith of the lidar pulse and the volumetric backscattering coefficient of the canopy (
vρ ), and 

the ground component is the product of the gap fraction and the volumetric backscattering 

coefficient of the ground (
gρ ): 

 

( ) verv PI ρ0cov=       (5) 

( )[ ]
gerg PI ρ01 cov−=       (6) 

 

where
gρ and

vρ are a function of the foliage angle distribution and apparent reflectance at the 

wavelength of the lidar. Combining Equations 5 and 6, the relationship between
gI and

vI is then 

linear: 

 

v

v

g

gg II
ρ

ρ
ρ −=       (7) 

 

If constant
gρ and

vρ is assumed to extend to N pulses within a local area, estimation of
gρ and 

vg ρρ− is then a simple linear regression problem ( xy βα += ). An estimate of
gρ is the 

intercept (α ) and
vρ can be estimated from the slope ( β ) by βρ g− . Fractional cover is then 

estimated directly using Equation 4. Two waveform estimates of fractional cover are evaluated 

in this study: 
gv ρρ derived using the method just described (W1) and with 

gv ρρ set to a 

constant of 0.5 for 1550 nm (W2). 
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3. Results and Discussion 
 

3.1 Accuracy of the Gaussian model 

 

A very close correspondence exists between the measured and Gaussian model estimates of Ig 

and Iv (RMSE < 6; Figure 3). The error estimates were consistently higher for Iv than Ig, but the 

difference is negligible. Since the canopy was sparse and the terrain flat, a large percentage of 

the pulses were single returns from the ground, from which returns that correspond to a 

Gaussian shape are to be expected. The canopy was composed of clumped scattering elements 

with variable leaf angle distributions, which resulted in more complex waveforms. Poor fits to a 

number of individual waveforms with overlapping returns <~60 cm apart (twice the temporal 

bin spacing of the waveform) have also been observed. However these results provide evidence 

that Gaussian modelling of RIEGL waveforms in a savanna environment is able to statistically 

reproduce received waveforms for a large number of pulses. 

 

 
Figure 3: Comparison of waveform and Gaussian model calculated Ig and Iv. Darker regions indicate a 

higher density of observations. The red line is the 1:1 line. 

 

 

The advantages of representing the waveform in this way are: raw waveform data are not 

typically available for most natural resource management agencies; data volumes are greatly 

reduced; noise is less of an issue when interpreting reconstructed waveforms; and Gaussian 

distributions have well known properties. The disadvantage is that not all returns necessarily 

have a Gaussian shape, with this depending on interactions between the shape and duration of 

the transmitted pulse and vertical canopy structure; and low intensity returns may not be 

detected (Chauve et al., 2009). 
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3.2 Relationship between canopy and ground backscatter 
 

The linear relationship between Ig and Iv is shown in Figure 4 for the A2 survey. The small 

footprint of the RIEGL lidar systems results in high spatial variance in the cross-section but also 

in the spectral properties of intercepted targets, making robust estimates of
gv ρρ difficult. For 

Ig each received waveform may be backscatter from an individual grass sward or a patch of bare 

soil between swards. For Iv each received waveform is likely to be composed of highly variable 

proportions of leaf and woody canopy elements (e.g., dead and foliated branches), which have 

different spectral properties at 1550 nm for these sites. Jupp and Lovell (2007) also highlight 

that small footprints result in “speckle” due to high apparent backscatter from individual canopy 

elements acting as Fresnel reflectors. 
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Figure 4: Simple linear regression relationships between Ig and Iv at multiple simulated footprint sizes for 

the A2 survey at the three field plots. The estimates and uncertainty of
vρ and

gρ derived from this 

relationship are shown. 

 

 

To test the effect of footprint size on estimation of
gv ρρ , pseudo-waveforms were created at 1 

m and 5 m footprint sizes. By integrating all waveforms within a local area and normalizing the 

signal by the number of pulses to simulate a larger footprint waveform, the distributions of Ig 

and Iv tend towards unimodal. The smallest deviation from a straight line was at 5 m footprints 
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for the CHAT0101 and CHAT0102 sites. However the trend did not hold for the CHAT0103 site, 

as there was little remaining range in Ig and Iv at that footprint size because of the very sparse 

canopy cover. The spatial heterogeneity in grass cover was high (see CHAT0103 in Figure 1) 

compared to the uniform grass cover at CHAT0101 and CHAT0102, violating the assumption of 

constant background. The CHAT0103 site also had dark cracking soils, which resulted in the 

lowest
gρ value for all three sites and increased noise. For the next section fractional cover was 

estimated using
gv ρρ calculated from the 5 m footprints. 

 

 

3.3 Effect of survey properties on estimates of fractional cover 
 

Vertical fractional cover profiles and
gv ρρ derived from each of the lidar survey datasets for 

each of the three field plots are shown in Figure 5. Fractional cover estimates calculated from 

discrete returns (D1 and D2) are always higher (differences up to 0.2) than the waveform (W1 

and W2) between lidar surveys. There is a trend of decreasing fractional cover with altitude for 

the discrete return estimates, which is consistent with Morsdorf et al. (2008) who used data 

from a 1560 nm instrument at two altitudes, but in contrast with studies that have reported little 

or no change in fractional cover using 1064 nm instruments (e.g., Goodwin et al., 2006). 

Blindness to gaps smaller than the footprint size can lead to overestimation of fractional cover 

(e.g., Liu et al., 2009), however low intensity returns are more common from canopy elements 

than the ground which can lead to underestimation of fractional cover if these returns are not 

separated from noise. The relative importance of these effects depends on wavelength, canopy 

structure and pulse energy and shape, which are difficult to separate using available measured 

lidar data. 

 

The calibrated waveforms (W1) appear to be the most consistent for different ranges 

however
gv ρρ estimates decrease with increasing range from the A2 to the A4 survey for each 

site. CHAT0103 is an exception as the fit between Iv and Ig was poor (Figure 4) and the resulting 

fractional cover too low. The estimation of
gv ρρ may be compensating for increased noise 

levels in the waveforms acquired at longer ranges as the number of returns in the canopy 

detected by the Gaussian decomposition reduces as their amplitude falls below the noise 

threshold. For example the number of pulses that only have single returns from the canopy at 

the CHAT0101 site ranges from 38% for the A2 survey (450 m range) to 53% for the A4 survey 

(1200 m range). This is important as vegetation has low reflectance at 1550 nm so the waveform 

signal to noise ratio is quite sensitive to pulse energy and range. Another contributing factor 

could be that the recorded lidar signal is non-linearly related to the receiver power. Other studies 

that have attempted to calibrate RIEGL sensors have suggested minor differences in loss of 

received power with range compared to that expected from theory (e.g., Reitberger et al., 2010). 
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Figure 5: Comparison of discrete return and waveform derived vertical fractional cover profiles for the 

three field plots at the nominal aircraft altitudes (Table 1). D1 = first returns (grey solid line); D2 = all 

returns (grey dashed line); W1 = calibrated waveform (solid black line); and W2 = waveform 

with
gv ρρ set to 0.5 (dashed black line). The W1 estimates of

gv ρρ are also shown. 

 

 

The correspondence between field and lidar estimates of fractional cover is shown in Figure 6. 

The waveform estimates correspond within 5% fractional cover to field measurements 

compared to within 9% fractional cover for the discrete return estimates. The overestimation 

exhibited by the discrete return estimates correspond to results shown by other studies using a 

RIEGL sensor (Miura and Jones, 2010) and discrete return lidar at the same field sites (Armston 
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et al., 2009). There appears to be less scatter using the estimated
gv ρρ rather than the constant 

of 0.5, however the magnitude of this error falls within that one might expect from binomial 

sampling error in the field measurements (Armston et al., 2009). 
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Figure 6: Comparison of fractional cover (z = 2 m) estimates derived using discrete return (D1; D2) and 

waveform (W1; W2) methods. The symbol indicates the source lidar survey (Table 1): square = A1; cross 

= A2; triangle = A3; and circle = A4. The colour indicates the field site: red = CHAT0101; black = 

CHAT0102; and blue = CHAT0103. The grey line is the 1:1 line. 

 

 

4. Conclusions 
 

This study has conducted a preliminary comparison of estimates of fractional cover using field, 

waveform and discrete return lidar methods. The waveform and discrete return lidar data were 

simulated using a Gaussian model, which showed a close correspondence with the raw 

waveforms. Additionally, a method to estimate
gv ρρ directly from the waveform data was 

introduced. Provided the assumptions were satisfied and
gv ρρ was estimated with some 

certainty, waveform methods provided more accurate and consistent estimates of fractional 

cover than discrete return methods under varying flying heights. 

 

The method to retrieve
gv ρρ shows promise, however a quantitative understanding of the 

limits on retrieval imposed by the interaction between the pulse energy, wavelength, 

canopy/background heterogeneity and the signal-to-noise of waveforms is required. This will 

require 3D radiative transfer simulation experiments (e.g., Disney et al., 2010) as measured 

experimental data are not available to establish the joint sensitivity of
gv ρρ and fractional 

cover estimation to combinations of these sensor and survey properties at a range of fractional 

cover levels. 

 

Analysis of the raw waveforms is also required as the return detection and Gaussian 

decomposition procedure used may lead to omission of low backscatter returns. The validation 
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in this study was confined to a sparsely wooded savanna, however the performance of these 

methods to estimate fractional cover and derived metrics (FPC, LAI, CCP) are currently being 

evaluated over approximately fifty monitoring sites from low arid shrubland to coastal 

rainforest where waveform lidar have been acquired coincident with field and terrestrial lidar 

surveys. 

 

Improved estimation of the fractional cover of woody vegetation using waveform over discrete 

return airborne lidar acquired under varying survey properties has important implications for 

natural resource management agencies employing lidar in large area land cover mapping, 

monitoring and modelling programs. The results from this study indicate waveform estimates of 

fractional cover from different flying heights are consistent, enabling comparison of estimates 

from different surveys over space and time and reducing the need for calibration using field 

measurements. In future this will lead to a reduction in operational costs as well as uncertainty 

in reference lidar products used for the calibration and validation of satellite imaging products 

over large and remote areas in Australia. 
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Abstract
• Forests are an important global resource, playing key environmental and economic roles. Forest 

monitoring and reporting are typically a national responsibility, with international collaboration and 
cooperation enabling generation of global statistics. The implementation of quality national 
monitoring programs is required for the generation of robust national statistics. Programs based 
upon samples of field plots have proven robust, but are difficult and costly to implement and 
maintain. Programs with air photo plot based sampling have been developed to mitigate some of 
the difficulties and limitations with ground plot based programs, especially for large nations. 
Further, samples of satellite data are becoming increasingly used to produce reliable statistics on 
forest characteristics and change over large areas. Photo- and satellite-based programs require 
ground measures to assist in ensuring the quality of attribution undertaken; thereby a conundrum 
emerges, where ground plots are again desired. To offer a source of detailed data for calibration 
and validation to large area mapping and monitoring programs we propose the collection and 
integration of lidar-plots. Light detection and ranging (lidar) has been shown as a data source 
offering timely and accurate measures of vertical forest structure, relating important information 
such as canopy height and biomass. Rather than using lidar to produce wall-to-wall coverage we 
propose the use of transects of scanning lidar to relate the forest conditions present over large 
areas. Given appropriate sampling statistics can be generated directly from the lidar-plots 
collected over the transects. In other instances the lidar-plots may be treated as ground plots are 
typically treated, providing locally relevant information that can be used independently or 
integrated with other data sources. Issues such as costs and access limitations combine to result 
in ground plots being endemically in short supply. Lidar-plots are envisioned mitigate this limitation 
and to produce information to aid and augment monitoring programs and to support science 
activities. 

• In this presentation we further outline the context resulting in the need for detailed forest 
information over wide areas, we describe the concept for specification, collection, and sharing of 
lidar-plots; a case study is then presented to illustrate the concept. We conclude with 
recommendations for alternate implementations, future activities, and improvements to the 
concept and processes described. 

• 30 mins total
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Information 
Needs

• National
– Reporting

• Regional
– Strategic

• Local
– Operations

Producing relevant information 
across a range of scales

9,970,610 km2
≈ 60 % heterogeneous 
coverage of forests, lakes 
and wetlands
≈ 40 % forested
Importance: economic, 
social, environmental
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• Information needs: 
– Mapping, monitoring, reporting 
– Inventory type: strategic vs operational

• Intensive vs extensive forestry
• National circumstances

Wulder, M.A., C. Campbell, J.C. White, M. Flannigan, and I.D. Campbell, 2007. National Context in the 
International Circumboreal Community. The Forestry Chronicle, Vol. 83, No. 4, pp. 539-556.
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Relationship Between Spatial Resolution, Extent, and Cost (Source: Franklin, 2002).

The role of remote sensing in forest inventory and assessment
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Probability 
Sampling -
strategies

Wulder, M.A., J.C. White, R.F. Nelson, E. Næsset, H.O. Ørka, N.C. Coops, T. Hilker, C.W. Bater, & T. 
Gobakken. (In review). Lidar sampling for large-area forest characterization: A review.



9/38

Lidar-plots:  The case

• But, what if you cannot sample sufficiently 
to enable a implementation of a probability 
sample?

• What if detailed local information is 
required to meet monitoring and reporting 
needs?
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• National systematic sample
• Rationale – standardization nationally
• Sample units are 2 x 2 km photo plots on 
a 20 km grid

• Ground Plots 
– many attributes 
– including DOM and soil C

National Forest Inventory
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Lidar

• Inventory
• Monitoring
• Sampling
• Repeatability 

Wulder, M.A., C.W. Bater, N.C. Coops, T. Hilker, and J.C. White, 2008. The role of lidar in sustainable forest management. The Forestry Chronicle. Vol. 84, No. 
6, pp. 807-826. 

Hilker, T., Wulder, M.A., Coops, N.C (2008). Opportunities for Use of Small-Footprint Airborne Lidar Data and High Spatial Resolution Satellite Imagery to 
Augment Traditional Forest Inventory, Canadian Journal of Remote Sensing, Vol. 34, No. 1, pp. 5-12.

Wulder, M., and D. Seemann, 2003; Forest inventory height update through the fusion of lidar data with segmented Landsat imagery, Canadian Journal of 
Remote Sensing, Vol. 29, No. 5, pp. 536-543. 

Bater, C.W., Wulder, M.A., Coops, N.C., Nelson, R.F., Hilker, T. and Næsset, E. (2011). Stability of sample-based scanning LiDAR-derived vegetation metrics 

for forest monitoring. IEEE Transactions on Geoscience and Remote Sensing. Vol. 49, No. 2. pp. 2385-2392.
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stand structure
height (max, mean…)
crown closure
volume
biomass
gap fraction
stem density

Individual tree measures from the lidar are summarized to produce 
critical plot-level attributes at thousands of plot locations. 

Tree-level measures

Plot

Plot-level attributes
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Spatially generalizing the lidar data

Cross-sectional view of simulated canopy (left), histogram and sample 
quantiles of the vertical distribution of canopy heights (middle), and canopy 
density (ratio of heights above threshold F to total number of LiDAR returns 
in plot) for each relative canopy height F (right). 



16/38
Frazer, G., M. Wulder, and O. Niemann, 2005; Simulation and quantification of the fine-scale spatial 

pattern and heterogeneity of forest canopy structure: A lacunarity-based method designed for 
analysis of continuous canopy heights, Forest Ecology and Management, Vol. 214, pp. 65-90. 
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2010 National 
Lidar Transects

24,000 km

Lidar metrics gridded 
to 25 x 25 m cells

20 Million lidar-plots
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Outcomes – Fast facts

• Total Length:  24,285.61 
• 34 transects, mean length 700 km

Database size on disk 6.33 GB 

Number of plot locations processed 32,103,543 

Number of plot locations containing lidar data 20,234,390 

Area of plots containing lidar data 1,264,649 ha 

Total number of lidar returns 18,542,489,414 

Total number of first returns above a 2 m 
height threshold 

4,982,094,975 

 

Airborne lidar sampling of the Canadian boreal forest: Planning, execution & initial 
processing; Hopkinson, Morrison, Chasmer, et al.
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Example transect outputs/metrics

Height example, 
Landsat backdrop
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Example product: biomass

Model development for the estimation of aboveground biomass using a lidar-based 
sample of Canada's boreal forest; Bater, Coops, et al.
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Flight date
Number of returns
Elev minimum
Elev maximum
Elev mean
Elev mode
Elev stddev
Elev variance
…

Stand structure
Height
Crown closure
Volume
Biomass
Volume
Gap fraction
Stem density

ATTRIBUTES for each 25 m cell
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Application example
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Lidar-plot application
Cal / val of Very High Spatial 

Resolution imagery in support of NFI

Key refs:

Falkowski, M.J., M.A. Wulder, J.C. White, and M.D. Gillis (2009). Supporting large-area, sample-based forest inventories with 
very high spatial resolution satellite imagery. Progress in Physical Geography. Vol. 33, No. 3, pp. 403–423. (DOI: 
10.1177/0309133309342643)

Mora, B., M.A. Wulder, and J.C. White (2010). Segment-constrained regression tree estimation of forest stand height from 
very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing of Environment. Vol. 114, 
pp. 2474–2484. (DOI: http://dx.doi.org/10.1016/j.rse.2010.05.022 )
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Gougeon, F. (1995).  A crown-following approach to the automatic delineation of individual tree crowns in high 
spatial resolution aerial images. Canadian Journal of Remote Sensing. 21(3):274-284.
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Stand and crown metrics
Stand segment metrics

Photo plot ID: 4
Stand ID: 94
Area: 14.85 ha
Stand type: Conifer
Leading species: Lodgepole pine
Mean crown area: 17.8 m2

25th percentile: 9 m2

50th percentile: 14 m2

75th percentile: 23 m2

Crown closure: 37%

Crown metrics

Crown ID: 1385
Length: 3.5 m
Area: 6.8 m2

40th 
percentile 

Mora, B., M.A. Wulder, and J.C. White (2010). Segment-constrained regression tree estimation of forest stand height from 
very high spatial resolution panchromatic imagery over a boreal environment. Remote Sensing of Environment. Vol. 114, pp. 
2474–2484. (DOI: http://dx.doi.org/10.1016/j.rse.2010.05.022 )
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Outcome

• Forest inventory-like information 
generation
– Automated delineation
– Semi-automated attribution
– NFI inputs for inaccessible areas

• need for calibration and validation data, 
– Results with lidar-plots replicate ground plot 

results: RMSE on Ht of <2m 
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Applications Examples

• Characterization of post-disturbance 
recovery

• Audit and calibration of growth and yield 
equations

• Accuracy assessment of national products 
(Canadian and international)
– Information independence

• Calibrating / validating modeled national 
products (based upon optical RS data)
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What do we want, where are we going?

• Modeling for detailed attributes
– Supported by inventory, plots (field, photo)

• Remote sensing:
– Wall-to-wall
– Creation of strata
– Capture of disturbance

• Information needs to drive frequency, spatial detail, 
categorical detail, of attributes and disturbance

• A combined modeling framework for modeling attributes and 
using satellite RS for change capture is recommended. 
– Growth can be modeled, depletions mapped and integrated. (on a 

wide-area tesselation)
– Higher spatial resolution RS can aid in cal / val

• Multiple outcomes, probabilities assigned
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Framework notion:
Integrating multi-scale remote sensing and modeling

• Establish high spatial resolution, fine scale grid 
– Say 25 m cells nationally

• Populate grid through existing spatial data, remote 
sensing (e.g., Landsat), and modeling
– GO Modeling
– Regional expectation from lidar-plots

• Update the grid through satellite change detection
– Find change, attribute change, update, model

• Confirm / adjust modeled outcomes through sample 
based, higher spatial resolution remote sensing (VHSR 
imagery, lidar-plots)
– cal/val of models with lidar-plot

• Repeat
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Thank you
Contact Information: 
Mike Wulder

mwulder@nrcan.gc.ca
Publications:
http://cfs.nrcan.gc.ca/publications/authors/read/11091
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Abstract 
 
During the summer of 2010, a transcontinental aerial survey mission was performed to acquire 
24,000 line km of lidar transects covering >15,000 km2 representing all ecozones within 
Canada’s boreal forest. The coverage equates to ~21 million ‘lidar plots’ at the 25 m grid cell 
resolution. Each ‘plot’ contains the position and intensity of 1000 to 2000 laser points, which 
describe the terrain surface and 3D canopy structure, which will be used to predict forest 
inventory attributes and to support calibration of wide area satellite-based imagery. Furthermore, 
in similar fashion to geo-located permanent sample plots, the lidar transect flight path from 
2010 can be re-surveyed in the future to facilitate monitoring of forest development and change 
in a consistent and quantifiable manner. The paper describes the mission planning criteria, 
survey logistical considerations and customised transect data processing routines.  
 
1. Introduction 
 
Canada’s boreal forests cover approximately 3,070,000 km2 (Brandt, 2009) and span almost 
5000 km from Newfoundland to the Yukon. Monitoring remote and extensive forest resources 
across such a large area is challenging. While satellite remote sensing is used to meet some 
information needs, some form of calibration and validation data are required. Further, many 
scientific questions require plot-level information to relate conditions in a spatially referenced 
manner. The utility of integrating lidar sampling data with satellite imagery to investigate 
temporal canopy changes over a study area within Canada’s boreal forest has been demonstrated 
(Wulder et al. 2007). Similarly, lidar sampling has also been shown to facilitate the scaling of 
forest attributes from the plot scale to an entire Province (~50,000 km2) (Hopkinson et al. 2011).  
A systematic collection of lidar transect data representing the entire Canadian boreal forest is 
envisioned to provide a widely distributed sampling of information that may be used to support 
calibration / validation activities for monitoring programs, to support research, and to offer 
experience and insights in support of repeat lidar-based monitoring efforts.  
 
A lidar project requiring coordination at the continental scale of Canada’s land mass poses 
unique challenges. To plan and execute such a mission, the Canadian Forest Service (CFS) 
initiated partnerships with experienced lidar forestry researchers at the University of British 
Columbia (UBC) and the Applied Geomatics Research Group (AGRG) in Nova Scotia. This 
paper will summarize the key elements of the mission planning, data collection, and initial 
post-processing. Some of the challenges faced and solutions implemented at each stage of the 
project will be highlighted. 
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2. Mission Planning 
 
The concept was to adopt the C-CLEAR (Canadian Consortium for Lidar Environmental 
Applications Research) collaborative research support framework, while using the AGRG 
airborne lidar equipment and research personnel to facilitate data acquisition and processing. 
C-CLEAR lidar missions are conducted annually across Canada and occasionally into the Arctic, 
so this model provided the ideal basis for a boreal-wide transect sampling mission from one side 
of Canada to the other. The first mission planning task was to identify priority areas and then to 
map out an approximate route to be taken by the survey aircraft. 
 
The goal of the transect planning was to ensure that a broad sample of boreal conditions was 
captured, limit the amount of flying over areas with existing management inventories, and to 
avoid flying too frequently over sparsely tree areas. The first task was to identify and target 
boreal ecoregions that displayed >50% forest cover to ensure lidar transect sampling was 
productive; i.e. no point sampling large areas with no forest cover. Given that some forest areas 
can undergo active forestry operations, these areas are often described within existing forest 
inventory databases. Therefore, to focus the sampling in ecoregions with minimal existing 
inventory data, areas displaying more than 75% managed forest cover were excluded. To enable 
comparisons between lidar transect data and available plot-level image and field data across the 
country, the National Forest Inventory (NFI) grid node locations (Gillis et al. 2005) were used 
to guide the specific positioning of transect locations. In addition to the national-level sampling, 
more intensive lidar transect data collection was conducted in the Liard and Hyland Highlands 
ecoregions in the southern Yukon Territory to facilitate: a) a statistically significant spatial 
sampling of the forest cover attributes for these ecoregions; and b) some plot-level ground 
calibration of the lidar transect data for a range of forest attributes (e.g. Morrison et al. 2011). 
 
Given AGRG is located in Nova Scotia, on the east coast of Canada, it was decided to initiate 
data collection here, then traverse across country toward to the Yukon Territory in the north west, 
with the objective being to capture as much of the target coverage as possible on the outbound 
leg and fill any large gaps on the return; i.e. fly the full width of the boreal zone two times. The 
planned survey route was constrained by the operational limitations of the survey aircraft and 
the presence of suitably equipped airports located to allow adequate sampling of the target areas 
whilst maintaining progress across the country. Given the strong latitudinal gradients in forest 
cover in the boreal zone, it was essential that transect sampling had a north-south component to 
it, thus dictating a ‘zig-zag’ flight pattern from east to west and back again. 
 
AGRG’s survey plane is a twin engine PA-31 Piper Navajo operated by Scotia Flight Centre. 
Many remote northern airports in Canada have gravel airstrips and only carry jet fuel for 
helicopters and fixed wing aircraft with turboprop engines. The Navajo cannot use jet fuel and 
gravel airstrips should be avoided as it has long twin bladed propellers which mobilise dust and 
debris, and thus could possibly damage the aircraft or the lidar equipment. Furthermore, when 
fully laden the Navajo requires a runway exceeding ~ 1,100 m in length. While most airports in 
southern Canada and major northern towns can accommodate these operational considerations, 
airport options at the northern extent of the boreal forest target zone were limited.  
 
In addition to the spatial sampling and airport location criteria summarized above, further 
constraints that needed to be factored into the planning were: 

1. Based on a flying speed of 150 knots and endurance of 4.5 hours the planned distance 
between take off and landing should not exceed ~ 1000 km; 

2. Due to budgetary limitations, total survey flying time should not exceed 100 hours; 
3. Survey routes must avoid restricted airspace. 
4. Transects to be collected between late June and end of August 
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All ecoregion, NFI, and airport locations and attributes were loaded into a GIS and the criteria 
described above used to design an optimal survey route. Based on desired cost-effective 
sampling requirements, sensor and survey setting influences to point cloud attributes 
(Hopkinson, 2007; Næsset, 2009; Evans et al. 2009), and the operational envelope of the AGRG 
airborne laser terrain mapper (ALTM) 3100C (Optech Inc. Toronto, Ontario), the chosen flight 
parameters under ideal conditions were:  

1. flying altitude of 1200 m agl;  
2. velocity of 150knts;  
3. pulse repetition frequency (PRF) of 70 kHz;  
4. scan angle of ± 15o.  

 
Under typical operational conditions, these parameters will generate a swath width of ~640 m 
and provide a nominal multiple return point density of ~2.8 pts/m2 over flat forest covered 
terrain. The initial survey plan prior to execution is illustrated in Figure 1 and the associated 
planned flight times in Table 1. Should the above survey parameters not be possible, the 
following guidelines were to be used: 

1. Multiple return data density must never drop below 1pt/m2;  
2. Swath width must always exceed 400m at ground level;  
3. Scan angle will not exceed 20 degrees nor fall below 10 degrees;  
4. PRF will remain at 70kHz unless high relief necessitates either 50kHz or 33kHz;  
5. Survey configuration adopted for all transects will be noted and reported. 

 

 
Figure 1: Planned survey transects (red lines) across the boreal forest area of interest (priority increasing 
from light to dark pink ecoregions). Airports meeting suitability criteria are illustrated as blue/red circles. 

 



SilviLaser 2011, Oct. 16-20, Hobart, Tasmania 

 4

Table 1: Planned survey transects illustrating the anticipated data acquisition, transit and total flight time 
listed sequentially from east to west across Canada. 

 
3. Data Collection 
 
Over a period of 67 days from June 14th to August 20th, 2010, the AGRG undertook 34 
individual survey flights traversing 13 UTM zones and over 24,000 km of the Canadian Boreal 
Forest from Newfoundland (56o W, UTM zone 21) in the east to the Yukon (138o W, UTM zone 
8) in the west (Figure 2). All provinces and territories were represented apart from Prince 
Edward Island and Nunavut (where there is minimal to no boreal forest cover) and the 
longitudinal gradient sampled represents 23% of the Earth’s circumference between latitudes 
43o N and 65o N. Survey flights ranged from one to five hours in duration, averaging three hours 
and 700 line kilometres in length. The entire mission took 127 hrs of flying (including transits). 
Of this, approximately 91 was used for transect data collection and nine for sensor calibration at 
the start and end of the mission. Three stops totalling ten days were performed en route for 
scheduled aircraft maintenance and servicing at Fredericton, Calgary, and Yellowknife airports.  
 

Missions 
Mobilization/Installation 
Calibration (NS x 2) 
1 Schefferville 
2 Goose bay 
3 Sept Isle 
4 NFLD South 
5 NFLD North 
6 RDL - Chibougama 
7 Timmins  
8 Moosonee 
9 Marathon 
10 Pickle 
11 Churchill 
12 Flin Flon 
13 LaRonge 
14 Ft McMurray 
15 Yellowknife 
16 South (100 hr) 
17 Ft Nelson 
18 Ft Simpson 
19 Watson Lake 
ELH1 Watson 
ELH2 Watson 
20 Whitehorse 
21 Norman Wells 
22 Ft Simpson 
23 Hay River 
Return Nova Scotia 
Mission total 

Survey hrs 
0 
10 

3.75 
2.75 
2.5 
0.75 
2.0 
4.5 
4.0 
3.0 
3.25 
3.75 
3.5 
3.0 
4.0 
4.0 
3.0 
2.5 
1.0 
1.5 
2.0 
2.5 
3.25 
3.25 
3.75 
3.0 
2.75 

0 
83.25 

Transit hrs 
4.0 (NB – NS x2) 

0 
2.25 (NS – QB) 

0.5 
2.5 (QB – NS) 

2.5 (shared) 
2.5 (NFLD – NS) 

2.5 (NS – QB) 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

5.0 (transit service) 
4.0 (transit service) 

0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
16.5 

48.25 

Total hrs 
4.0 
10 

6.0 (two flights) 
3.25 
5.0 
0.75 
4.5 

7.0 (two flights) 
4.5 
3.5 
3.75 
4.25 
4.0 
3.5 
4.5 
4.5 
3.5 

7.5 (two flights) 
5.0 
2.0 
2.5 
3.0 
3.75 
3.75 
4.25 
3.5 
3.25 

16.5 (~ 4 - 5 flights) 
131.5 
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Figure 2: The final lidar sampling transect locations across Canada’s Boreal Forest. Area in green 

represents Canada’s boreal forest cover (Brandt, 2009), and the red area illustrates priority ecoregions. 
 
Fire activity in the Boreal Forest during July and August of 2010 was unusually high and this 
directly impacted approximately one third of the flights by substantially reducing visibility, and 
forcing diversions away from dense smoke, closed runways and restricted airspace surrounding 
water bomber activity. A technical problem discovered during calibration and initial test flights 
was an erratic GPS data gap error due to corroded ground terminals on a radio antenna that passed 
unfiltered radio signals into the GPS antenna. This intermittent issue resulted in some short data 
gaps and down time, but did not impact the final data quality. A further logistical challenge 
encountered concerned the reliability of data contained within the latest Transport Canada Flight 
Supplement. On three occasions, information concerning fuel and airport service availability was 
found to be incorrect or out of date. Such minor challenges were expected on a project of this 
scale but they emphasize the necessity of adaptability and planned contingency. 
 
Due to adverse weather, high relief, excessive fire and smoke conditions, temporary airspace 
restrictions and airport closures, deviations from the optimal plan were necessary for 24 of the 
34 flights. For example, whilst all 34 flights were conducted between altitudes of 450 to 1900 m 
agl, 11 flights encountered altitudes <900 m agl, and three >1500 m agl (Table 2). Scan angle 
was kept fixed at 15o for all but four of the flights and PRF kept at 70 kHz for all but seven. 
Low ceilings forced a scan widening of up to 20o, while high relief dictated a reduction in PRF 
to 50 kHz. In cases where ceilings or visibility reduced the flying height, data density was 
minimally impacted and typically increased despite adjusted scan angles. Where relief required 
a reduction in PRF, data density systematically decreased. 
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Table 2: Lidar survey transect IDs, timing, flying hours, survey configuration. 
 

 
 

 Survey Flights Survey configuration 

Transect Strips JD Objective/Route Province Flying 
hrs Alt (m agl) PRF 

(kHz) 
scan 
(deg) 

  165 Transit + Calibration NB - NS 2.9    
  166 Calibration NS 2.4    

Test 1 167 Test transect NS 3.8 1000-1300 70 15 
  169 Transit NS - QB 2.3    

T01 1 171 Baie Comeau - Goose bay QB / NFL 3.4 1000-1200 70 15 
T02 3 172 Goose bay - Schefferville QB / NFL 3.2 900-1300 70 15/20 
T03 1 172b Schefferville - Baie Comeau QB / NFL 3.7 900-1400 70 15 

  173 Transit QB - NB 1.5    
  173b Test flight NB 0.9    
  174+ Aircraft service (Fredericton) NB 0.0    
  186 Transit NB - NS 0.8    
  187 Transit NS - NFLD 2.6    

T04 1 188 SW Newfoundland NFL 1.6 700-1000 70 15 
T05 1 192 NW Newfoundland NFL 1.9 600-1200 70 15/20 

  200 Transit NS - QB 2.0    
T06 2 201 Riviere du loop - Chib QB 3.3 450-1250 70 15 
T07 2 201b Chibougamau - Val D'Or QB 4.0 1000-1300 70 15 
T08 2 203 Val D'Or - Moosonee QB / ON 2.1 1000-1200 70 15 
T09 2 203b Moosonee - Pickle lake ON 4.1 1000-1300 70 15 
T10 1 203c Pickle Lake north loop ON / MB 1.7 1100-1250 70 15 
T11 2 204 Pickle Lake - Winnipeg MB 2.0 500-600 70 15 
T12 1 204b Winnipeg - Thompson MB 2.6 700-1150 70 15 
T13 3 205 Thompson - La Ronge MB / SK 3.2 600-1050 70 15 
T14 1 205b La Ronge - Calgary SK / AB 3.0 1000-1300 70 15 

  206+ Aircraft service (Calgary) AB 0.0    
  210 Transit AB 2.4    

T15 2 210b Ft McMurray - Yellowknife AB / NWT 3.2 900-1250 70 15 
T16 3 211 Yellowknife - High Level NWT / AB 2.5 1150-1300 70 15 
T17 2 211b High Level - Ft Nelson AB / BC 3.0 750-1000 70 15 
T18 6 212 Ft Nelson - Whitehorse BC / YK 4.4 1200-1500 50 15 
T19 1 213 Whitehorse - Watson Lake YK 3.8 1050-1600 50 15 
T20 2 213b Liard ecozone loop (Watson) YK 3.2 900-1900 50 15 
T21 3 214 Watson Lake - Ft Simpson YK / NWT 2.0 600-1800 70/50 15/20 
T22 3 214b Ft Simpson south loop NWT 0.9 1400-1500 50 20 
T23 2 214c Ft Simpson - Watson (plots) NWT / YK 1.9 900-1900 70/50 15 

  215 Aborted  YK 0.2    
T24 4 215b Watson - Ft Simpson (plots) YK / NWT 2.5 1200-1400 70/50 15/17 
T25 1 215c Ft Simpson - Yellowknife NWT 3.6 1200-1300 70 15 

  216+ Aircraft service (Yellowknife) NWT 0.0    
T26 2 218 Yellowknife - Flin Flon NWT / MB 4.5 1200-1400 70 15 
T27 1 218b Flin Flon - Thompson MB 2.1 1200-1300 70 15 
T28 1 219 Thompson - Churchill MB 2.0 1200-1250 70 15 
T29 1 219b Churchill - Thompson MB 2.3 1000-1300 70 15 
T30 1 219c Thompson - Pickle Lake MB / ON 2.9 1200-1250 70 15 
T31 3 220 Pickle Lake - Sioux Ste Marie ON 4.8 600-1250 70 15 
T32 3 223 Sioux Ste Marie - La Grnd Riv. ON / QB 3.7 1000-1400 70 15 
T33 4 223b La Grnde Riviere - Fredericton QB / NB 5.1 850-1400 70 15 

  230+ Transit + Calibration NS - NB 6.7    
TOTAL  67 126.7   
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4. Transect Data Processing 
 
4.1 Flight light trajectories  
 
Given the need to adapt the sensor and flying configuration to accommodate changing external 
conditions such as cloud, smoke and terrain relief, the ALTM sensor needed to be stopped and 
restarted on several occasions in some flights (up to six times in the extreme case). Therefore, 
during the 34 survey flights, there were actually 69 individual strips of lidar collected, the 
longest of these being a continuous data stream exceeding four hours in duration. All data were 
checked in the field shortly after download from the ALTM but final processing took place in 
the AGRG lab in Nova Scotia.  
 
After download and archival of raw data, the first data processing task was to compute the 
smoothed best estimated trajectory (sbet) containing both position and orientation data. The 
ALTM GPS receiver (Trimble BD9500) collected real time GPS signals at 1Hz for the antenna 
location on top of the aircraft. Meanwhile, multi-axial aircraft accelerations and attitude shifts 
were recorded at 200Hz at an inertial measurement unit (IMU) located within the sensor head 
adjacent to the scanner mirror. Trajectory processing uses a Kalman filter to integrate these two 
data streams to simultaneously estimate and predict the true position and orientation of the 
aircraft platform. Given the impracticality (high cost and time requirement) of setting up ground 
base stations at hundreds of locations across Canada, it was originally intended to process all 
GPS data using Precise Point Positioning (PPP) but after some experimentation it was found 
that the Canadian active control station (CACS) network and United States continuously 
operating reference station (CORS) data enabled reasonably accurate differential correction of 
the airborne GPS trajectory using a ‘virtual base station’ solution (Boba et al. 2008). While the 
base lines were actually up to several hundred kms in some cases, this capability meant that all 
points on all trajectories were differentially corrected to accurately known base station locations 
such that positional errors are anticipated to be better than PPP and likely within 1m throughout 
 
4.2 Points integration 
 
The software used to integrate the raw laser scanner and sbet data was ‘Dashmap’, a proprietary 
point processing software package developed by Optech Inc (Toronto, Ontario). Typical user 
configurable processing settings are the boresight alignment and hardware calibration 
parameters, factory defaults, range, scanner and altitude masks, atmospheric settings, and 
intensity normalisation. Output parameters, such as geographic extent, decimation, datum, 
projection and zone, file formats/paths, etc can also be user defined. 
 
The main Dashmap output definitions for this project were the file format (LAS 1.0), UTM 
projection (eastings and northings) and the UTM zone for each strip. Because a given transect 
could cross multiple UTM zones, there were some challenges with zones being incorrectly 
defined, but these issues were resolved by manually over-riding the default output settings. In 
total, 69 LAS binary strip files were generated and outputted, containing an average of 300 
million points each, ranging from a few million up to around a billion. Both the trajectory 
outputs and the point cloud data were horizontally and vertically referenced to the International 
Terrestrial Reference Frame (ITRF), which is equivalent to the WGS84 ellipsoidal datum.  
 
For each emitted laser pulse, there was the possibility of up to four measured returns (first, 
intermediate, last and single). The echo classification, intensity and scan angle for each pulse 
are embedded within a LAS file. The LAS binary format is described on the ASPRS web site: 
http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html 
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4.3 Ground Classification 
 
Individual strip file sizes could exceed 30GB and were too large to be handled in most software 
environments. Therefore a tool was developed to clean the data, classify ground returns, and 
break the large files down into smaller manageable files of 20 million data points.  
 
‘Lasline’ is a tool developed partially to support the analysis presented here as well as an AGRG 
project with Nova Scotia Power Inc. to sample and inventory Provincial biomass (Hopkinson et 
al. 2011). Lasline takes raw LAS binary transect files of any size as input then executes the 
following operations: 

1. Data cleaning: isolating high and low laser pulse returns that either float well above the 
canopy surface or penetrate well below the true ground surface. Such data errors occur 
due to bird strikes, atmospheric vapour/clouds/aerosols, and/or multi-path of the laser 
pulse.  

2. Ground classification: Ground returns were classified from the transect point cloud 
using a variant of the algorithm developed by Axelsson (1999) that is also used in 
Terrascan (Terrasolid, Finland). Prior to implementation, many different parameter sets 
were tested over various datasets to find a compromise parameter set that produced 
satisfactory results across a broad range of terrain and land cover scenarios. The Lasline 
classification routine was found to be faster than the Terrascan routine for an equivalent 
data volume. 

3. Data output: Cleaned and re-classified LAS files were then outputted in 20 million point 
increments; e.g. for a raw LAS file containing 267million laser points, Lasline would 
output 13 complete files of 20 million points and one final file of 7 million. 

 
These steps are currently being further expanded to automatically output grid cell-level point 
cloud metrics in a similar fashion to the USDA tool ‘FUSION’ (McGaughey, 2010). Tools 
already exist in house that convert point output data to models of forest biometrics, so the intent 
is to calibrate ‘push button’ tools that automate the workflow from raw LAS binary transect files 
through to grid-cell level forest attributes ready for input to a GIS.  
 
5. Conclusion 
 
From June to August of 2010, an unprecedented survey of 24,000 km of lidar transects covering 
>15,000 km2 were collected across Canada’s boreal forest. The size of all the LAS files exceeds 
500 GB and the coverage equates to ~21 million ‘lidar plots’ at the 25 m grid cell resolution. 
Each ‘plot’ contains the position and intensity of 1000 to 2000 laser points, which describe the 
terrain surface and 3D canopy structure, which may then be used for estimating forest inventory 
attributes (Bater et al. 2011). Overall, the completed data collection closely resembled the plan 
in terms of coverage and timing. The results of this mission represent a rich database describing 
Canada’s boreal forests during the summer of 2010. These data offer the potential for calibration 
of wide area satellite-based imagery for spatial upscaling purposes, and will support Canadian 
government reporting and science programs. Furthermore, in similar fashion to geo-located 
permanent sample plots, the lidar transect flight path from 2010, or portions thereof, can be 
re-surveyed in the future to facilitate monitoring of forest development and change in a 
consistent and quantifiable manner.  
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Abstract 

Topography  estimation  is  a  key  factor  in  forestry  studies.  The  accurate  prediction  of  topography 
underneath  tree canopies will certainly  improve  the  subsequent  forest bio‐physical characteristics 
estimation such as  tree height, stem volume, biomass/carbon stocks. Thus,  the assessment of  the 
accuracy of GLAS  topographical estimation  is essential before  the data can be used  for  forest bio‐
physical characteristics prediction. This study proposes the use of airborne LiDAR measurements to 
assess GLAS ground elevation estimates  in a mixed woodland and arable site  in south‐east England 
near Thetford, UK, at at 52.4°N, 0.81°E, given that airborne LiDAR measurements have already been 
validated using  ‘ground‐truth’ data. GLAS  full waveforms are decomposed  into up  to  six Gaussian 
modes and different  indices, such as waveform centroid position  (GLA14 position) and GLA01  last 
peak  position,  are  calculated  based  on  the  peak  positions  of  these  Gaussian modes.  Elevations 
estimated from these indices are compared with airborne LiDAR elevation estimates for assessment 
purpose and optimal estimates will be selected based on the results.  

Four comparison models are introduced in this study. From these, model 1 (the comparison between 
GLA14 elevation and non‐filtered airborne last return pulses elevation) and model 4 (the comparison 
between GLA01 last mode elevation and filtered airborne last return pulses elevation) have the best 
performance with R‐squared values of 0.89 and 0.87, respectively, and RMSE values of 3.82 and 4.69, 
respectively. After  removal of outliers  for model 4,  the R‐squared value  improves  to 0.99 and  the 
RMSE value reduced significantly to 0.66. 

A  simplified  experiment  is  implemented  in  this  study  in  order  to  investigate  the  impacts  on 
biomass/carbon  stock  estimates  arising  from  use  of  different models, with  the  assumption  that 
there is a uniform average tree height of 20 meters and uniform stem density through the study site.  

Key words: GLAS, ICESat, LiDAR, Airborne LiDAR, Topography, Waveform 

 

1 Introduction 

The  Geoscience  Laser  Altimeter  System  (GLAS)  was  launched  in  2003  on‐board  ICESat  by  the 
National Snow and Ice Data Centre (NSIDC). Its primary mission  is to measure  ice sheet properties. 
GLAS is a full‐waveform LiDAR instrument and has nearly global data coverage. GLAS is also the first 
satellite‐borne Light Detection and Ranging (LiDAR) instrument for continuous global observations of 
the Earth. Due to its land measurement properties, GLAS has been used in lots of forestry studies. 

Ranson  et al.  (2004)  explored  the possibility of using GLAS waveform data  to help with  the  land 
cover  classification  results obtained  from MODIS  data. Harding  and Carabajal  (2005)  investigated 



GLAS measurements of within‐footprint  topographic  relief and  vegetation  vertical  structure. They 
introduced several common vegetation vertical structure biophysical parameters such as maximum 
canopy height, crown depth and topographic relief, the upper‐most canopy ruggedness, as well as 
canopy  cover,  and  with  procedures  for  estimation  from  GLAS  waveforms.  Duong  et  al.  (2006), 
Neuenschwander et al. (2008), and Pang et al. (2008) also presented approaches to using GLAS data 
for retrieval of forest vertical structure parameters such as tree height, etc.  

Topography estimation  is a key factor  in forestry studies. The accurate prediction of terrain height 
underneath  tree canopies will certainly  improve  the  subsequent estimation  for  forest bio‐physical 
characteristics such as tree height, stem volume and biomass/carbon stock. Thus, the assessment of 
the accuracy of GLAS topographical estimation is essential before the data are used for subsequent 
estimation. Exploiting  the very high accuracy of airborne LiDAR  (15cm RMSE vertically),  this  study 
proposes an approach to carry out this assessment by using airborne LiDAR data, provided that the 
accuracy of airborne LiDAR measurements has already been precisely assessed. 

The assumption of this study is that airborne LiDAR measurements are 100% true and can be used to 
measure the accuracy of GLAS topography estimation and to reveal error budgets in GLAS products 
when estimating ground elevation. The objectives of  the study are  to assess  the accuracy of GLAS 
data  products  in  topography  estimates  by  using  either  non‐filtered  or  filtered  airborne  LiDAR 
measurements; to  investigate  the  impacts of using different data products under different models 
on  terrain height estimates  and  the  subsequent  forest bio‐physical parameters estimates;  and  to 
establish  the relationships between GLAS and airborne LiDAR measurements. The outcome of  this 
study can assist with a better understanding of GLAS land measurements and also the possibility of 
using GLAS for terrain surface modelling in biomass/carbon stocks mapping exercises. 

2 Study site and Data 

The  study was  implemented  at  a mixed  forest  site  in  Thetford, dominated by oak  (Quercus)  and 
conifers.  It has  an  area of  about 116 ha  and  is  located  to  the  east of  Thetford main  forest, East 
Anglia, UK,  at  52.4°N,  0.81°E  (figure  1).  This  site mainly  consists  of  pines  and  broadleaves, with 
relatively dense under storey vegetation such as hazel  (Corylus colurna) and hawthorn  (Crataegus 
laevigata).  

   

(a) The black dot shows the location of 
this study site, 52.4°N, 0.81°E. (Source: 

(b) A screenshot of the Thetford woodland site 
from google earth. 



ESRI data)   

Figure 1: Location and a screenshot of Thetford woodland site 

Throughout this area, there are 138 GLAS footprints available for the four‐year period from October 
2003  to  March  2007.  ICESat  Science  Investigator‐led  Processing  System  (I‐SIPS)  at  the  NASA’s 
Goddard  Space  Flight  Center  created  16  standard  GLAS  data  products  (GLA01  to  GLA16).  Land 
products GLA01 and GLA14 were used in this study. 

The GLAS footprints are elliptical rather than circular and their shapes vary for different  lasers and 
operational  periods.  In  practice,  it  is  very  difficult  to  get  exactly  the  same  elliptical  field  site  for 
validation or for science research purposes, so the equivalent circular diameter (64m) has been very 
frequently used to approximate the footprint shape on ground (Abshire et al., 2005 and Harding and 
Carabajal 2005). Thus,  in  this  study we use  the equivalent 64‐meter‐diameter circles  to  represent 
GLAS footprints. 

The trees were leaf‐on when the Thetford airborne LiDAR survey took place in June 2009. The ALTM 
3033  LiDAR  instrument  collects  33,000  laser  observations  per  second, with  a  40°field  of  view,  a 
728m swath at 1,000m flying height and a 20cm laser footprint size at nadir view. The data density is 
about 1 shot per square meter. As  indicated by  the system supplier,  this LiDAR  instrument has an 
absolute RMS accuracy of better than plus or minus 15cm. About 2GB of data for this area including 
first‐and‐last return laser scanning data, intensity data and waveforms were recorded. This study will 
only use the last return laser scanning data. 

3 Methodology 

3.1 The pre‐processing of GLAS data 

The  pre‐processing  of GLAS  data mainly  dealt with  two  issues:  Saturation  effect  and  coordinate 
transformation. 

Saturation  effect  is  one  of  the  problems  that  cannot  be  neglected  before GLAS  data  is  used  for 
scientific purposes. GLAS data contains a variety of different variables that have different meanings. 
These variables can be derived by the variable‐deriving software provided by NSIDC, which needs an 
Interactive Data Language  (IDL) environment  to  run. Amongst  these variables,  ‘I_SatCorrFlg’  is  the 
one that  indicates  if there  is a saturation effect on that particular record and how big the effect  is. 
The value of ‘I_SatCorrFlg’ ranges from 0 through 4. There is no saturation effect if it equals 0; If it is 
valued less than or equal to 1 or 2, the saturation effect could be corrected by adding the estimate 
of elevation bias due to saturation reported in i_SatElevCorr; however, if it is 3 or 4, it indicates that 
the corresponding records are invalid and should be abandoned.  

For GLAS land surface data product (GLA14), the ‘GLAS Altimetry Product Usage Guidance’ provided 
by NSIDC website has  suggested  that all  the  records  that have a  saturation  indicator value  larger 
than 0 should be simply abandoned for scientific research purposes.   

Apart from saturation effect, coordinate transformation is another issue that needs to be considered 
in  the data pre‐processing  stage.  In order  to  compare  the performance of GLAS data and  that of 
airborne laser scanning data, the coordinates of these data must be converted into the same system. 



GLAS data are initially in the TOPEX/Poseidon reference frame and the airborne laser scanning data 
used  in  this  study are  in OSGB  coordinates.  It  is more  convenient and  straightforward  to process 
data with units in meters, so the coordinates of GLAS data were converted into OSGB coordinates.  

NSIDC provides several coordinate conversion tools that were written using IDL Scripts. The TOPEX 
to WGS84 conversion tool was first used to convert GLAS TOPEX coordinates into WGS84 ellipsoid. It 
was stated that the error associated with this conversion is less than 1cm (Duong et al., 2009). Then 
the  converted GLAS data  coordinates were  transformed  into  the OSGB  reference  system  using  a 
web‐based  coordinate  conversion  tool  provided  by  the  UK  Ordnance  Survey  (ordnance  survey 
website).  

3.2 Elevation derivation from GLAS data 

In this study, two GLAS waveform parameters are considered as a possible basis for terrain elevation 
estimates. These were GLA01 last mode centroid and the centroid of the entire waveform (elevation 
reported  in GLA14). GLA01, the global altimetry data, records the full waveform  information. GLAS 
footprints over vegetated areas usually have a bimodal waveform, shown in figure2.  

Figure 2: A GLAS bimodal waveform 

The  narrow  and  abrupt mode  has  been  considered  to  be  the  representative  of  the  underlying 
ground  (Rosette  et al., 2008).  In  figure 2,  the  light blue narrow  and  tall mode  is  the  transmitted 
waveform,  same  in  figure  3.  For  the  convenience  of  data  processing  and  analysis,  GLAS  full 
waveforms  can  be  decomposed  into  up  to  six Gaussian modes  by  using  the  processing  software 
provided by NSIDC. Amongst these Gaussian modes, the centroid position of the  last mode (GLA01 
last mode elevation) will be used  in  this  study as one potential  indicator of  the  terrain elevation. 
Another  indicator that will be used  in  this study  is  the elevation reported  in  the second  level data 
product GLA14, which  is  represented by  the centroid position of  the complete waveform. Figure3 
shows the positions of these two parameters in a GLAS waveform.  



 

Figure3: The positions of GLA01 last mode (the red dashed vertical line) and GLA14 (small triangle) in 
a  GLAS  full  waveform.  The  bimodal  waveform  (smooth  blue  curve)  was  decomposed  into  six 
Gaussian modes (green curves). 

3.3 The filtering and interpolation of airborne LiDAR data: algorithms 

This  section will  state why  airborne  LiDAR  last  return pulses need  to be  filtered  and  the  filtering 
algorithm (Popescu et al., 2002) that will be used in this study to filter the data for estimation of the 
‘ground’ Digital Terrain Model (DTM). Previous work in another forest site in the UK ‐ Woodwalton 
Fen ‐ will be used here to guide selection of the optimized window size for this algorithm. Also, the 
derivation of airborne LiDAR data within the GLAS footprints will be introduced. 

Airborne LiDAR first‐and‐last return data has been widely used in forestry studies. Literally, the first 
returns should come from the very top surface of the objects that the laser beam is hitting and the 
last  returns  should  come  from  the very bottom,  ideally  the ground, underneath  the  tree  canopy. 
However, not all  the  transmitted  laser pulses will be able  to penetrate  the canopy and  reach  the 
ground, especially in densely vegetated areas. Airborne last return pulses therefore, may come from 
tree branches, under storey vegetation or the terrain surface. If all the last return pulses are simply 
integrated  to  generate  the  terrain  model  without  any  filtering  process,  it  is  very  likely  to 
overestimate the true terrain height. Figure 4 shows the overestimation of airborne last return laser 
pulses on elevation estimates. 

 



Figure 4: Green arrow represents the First return Pulses (FP) and green curve is the FP Canopy 
surface; Red arrows represent the Last return Pulses (LP) and the red dashed curve is the terrain 

surface generated by using LPs (source: Devereux and Amable, 2009) 

Accordingly,  this study adopted  the  filtering algorithm proposed by Popescu et al.  (2002)  (refer  to 
the study for details of the algorithm), aiming to filter out as many non‐ground returns as possible 
and  to  reduce  overestimation.  Some  experiments  have  been  implemented  prior  to  this  study 
(reference to Meng, H., in prep) in another UK‐based study site Woodwalton Fen, trying to find the 
optimal window  size  for  this  algorithm  in  a  boreal  forest.  Based  on  these  results,  a  9m  by  9m 
window was used in this study. 

The approximate average diameter of a GLAS footprint is about 64m. In order to compare with GLAS 
estimates, airborne LiDAR  last returns were derived based on this diameter. Subsequent analysis  is 
only based on laser shots that are within the GLAS footprints (figure 5). Both 9m by 9m filtered and 
non‐filtered last returns are used in this study, for the purpose of comparison. 

 

Figure5: Airborne laser shots (blue dots) within GLAS footprints 

Figure  5  shows  the  derivation  of  airborne  LiDAR  data  within  GLAS  footprints.  The  big  circles 
represent GLAS footprints with an average diameter of 64m. The blue dots inside the big circles are 
the airborne LiDAR laser shots. 

 

3.4 The assessment of GLAS topography estimates accuracy 

Topography estimates from the two potential indicator parameters, GLA01 last mode elevation and 
elevations reported  in GLA14 data product, are compared against  the average elevation estimates 
from both non‐filtered and filtered airborne LiDAR last returns. For each of the GLAS footprint, there 
will  be  two  elevation  values  calculated  as  the  averages  of  non‐filtered  and  filtered  airborne  last 
returns  elevation.  A  linear  regression model  is  used  to  establish  the  relationship  between  these 
measurements. Figure 6 summarizes the algorithms used for the main methodology described above 
(sections 3.1‐3.4). 



 

Figure 6: The procedure for the main methodology part 

 

3.5 Stem volume/ biomass estimates ‐ a simplified experiment  

This  experiment  was  implemented  to  demonstrate  the  impacts  of  topography  estimation  from 
different models on  stem volume/biomass estimates. The assumption was  that  the airborne DTM 
produced from non‐filtered last return pulses or filtered last return pulses is 100% true and there is a 
uniform average  tree height of 20m  throughout  the entire  study  site. By  comparing GLAS  terrain 
elevation estimates using different data products (GLA01 last mode and GLA14) with airborne LiDAR 
DTM, four models were generated (table1): Model 1, the comparison between GLA14 elevation and 
non‐filtered  airborne  LiDAR  last  returns  elevation;  Model  2,  the  comparison  between  GLA14 
elevation  and  filtered  airborne  LiDAR  last  returns  elevation; Model  3,  the  comparison  between 
GLA01  last mode  elevation  and  non‐filtered  airborne  LiDAR  last  returns  elevation; Model  4,  the 
comparison between GLA01 last mode elevation and filtered airborne LiDAR last returns elevation.   

Table 1:  
The four models from comparisons based on different ‘true grounds’ 
 

Assumed ‘true ground’  GLA14  GLA01 last mode elevation 
Non‐filtered airborne last returns  Model 1  Model 3 
9m by 9m Filtered airborne last 

returns  Model 2  Model 4 

 
For each of these models, there will be terrain height estimates from GLA14 and GLA01  last mode 
and also average elevation estimates from non‐filtered and filtered airborne LiDAR last return pulses 
for every GLAS footprint. By subtracting GLAS elevation estimates from airborne elevation estimates, 



terrain  height  overestimation/underestimation  from  that  particular  GLAS  data  product  can  be 
obtained.  Then,  the  assumed  average  tree  height  of  20m will  be  added  to  this  value  to  get  the 
estimated tree height by using GLAS topography measurements. The calculations follow equations 
(1)‐(4) for the four models.  

Model 1 H =                                                              (1) 

Model 2 H =                                                                           (2) 

Model 3 H =                         (3) 

Model 4 H =                                      (4) 

Results will be  compared  for  the  four models. As  tree height  is  the key parameter  for estimating 
subsequent forest bio‐physical parameters such as stem volume, above‐ground biomass and carbon 
stocks, this experiment gives us a rough idea about how much the difference of estimation could be 
resulting from the use of the different models. 

4 Results 

4.1 The pre‐processing of GLAS data 

There  are  138  GLAS  footprints  available  for  the  Thetford  site.  During  the  pre‐processing,  11 
footprints collected in October 2005 were abandoned due to saturation effects. Thus, only the rest 
127 GLAS footprints are analyzed in this study. 

After the coordinate transformation process, all the 127 GLAS footprints were converted into OSGB 
coordinate system. Figure 7 shows the Digital Surface Model of the Thetford site overlaid by GLAS 
footprints represented by back circles. 

 

Figure 7: Coordinate conversion results – GLAS footprints overlying the DSM of the Thetford site 



4.2 The filtering and interpolation of airborne LiDAR data: results 

The  filtering algorithm proposed  in Popescu et al.  (2002) with a 9m*9m window size was used  to 
filter the airborne LiDAR  last return pulses  in order to get a  less biased terrain surface model. The 
filtered  data  has  a much  lower  density  of  0.24  points  per  square meter.  Both  filtered  and  non‐
filtered airborne LiDAR  last return pulses that are  located within the GLAS footprints were derived 
for the convenience of analysis. With an average diameter of 64 meters, the area of a GLAS footprint 
is about 3215 square meters. Thus, there will be roughly 3215 non‐filtered airborne laser shots and 
about 771  filtered airborne  laser shots  located within each of  these GLAS  footprints, although  the 
actual laser shots number varies across the whole area. 

4.3 The assessment of GLAS topography estimation accuracy 

We  investigated  the  performance  of GLAS measurements  for  topography  elevation  estimates  by 
comparing them with airborne LiDAR measurements which have been assumed to be 100% true  in 
this study. The comparisons are shown in figure 8 (a‐d).  

In  figure 8  (a) and  (c), non‐filtered airborne  LiDAR  last  return pulses are assumed  to be  true and 
GLA14 and GLA01 last mode elevations are compared with the ‘true ground’, presented as model 1 
and  model  3  respectively.  Under model  1,  an  R‐squared  value  of  0.8906  was  obtained,  which 
indicates  a  very  strong  relationship  between  non‐filtered  airborne  last  return  pulses  and  GLA14 
elevation. However, GLA01 last mode elevation (figure 8 (c)) does not seem to match well with this 
airborne LiDAR measurement, with an R‐squared value of 0.6362.  

 

 

(a) 



 

(b) 

 

(c) 

 

(d) 



Figure 8: The regression results from the four models 

In the case of figure 8 (b) and (d), 9m by 9m filtered airborne  last return pulses are assumed to be 
the true ground and the performance of GLA14 and GLA01  last mode elevation are again assessed 
under  this  assumption. Quite  strong  relationships  are  found  for  these  two models,  an R‐squared 
value of 0.808 for GLA14 and 0.8651 for GLA01 last mode elevation. Clearly, of all these four models, 
GLA01 last mode elevation has the strongest relationship with filtered airborne last return pulses. 

The pattern  shown  in  figure 8  (d)  is very  interesting  in  that  the majority of  the data  form a very 
straight line with a slope close to 1 and there are several footprints’ data clearly away from this line.  
These data are considered as outliers in this study. A 2m criteria was used to detect these outliers: 
GLAS  footprints with GLA01  last mode elevation 2m  larger or  less  than  the corresponding  filtered 
airborne  last  return pulses  average  elevation within  that  footprint were detected  as outliers  and 
deleted. This process detected 24 outliers throughout this area. Figure 9 shows the new regression 
result without  these  outliers.  An  R‐squared  value  of  0.9953 was  achieved  and  the  slope  of  the 
regression  line  is 0.9726, very close to 1.   Table 2 summarizes the elevation estimates for the four 
models and model 4 with outliers deleted. 

 

Figure 9: The regression result of Model4 with the detected outliers deleted 

Table 2:  
The elevation estimates summary for the four models and model 4 without the outliers 
 

  Model 1  Model 2  Model 3  Model 4 
Model 4 
without 
outliers 

Average 
difference1 (m)  1.95  ‐4.02  7.84  1.86  0.22 

StDev2 of the 
differences (m)  3.30  4.43  6.55  4.33  0.62 

RMSE (m)  3.82  5.97  10.20  4.69  0.66 
R‐squared  0.89  0.80  0.64  0.87  0.99 

1 Average difference =  , negative value means underestimation 
2 Standard Deviation 



4.4 The impacts on stem volume/ biomass estimates  

From equations (1) – (4) in section 3.5, tree height was calculated for each of the models: Model 1 H, 
Model 2 H, Model 3 H, and Model 4 H. For 127 GLAS footprints, the sum ‘true tree height’ is 127 20 
= 2540m. Difference between the accumulated model height and the accumulated true height were 
then  obtained  and  the  overestimation/underestimation  percentage  was  calculated  by  using 
equation (5). 

Overestimation/underestimation percentage =                   (5) 

 
Table3:  
Results: comparison results from this experiment. Model 1 and Model 4 give much better estimates 
than Model2 and Model3 
 

Model 
heights 

Accumulated 
Model Height 

(m) 

Accumulated 
True Height 

(m) 
Differences  Overestimation/underestimation 

percentage 

Model 1 H  2788.14 

2540 

248.14  9.77% 

Model 2 H  2028.93  ‐511.07  ‐20.12% 

Model 3 H  3535.64  995.64  39.20% 

Model 4 H  2776.43  236.43 9.31% 

 

5 Conclusions and discussion 

Of  the  four models  tested  in  this  study, model  1  and model  4  gave  the  strongest  relationship 
between the topography measurements of GLAS data products and airborne LiDAR, with R‐squared 
values of 0.8906 and 0.8651  respectively and RMSE values of 3.82 and 4.69  respectively. The  two 
elevation  indicators of GLAS data  involved  in  this study are: GLA14 waveform centroid and GLA01 
last mode elevation.  

The GLA14 waveform centroid elevation is the measurement of the centroid position of the full GLAS 
waveform.  It  averages  the  object  elevations  within  the  footprint  such  as  trees,  under  storey 
vegetation and ground. Thus, the surface generated by using GLA14 elevation should be higher than 
the actual ground and  lower than the tree canopy top surface. For non‐filtered airborne LiDAR  last 
return pulses, some of  them actually hit  the ground while  the others may  just end up hitting  tree 
branches  or  under  storey  vegetation  before  reaching  the  ground.  Therefore,  the  terrain  surface 
generated from these original last return pulses should also be between the real terrain surface and 
tree canopy top surface (figure 4). This explains why GLA14 elevation and the average elevation of 
non‐filtered airborne LiDAR last return pulses have such a strong relationship (model 1).   

In contrast, GLA01 last mode is from the centroid position of the last Gaussian mode, generated by 
decomposing the full waveform into up to six Gaussian modes. This represents the lowest elevation 
within a GLAS footprint. The purpose of the filtering process of airborne LiDAR data  is to filter out 



the  non‐terrain  points.  Thus,  compared  to  the  terrain  surface  generated  by  using  non‐filtered 
airborne  LiDAR  last  return pulses,  the one  generated by using  filtered  airborne  LiDAR  last  return 
pulses    is  lowered and closer  to  the real ground. This explains  the regression results presented by 
model 4 which show that GLA01 last mode elevation has a very strong relationship with the average 
elevation of filtered airborne LiDAR last return pulses.  

Although very strong relationships are found in these models, there are some very obvious outliers, 
especially  in model 4  (figure 8  (d)). A criteria of 2 meters was used  to detect  these outliers. After 
removing these outliers, the regression result got improved a lot with an R‐squared value of 0.9953 
and an RMSE value of 0.66. However, we do not  really know  the  reason why 2 meters should be 
chosen here for outlier detection and this outlier detection method should not be simply replicated 
to  other  sites without  tests.  There  are  some  possible  explanations  for  these  outliers.  First, GLAS 
footprints are from different years (from 2003 to 2007) and seasons (February, May and October), 
which may cause some inconsistency in the data itself. Second, the decomposition process of the full 
waveform may also have some error. Third, airborne data was collected in 2009, and GLAS data are 
collected from 2003 through 2007. The time gap between data collection could also be one of the 
bias causes. Another reason for the outliers might be the lack of GLAS penetration especially in some 
densely vegetated areas. Terrain slope can be another  factor  that  impacts on  the performance of 
GLAS measurements, which needs further investigation in our future research. 

In  this  simplified  experiment,  it  is  also  possible  that  the  results may  be  slightly  biased  by  the 
difference of tree density through the whole site. Nevertheless, it does demonstrate how much the 
difference  in stem volume/biomass/carbon stocks estimates could be as a result of using different 
models. When the non‐filtered airborne LiDAR last return pulses are assumed to be representing the 
real  terrain surface,  the overestimation using GLA14 elevation  is 9.77%  (model 1) while  that using 
GLA01  last mode elevation  is 39.20%  (model 3). Similarly, when filtered airborne LiDAR  last return 
pulses  are  assumed  to  be  representing  the  real  ground  (GLA14)  the  underestimation  is  20.12% 
(model  2).  This  figure  reduces  to  9.31%  by  using  GLA01  last  mode  elevation  (model  4).    This 
experiment was  carried  out  for  the  range  of  127 GLAS  footprints with  a  total  area  of  about  40 
hectares. The percentage values may vary when taking stem density through the forest into account. 
Over  larger  areas,  stem  volume/biomass/carbon  stock  estimates  could  be  substantially wrong  if 
inappropriate models are used. 

Our  study  assessed GLAS  topography  estimates  accuracy  based  on  the  assumption  that  airborne 
LiDAR measurements are 100% true. The assessment results show a very promising potential for the 
use of GLAS products  in  large scale biomass/carbon stocks mapping. The  impacts of using different 
GLAS data products on biomass/carbon stocks estimates have also been investigated in this study by 
using a simplified experiment, based on the assumption that there is a uniform average tree height 
of 20 meters. The  results give us a  rough  idea of how much  the overestimation/underestimation 
could be by using different models. This addresses the  importance of choosing the right model for 
estimating biomass/carbon  stocks by using GLAS data products. Relationships between GLAS data 
products and airborne LiDAR measurements were also established  in  this study.  It was  found  that 
GLA14 has a very strong relationship with non‐filtered airborne LiDAR last return pulses and GLA01 
last mode has a very  strong  relationship with  filtered airborne  LiDAR  last  return pulses.  In  future 
research, the relationship between ground‐based measurements and airborne LiDAR measurements 



will be established. Together with the relationship between GLAS and airborne LiDAR measurements 
from this study, it will assist with regional/global biomass/carbon stocks mapping.  
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1. Introduction 
 
Tropical forest plays an important role in providing various functions, such as carbon sink, 
maintenance of biodiversity, but deforestation and forest degradation occur in many developing 
countries. The importance of a robust transparent national monitoring system was recognized in 
COP 16 of United Nation Framework Convention on Climate Change and a combination of 
remote sensing and ground-based forest carbon inventory approaches for estimating, as 
appropriate, anthropogenic forest-related greenhouse gas emissions by sources and removals by 
sinks, forest carbon stocks and forest area changes was required. The expectation for the remote 
sensing technology has risen for monitoring of forest carbon stocks and their changes in 
developing countries. 
 
While land-cover change can be identified using optical sensors, it has been difficult to identify 
forest stand structure using conventional remote sensing. LiDAR remote sensing opens a new 
era for monitoring of three-dimensional forest structure. Particularly, airborne laser scanning has 
made it possible to reconstruct it widely and spatially. Airborne laser scanning is a remote 
sensing technique used to acquire three-dimensional data on forest structure, from which a 
digital surface model (DSM) of the forest canopy and a digital terrain model (DTM) of the 
ground surface can be obtained. The laser profiler system carried on aircraft on the other hand is 
a technology that obtains information on canopy height along travelling course. Though 
increasing information to estimate forest carbon stocks accurately by using airborne LiDAR, 
various issues such as the cost, the operation, and the regulation remain unsolved to introduce it 
to monitoring forest carbon stocks in developing countries. 
 
To avoid such issues, use of satellite LiDAR system is another possibility to estimate forest 
structure. This study aims to investigate characteristics of satellite LiDAR waveform in tropical 
forests by comparing with canopy structure derived from high resolution satellite data. 
 
2. Method 
 
2.1 Study area 
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Study area is located in the Tangkulap Forest Reserve, Sabah, Malaysia, which is managed by 
the Sabah Forestry Department under the Deramakot Forestry District. This forest reserve had 
been degraded due to intensive and unplanned harvesting in the past. Concern about the current 
status of the forest reserves has grown considerably in the past decade and therefore, has 
resulted in some initiatives to reverse the trend and to develop strategies and actions for 
sustainable forest management (SFM). Within this context, the SFD prepared a 10-year Forest 
Management Plan (2006-2015) hoping that if properly managed, restored or rehabilitated, the 
forest reserves have the potential to generate significant environmental and socio-economic 
benefits (Sabah Forestry Department, 2010). 
 
We established 20 sample plots with 15m radius in the study area and determined the 
coordinates at the centre of each plot by using a global positioning system (GPS) receiver. DBH 
and tree height of all standing trees with more than 10 cm DBH were measured. Allometry 
between tree height and diameter at breast height (DBH) was investigated from field 
measurement in sample plots (Figure1). 
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Figure 1. Relationship between DBH and tree height from field data in sample plots. 

 
2.2 Remotely sensed data 
 
2.2.1 Satellite LiDAR data 
 
ICESat GLAS data (release 31), which were acquired on 8 October 2008, were used in this 
study. ICESat was launched in January 2003 and the mission was terminated in 2009 because of 
the instrument trouble. ICESat had the orbit of 600km on the ground and it emitted 532 and 
1064 nm wavelength laser pulse at 40 Hz simultaneously. The footprint of laser pulse was 
around 65 m and the interval was about 170 m. 
 
The data for the study area were prepared and provided by the National Snow and Ice Data 
Center (NSIDC). GLA01data and GLA14 data were used for this study. While GLA14 data file 
involves the record index, acquisition time latitude, longitude, elevation, range, offsets of signal 
beginning, signal ending, waveform centroid, and fitted Gaussian peak, original waveform in 
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each shot of laser pulse was included in the GLA01 data file (Sun, et al., 2008). All waveforms 
within the study area were plotted to investigate the characteristics for canopy conditions, and 
they were related to individual footprints 65 m in diameter. 
 
2.2.2 High resolution satellite data 
 
QuickBird panchromatic and multispectral data, which have ground resolutions of 0.61 and 2.44 
m, respectively, at nadir were used for this study. The multispectral sensor observes in the 
following wavelength bands: 450 to 520 nm (blue, band 1), 520 to 600 nm (green, band 2), 630 
to 690 nm (red, band 3), and 780 to 900 (near infrared, band 4). The QuickBird data were 
acquired on 10 October 2007 for the study area. 
 
In the satellite data, treetops showed stronger reflectance than the edges of the crowns. This 
results from differences in crown geometry and canopy structure. Because the digital number 
(DN) in the satellite data represents the relative intensity of reflectance, the DN values are larger 
for the treetops than for the edges of the crowns. 
 
2.3 Data analysis 
 
Reversed QuickBird panchromatic images for each plot by subtracting the DN for a pixel from 
the maximum DN for the whole image (Wang et al., 2004a) were obtained; then the watershed 
method (Wang et al., 2004a) to identify individual crowns and extract their areas was used. The 
watershed method was originally developed to address the influence of terrain on surface water 
hydrology by modelling the movement of water over a landscape and computing the local flow 
directions and the gradual accumulation of water moving down slope across the landscape. If 
we regard the reversed satellite image as analogous to a digital elevation model, the crowns of 
individual trees resemble depressions in the image. As a result, each crown area can be 
calculated by using the tools provided by the watershed method. Non-tree areas in the images 
should be removed during image processing because their presence can lead to overestimation 
of crown area. To permit this, we determined the threshold between tree crowns and non-tree 
areas in the satellite data on the basis of the frequency distribution of DN values in mangrove 
areas and a comparison of the satellite data with data from our field surveys in the study plots. A 
mask layer for the non-tree areas was then generated by using the threshold value determined by 
matching the field data to the DN values in the images. 
 
Footprints of laser pulse from ICESat GLAS were identified on the QuickBird image and stand 
structures in the footprints were estimated from crown information. First, canopy closure within 
a footprint was calculated using the generated mask. Distribution of individual crown areas 
within a footprint was investigated for all footprints in the study area. Grade of degradation due 
to historical selective logging was decided from these two factors, namely, canopy closure and 
crown size structure. Waveform in each footprint was extracted from ICESat GLAS data and the 
relationship between stand structure, which was estimated from crown information, and the 
waveform was investigated. In addition, waveform in oil palm plantation, which was outside of 
the extent of high resolution satellite data, was also investigated. The condition of the area was 
identified using Google Earth. 
 
3. Result 
 
Rates of forest canopy closure within the footprints which were calculated from a mask for 
distinguishing forest area from non-forest area in high resolution satellite image ranged from 
65% to 100 %. It is considered that the difference of rates was caused by the intensity of 
selective logging. There was difference in distributions of crown areas in the footprints, which 
were extracted from the panchromatic data. Particularly, regenerated area, where heavy logging 
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had been conducted in the past, consisted of small crown trees. 
 
The waveform of a mature forest in the study area, which canopy closure was more than 90% 
and had relatively large size of crowns, was shown in Figure 2 (a). In a mature forest, maximum 
tree height derived from LiDAR data was about 43 m. Intensity has a peak around 23m height 
and it means canopy layer. While there is some difference in height estimation, the waveform 
described the size composition. In a mature forest, main part of one shot of laser pulse was 
reflected by crowns of canopy layer and few part of laser pulse reached to lower layers and the 
ground. In some waveforms for mature forests, it was difficult to recognize the ground level due 
to weak signal. 
 
The waveform of a degraded forest in the study area, which canopy closure was less than 90% 
and consisted of various sizes of crowns, was shown in Figure 2 (b). In a degraded forest, 
Maximum tree height derived from LiDAR data was about 42 m. Intensity was relatively weak 
through all layers. In a degraded forest due to historical selective logging of valuable trees, 
some trees which occupied canopy layer have remained. Waveforms in degraded forest were 
various due to canopy conditions which were recognized from the analysis of high resolution 
satellite data. It is considered from the result that intensity of a waveform peak of a laser pulse is 
regarded as an indicator for evaluating grade of forest degradation. 
 
The waveform of a degraded forest in the study area, which canopy closure was less than 90% 
and consisted of various sizes of crowns, was shown in Figure 2 (c). In oil palm plantation, 
maximum tree height derived from LiDAR data was about 23 m. Intensity has a peak around 
15m height and it means canopy layer. Waveforms in oil plantation were similar and obvious 
signals from the grond were confirmed in almost of them. In oil palm plantion, trees are planted 
regularly. There is constant space in a canopy due to this regularity although they have large 
leaves. 
 
 
 

 
 

(a) Mature forest 
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(b) Degraded forest 

 

 
(c) Oil palm plantation 

 
Figure 2. Waveforms from one shot of laser pulse in different canopy conditions. 

 
4. Discussion 
 
In this study, we investigated characteristics of satellite LiDAR waveform in tropical forests by 
comparing with canopy structure derived from high resolution satellite data. Stand structure was 
estimated from waveform of satellite LiDAR data. Length of waveform almost indicated 
maximum tree height. Peak position of waveform indicated the height of canopy layer. The 
height and position of peak of waveform indicated the grade of forest degradation. Further 
studies are required for identify the relationship between waveform of a shot of laser pulse from 
satellite LiDAR and canopy condition such as canopy closure and distribution of crown area 
quantitatively. 
 
The application satellite LiDAR data to mapping of ecosystem structure is currently limited by 
the relatively small fraction of the earth’s surface sampled by these sensors (Lefsky et al., 2011). 
In addition, topographic effect on the data is considerably large in rugged terrain. Some models 
are required to apply the results concerning forest structure obtained from satellite LiDAR data 
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to whole forest area spatially. Combination of different types of satellite data might be one 
possibility to solve this issue. 
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1. Introduction  
 
The northern forested areas of Canada are largely unmanaged and not subject to inventories 
with the same level of detail or regularity as southern forested regions. In an effort to augment 
monitoring and inventory activities, airborne light detection and ranging (lidar) has been 
employed to obtain plot-level information over a sample of Canada’s northern forests. During 
the summer of 2010, a series of 34 transects were flown over a total length of more than 24,000 
km, spanning the width of the Canadian landmass from Nova Scotia to the Yukon, and crossing 
eight ecozones and 13 UTM zones.  
 
Following data acquisition, a suite of plot-level lidar vegetation metrics were calculated. To 
develop estimates of forest attributes such as biomass, however, field data were required from 
the range of conditions found across the region. Co-located field plots and lidar data are 
required for algorithm development. To that end, datasets were acquired from Quebec, Ontario 
and the Northwest Territories. The Quebec field plots were coincident with the lidar transects, 
existing lidar and field data were used for Ontario and Northwest Territories, with careful 
analysis required due to different lidar acquisition parameters. In this paper we describe the 
development of regression models for large area estimates of various tree aboveground biomass 
components using field and lidar datasets of uncommon provenance, with significant differences 
both in terms of the environments in which they were collected, and the characteristics of the 
field and lidar surveys. The equations developed are deemed suitable for application and 
extrapolation across the national series of lidar transects.  
 
 
2. Methods 

2.1 Field data 

Field data were obtained from the Northwest Territories, Ontario and Quebec (Figure 1). The 
datasets are described in detail below. The equations are intended to be relevant over the boreal 
area of Canada’s forest, not the entire forest area depicted.  
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Figure 1. Canadian ecozones and locations of field plots by province. 

  
2.1.1 Northwest Territories 

Field data were provided by the Northern Forestry Centre, Natural Resources Canada, and 
consisted of individual tree measurements, including species, height, and diameter at breast 
height (DBH). Data were collected from square 20 x 20 m (400m2) plots.  

2.1.2 Ontario  

Field data were provided by the Ontario Ministry of Natural Resources and collaborators. As 
with those from the Northwest Territories, the data consisted of individual tree measurements, 
including species, height, and DBH collected from 11.28 m radius (400 m2) circular plots 
located in the Romeo Malette Forest near the city of Timmins. Plots can be coarsely stratified 
into mixedwood, intolerant hardwoods, Jack pine, and black spruce. 

2.1.3 Quebec 

Field data were provided by: Direction des inventaires forestiers Forêt Québec, Ministère des 
Ressources Naturelles et de la Faune. Tree lists were provided for each plot by species and 
stems per hectare grouped in 2 cm DBH classes. Tree heights were measured for four to six 
representative trees per plot. Tree numbers for each DBH class were then calculated based on a 
400 m2 plot, and hardwood/softwood-specific equations were developed to estimate height for 
all stems in the plots based on DBH.  
 
2.1.4 Field-based biomass estimates 

Biomass components were calculated using national DBH- and height-based “all species” 
equations originally provided by Lambert et al. (2005) and subsequently updated by Ung et al. 
(2008). The equations were developed using archival data collected through the Energy for the 
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Forest Research (ENFOR) program, and provide estimates for wood, bark, stem, branches, 
foliage, crown, and total biomass. National “all species” equations were selected because no 
spatially explicit species information is readily available for the majority of the lidar transects. 
The DBH- and height-based equations take the following form: 
 

݀ݓݕ ൌ ܦ1݀ݓߚ
3݀ݓߚܪ2݀ݓߚ  ݁௪ௗ 

 
݇ݎܾܽݕ ൌ ܦ1݇ݎܾܽߚ

3݇ݎܾܽߚܪ2݇ݎܾܽߚ  ݁ 
 

݉݁ݐݏݕ ൌ  ݀ݓොݕ    ݇ݎොܾܽݕ   ݁௦௧  
 

݈݂݁݃ܽ݅ݕ ൌ ܦ1݈݂݁݃ܽ݅ߚ
3݈݂݁݃ܽ݅ߚܪ2݈݂݁݃ܽ݅ߚ  ݁ 

 
ݏ݄݁ܿ݊ܽݎܾݕ ൌ ܦ1ݏ݄݁ܿ݊ܽݎܾߚ

3ݏ݄݁ܿ݊ܽݎܾߚܪ2ݏ݄݁ܿ݊ܽݎܾߚ  ݁௦ 
 

݊ݓݎܿݕ ൌ ݈݁݃ܽ݅ො݂ݕ  ݕොܾݏ݄݁ܿ݊ܽݎ   ݁௪  
 

݈ܽݐݐݕ ൌ ݀ݓොݕ   ݇ݎොܾܽݕ   ݈݁݃ܽ݅ො݂ݕ   ݏ݄݁ܿ݊ܽݎොܾݕ   ݁௧௧ 
 
Where ݕ is the dry biomass component ݅ of a living tree (kg); ݅ is wood, bark, stem, foliage, 
branches, crown, or total; ݕො is the prediction of ݕ; D is the DBH (cm); H is tree height (m); 
 are model parameters with coefficient estimates ܾ; j is wood, bark, foliage or branches; kߚ
= 1, 2 or 3; and ݁ are error terms. Stem, crown, and total biomass are then obtained by 
summing their respective components (Ung et al., 2008). Model parameter estimates are 
provided in Table 1; the field-based biomass estimates are summarized in Table 2. 
 
 
 

Table 1. Model parameter estimates for all-species biomass equations published by Ung et al. (2008) 
 

Parameter Estimate Standard error 
βwood1 0.0283 0.0004 
βwood2 1.8298 0.0075 
βwood3 0.9546 0.0101 
βbark1 0.012 0.0003 
βbark2 1.6378 0.017 
βbark3 0.7746 0.0233 

βbranches1 0.0338 0.0008 
βbranches2 2.6624 0.0182 
βbranches3 –0.5743 0.0233 
βfoliage1 0.1699 0.0036 
βfoliage2 2.3289 0.0184 
βfoliage3 –1.1316 0.0235 
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Table 2. Summary of biomass components estimated using field data and national “all species” equations 
provided by Lambert et al. (2005) and Ung et al. (2008). 

Province 
Wood biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 4,667 1,125 10,665 2,218 

Quebec 2,646 24 7,312 1,650 
Ontario 4,364 495 10,499 1,942 

All Groups 4,073 24 10,665 2,070 

Province 
Bark biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 643 184 1,378 269 

Quebec 377 5 1,066 223 
Ontario 621 85 1,298 245 

All Groups 576 5 1,378 264 

Province 
Stem biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 5,310 1,308 12,043 2,486 

Quebec 3,023 28 8,378 1,870 

Ontario 4,985 580 11,797 2,185 
All Groups 4,649 28 12,043 2,333 

Province 
Branch biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 840 250 1,977 363 

Quebec 612 9 1,698 371 
Ontario 864 96 1,864 344 

All Groups 807 9 1,977 366 

Province 
Foliage biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 188 81 352 59 

Quebec 149 5 377 80 
Ontario 232 35 664 92 

All Groups 206 5 664 90 

Province 
Crown biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 1,028 331 2,329 418 

Quebec 761 13 1,938 445 
Ontario 1,095 132 2,260 423 

All Groups 1,014 13 2,329 444 

Province 
Total tree biomass (kg) 

Mean Min Max Std.Dev. 
Northwest Territories 6,338 1,640 14,373 2,887 

Quebec 3,784 42 10,261 2,312 
Ontario 6,080 712 14,057 2,557 

All Groups 5,663 42 14,373 2,739 
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2.2 Lidar data 

2.2.1 Northwest Territories 

Lidar data were provided by the Northern Forestry Centre, Natural Resources Canada. Data 
were acquired by the Applied Geomatics Research Group (AGRG) in August of 2007 using an 
Optech ALTM 3100. During the survey, the power supply for the laser diode was in a state of 
rapid but steady degradation, and thus the sampling efficiency of this site was well below 
optimal. This directly impacted the probabilities associated with ground and canopy returns (due 
to reduced pulse power) and data density was up to five times below what it should have been. 
Returns were classed as first, intermediate, last, or single. Because of the power supply issues, 
many points fell into the single return category and very few were classified into ground and 
non-ground returns. The AGRG undertook additional processing to create a ground return point 
dataset that was in turn used to create a 1 m raster of ground elevation. The lidar "all-returns" 
point data was then overlaid onto this grid and the ground elevations subtracted to generate a 
canopy point data set.  

2.2.2 Ontario  

Lidar data were provided by the Ontario Ministry of Natural Resources and collaborators. Data 
were in standard las format and classified as ground and non-ground returns.  

2.2.3 Quebec 

Lidar data were extracted from this project’s dataset where the transects and Quebec field plots 
intersected. The desired survey specifications included a flying height of 1,200 magl, a 70 kHz 
pulse repetition frequency, scan angles of +/-15o, and a nominal pulse density of  ~ 2.8 
returns/m2, with the understanding that flying conditions might necessitate lower or higher 
flying heights. Scan angle was generally kept fixed at 15o.  

2.2.4 Lidar data processing 

Lidar data were processed using FUSION software (McGaughey, 2010). A suite of standard 
plot-level lidar metrics were calculated, including mean first return height; standard deviation, 
coefficient of variation, and the 95th percentile of first return heights; percentage of first returns 
above 2m; and percentage of first returns above the first return mean height . Plot sizes were 
400 m2 and either circular or square depending on their province of origin.  Table 3 provides a 
plot-level summary of return numbers by province.  
 

Table 3. Summary of lidar return numbers within field plots. 

Province Number of plots 
First returns above 2m All returns 

Mean Std.Dev Mean Std.Dev. 
Northwest 
Territories  40 88 55 189 97 

Quebec 41 391 145 745 113 

Ontario 120 1086 255 1881 405 

All groups 201 746 474 1315 785 

 
 
2.2 Statistical analysis 

Given the large number of possible predictor variables (lidar metrics) which were often strongly 
intercorrelated, a subset of candidate predictors were selected based on their relatively low 
intercorrelations and their biological relevance (e.g. Li et al., 2008). Prior to analysis, both 
predictor variables and forest attributes were transformed to their natural logarithms. Best 
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subsets multiple linear regression analyses were then preformed for each forest attribute. 
Akaike’s Information Criterion (Akaike, 1973) was employed to select the most parsimonious 
models (Posada and Buckley, 2004). Following the development of regression models, outliers 
were assessed based on their standardized residuals and leverage values. If a large gap existed 
between the majority of leverage values and one or a few with very high values, the outliers 
were removed from the final regression model.   
 
To assess the quality of the final models, the lidar-derived biomass estimates were 
back-transformed from their natural logarithms to arithmetic units using a bias correction factor 
(Sprugel, 1983). Bias, mean absolute error (MAE) and root-mean-square error (RMSE) were 
then calculated from the residuals between predicted and observed values. 
 
 
3. Results 
Results of the multiple linear regression analyses are shown in Tables 4 and 5, and Figure 2. The 
final regression models explained between 36% and 78% of the variance in the various biomass 
components. Of the biomass components, foliage biomass was the most poorly predicted, with 
an adjusted R2 of 0.36. However, 78% and 76% of the variance in wood and total aboveground 
biomass were explained, respectively (Table 4). 
   
 
Table 4. Summary statistics for the multiple linear regression models for the field-based biomass 
components (dependent variables) and lidar canopy height and cover metrics (predictors). 

Dependent variable n plots Multiple R Multiple R2 Adjusted R2 df model df residual F p 

Foliage biomass 197 0.61 0.37 0.36 2 194 56.08 0.00

Branch biomass 198 0.81 0.65 0.65 2 195 182.28 0.00

Crown biomass 198 0.77 0.60 0.59 2 195 145.63 0.00

Bark biomass 198 0.86 0.73 0.73 2 195 267.69 0.00

Wood biomass 198 0.88 0.78 0.78 3 194 231.02 0.00

Stem biomass 198 0.88 0.78 0.77 3 194 224.43 0.00

Total tree biomass 198 0.87 0.76 0.76 3 194 206.79 0.00

  
Bias was negligible for all models (Table 5). Total aboveground biomass had a bias of 56.8 kg, 
or less than 1% of the mean. Foliage biomass, the smallest biomass component, but also the 
most poorly predicted in terms of its precision, had a MAE of 52 kg, or 25% of the mean value 
observed in the plots. Conversely, the largest component, wood biomass, had an MAE of 749 
kg, or 18% of the mean value observed in the plots, while total tree biomass had an MAE of 
1029 kg, or 18% of the mean observed value (Table 5). Foliage biomass had an RMSE of 67 kg 
or 33%. Wood biomass had an RMSE of 990 kg, or 24% of the mean value observed in the 
plots, while total aboveground biomass had an RMSE of 1353 kg or 24% (Table 5).  
 
Of the candidate lidar-derived predictor variables, the 95th percentile of first return heights and 
the percentage of first returns above the first return mean height were employed to estimate the 
crown biomass components, while mean first return height, the coefficient of variation of the 
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first return heights, and the percentage of first returns above 2 m were employed to estimate the 
stem components and total tree biomass. 
 
Table 5. Fit statistics for the multiple linear regression models for the field-based biomass components 
(dependent variables) and lidar canopy height and cover metrics (predictors). Field plots sizes were 200 
m2. 

Dependent variable Units BCF1 Bias MAE2 RMSE3 

Foliage biomass kg 1.059 0.87 51.96 67.22 

Branch biomass kg 1.043 4.83 163.38 218.60 

Crown biomass kg 1.045 5.61 212.79 282.12 

Bark biomass kg 1.04 7.00 105.84 136.98 

Wood biomass kg 1.039 51.82 749.33 990.40 

Stem biomass kg 1.039 58.56 854.28 1125.35 

Total tree biomass kg 1.038 56.80 1029.34 1353.21 
1Bias correction factor (Sprugel, 1983) 
2Mean absolute error 
3Root mean square error 
 
 
4. Discussion 

The objective of this paper was to describe the development of large area estimates of tree 
biomass components by combining three different field and lidar datasets. The results indicate 
that, using biologically relevant lidar-derived predictor variables based on height, vertical 
structural complexity, and cover, over 70% of the variance in stem and total tree biomass can be 
explained; this despite significant differences in lidar acquisitions, particularly the dissimilarities 
in return densities (Table 3). In comparison, biomass estimates employing purposefully 
collected lidar and field data over comparably small areas typically explain between 70% and 
90% of the variance in tree biomass (e.g. Popescu, 2007; Li et al., 2008; Næsset and Gobakken, 
2008).  
 
It should be noted that the usage of “all-species” national allometric equations to estimate 
biomass from field-measured height and DBH is not optimal, as prediction errors grow with 
increased model generalization (Hall and Case, 2008). Nonetheless, without additional 
information on species within the lidar transects, the equations do provide a means to estimate 
forest attributes of critical importance.   
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Abstract 
Two biases that affect the accuracy and precision of biomass estimates are explored 
using a systematic sample of 105 profiling lidar flight lines acquired over Hedmark 
County, Norway.  The first bias deals with inaccuracy that may accrue in mean 
estimates of biomass for the entire County when the predictive models are generated 
using a spatially constrained set of ground plots, simulating, for instance, limited access 
to ground observations.  In Hedmark, mean cover class estimates of aboveground dry 
biomass differed by as much as -12% to +13% when models were developed using 
coincident ground-lidar observations limited to the north or south ends of the County, 
respectively.  The second type of bias deals with variance inflation that may occur 
when a systematic lidar sample is treated as a random sample.  The model-dependent 
variance formula used in this study assumes that the lidar flight lines are scattered 
across the landscape randomly when, in fact, they were flown systematically.  
Approximate systematic variances are compared with the model-dependent variances.  
Results at the County level indicate that the model-dependent variance estimates were 
up to 3.3 times larger than the comparable systematic variance estimates; the amount of 
inflation varies by cover class.  The results indicate that analysts must exercise caution 
(1) in situations where spatially constrained models are used to estimate biomass across 
much larger areas of interest, and (2) if an assumption of randomness must be assigned 
to a systematic collection of lidar flight lines in order to calculate variance estimates. 
 
1.  Introduction 

Airborne and/or space lasers have been used to sample extensive areas of 
interest (AOI) to estimate total aboveground dry forest biomass.  Most of the studies to 
date employ model-dependent (i.e., model-based) approaches where biomass equations 
are developed using spatially coincident field observations and airborne or space lidar 
measurements.  The lidar is then used as a sampling tool to estimate forest biomass 
across extensive areas (Nelson et al. 2004; Boudreau et al. 2008; Andersen and 
Winterberger 2009; Helmer et al. 2009; Nelson et al. 2009a,b; Asner et al. 2010; Ståhl 
et al. 2011; Andersen et al. 2011).  The model-dependent approach is attractive in that 
the analyst can select the location and attributes (e.g., high biomass, low biomass, cover 
class) of ground plots used to populate his/her predictive biomass models or, if plots 
already exist, to overfly the existing ground plots.  Using a model-dependent approach, 



the number of ground plots that need to be collected is driven only by the need to 
develop robust predictive models, models that encompass (hopefully) the full range of 
conditions that one expects to find across the entire area of interest.   

And therein lies the danger of employing a model-dependent (MD) approach.  
The accuracy and precision of the MD biomass estimates are based on the assumption 
that the predictive model is correct, i.e., that the model quantitatively characterizes 
conditions across the entire study area.  Acquiring a statistically rigorous, represen-
tative ground sample across an extensive area in order to develop robust models may be 
economically and/or logistically untenable if significant portions of the AOI are 
inaccessible, due perhaps to a lack of roads, civil unrest, unexploded ordinance, or 
topography.  But if models are developed using a spatially limited ground sample that 
does not characterize the entire AOI, then one runs a very real risk of calculating biased 
estimates of mean biomass per hectare or total biomass.  

A second type of bias deals with the effect of treating a systematic sample as a 
random sample.  No unbiased variance estimator for a single systematic sample exists.  
One solution, commonly employed, is to treat a systematic sample as if it were acquired 
randomly.  Such a solution, however, may lead to inflated variance estimates (Gregoire 
and Valentine 2008), especially if the AOI exhibits any sort of linear trend in the 
parameter of interest, in our case, biomass.  Gobakken et al. (2011) and Nelson et al. 
(2011) employed a MD sampling framework developed by Ståhl et al. (2011) to 
estimate biomass in Hedmark County, Norway.  The MD sampling approach integrates 
airborne laser measurements with ground plots.  Their mean and variance estimators 
assume that (1) the first phase (lidar) sample is randomly collected and (2) the second 
phase (ground sample) is representative of the entire AOI.  Results from the Gobakken 
and Nelson studies were surprising in that the addition of airborne-laser-based biomass 
estimates acquired along thousands of kilometers of regularly spaced flight transects 
did not consistently improve the precision of County estimates.  The counterintuitive 
results suggest that the MD approach may overestimate variances if assumptions 
concerning randomness are not met.  A question then arises.  With respect to Hedmark, 
how large is this inflationary tendency? 

The objective of this study is to look at these two types of biases empirically, 
i.e., (1) bias with respect to mean estimates of biomass when non-representative ground 
samples are used to formulate the predictive regressions, and (2) bias in variance 
estimates due to our treatment of a systematic sample of lidar flight lines as a random 
sample.  Preliminary work by L. Ene with a Monte Carlo simulator has shown that the 
Ståhl et al. (2011) estimators are unbiased if these assumptions are met.  It is the 
objective of this paper to quantitatively describe, for one study area, the magnitude of 
these biases when the assumptions are not met. 
 
2.  Methods 

One-hundred-five airborne profiling flight lines were systematically collected 
over Hedmark County, Norway during the summer of 2006.   The east-west flight lines 
were evenly spaced every three kilometers so that the profiling aircraft would traverse 
1483 Norwegian National Forest Inventory (NFI) ground plots measured or due to be 
measured in 2005, 2006, and 2007.  The NFI plots are systematically arrayed across the 
27380 km2 County on a 3km x 3km N-S, E-W grid.  Of the 1483 plots available, 916 
were measured by the profiler.  In addition, 79 off-grid ground plots were measured by 
the profiler in agricultural, residential, and urban areas in Hedmark so that a predictive 



equation could be formulated for developed areas.  These 995 ground plots (= 916+79) 
measured by the profiler are subsequently referred to as laser-ground plots. 

A model-dependent sampling framework (Ståhl et al. 2011) is used to calculate 
biomass means and standard errors of estimate (SE) for eight cover classes that 
tessellate the County.  These eight classes include four productive forest classes (high, 
medium, and low productivity forest, and young forest), and four nonproductive 
forest/nonforest classes (nonproductive forest, land>850m, developed areas, and water).  
Seven independent equations, one for each cover class except water, are developed.  
The equations predict ground-measured biomass as a linear function of profiling lidar 
height and crown density metrics.  The nonproductive forest equation is used to predict 
biomass on any laser segment identified as water and having significant height.  These 
equations, developed County-wide, are also used to predict forest biomass in smaller 
political units within the County in order to assess the accuracy and precision of 
biomass estimates as the size of the domain decreased. 

  
2.1.  Bias in Mean Estimates of Biomass 

Hedmark displays an obvious N-S biomass trend.  The southern portion of the 
County tends to support dense, more highly productive forest; the northern portion is 
more mountainous and, with increasing elevations above MSL, is less productive.  In 
this portion of the study, we quantify the degree to which biomass estimates change if, 
for instance, ground plots could only be measured in the southern half of the County 
but are then used to predict biomass across the entire County.  Our reference or “ground 
truth” data set consists of those cover class estimates generated using all laser-ground 
plots available across the entire County.  Predictive biomass equations are developed 
for 4 land cover classes – nonproductive forest, low productivity forest, medium 
productivity forest, young forest.    

In order to estimate the size of the bias due to the use of non-representative 
predictive models, the County is divided into four roughly equal-area sectors, a 
southern versus northern half and an eastern versus western half.  Biomass models were 
also developed for the four cover classes in each of the four sectors - N, S, E, W - using 
only those laser-ground plots located within a given sector.  These 5 sets of equations,  
i.e., the reference equations and the 4 sets of sector equations, were applied to all 105 
flight lines across the entire County.  Only four of the seven cover classes are 
considered in this portion of the analysis because the other three classes - highly 
productive forest,  land>850m, and developed areas - had less than the 30 laser-ground 
plots deemed necessary to calculate the biomass model in one or more sectors.  These 
same five sets of equation were applied to Administrative District 1 (AD01) at the 
south end of the County (5285 km2), Administrative District 4 at the north end of the 
County (9437 km2), Municipality 1 within AD01 (1036 km2), and Municipality 18 
within AD04 (1122 km2) in order to see if bias trends at the County level were 
maintained when smaller domains were considered. 

 
2.2.  Bias in Estimates of Standard Error of Biomass 

The bias of the variance estimator was empirically assessed by dividing the 105 
systematically-acquired flight lines (fl) into samples so that an empirical estimate of 
systematic sampling variability could be calculated (Gregoire and Valentine 2008, pg. 
56).  The 105 fls 3 km apart were divided into 2 sets of 52 fls 6 km apart, 3 sets of 35 



fls 9 km apart, etc…., up to  15 sets of 7 fls 45 km apart.  The systematic samples 
considered are reported in Table 1.   
 
Table 1.  The 105 systematically-acquired Hedmark flight lines spaced 3 km apart were subdivided into 

the following systematic samples. 
 

                               number of                                 number of                        dist. between 
   systematic             fls per            adjacent 
samples (nsys)             sample             fls (km) 

    2           52             6 
    3           35             9 
    4           26           12 
    5           21           15 
    6           17           18 
    7           15           21 
    8           13           24 

         10                 10   30 
         15                   7   45 

 
Empirical, systematic standard errors can be approximated by treating each subset of 
the 105 flight lines listed in Table 1 as one of nsys mean values instead of treating each 
subset as one of nsys observations.  For instance, given one systematic sample of 105 
flight lines, a conservative estimate of the actual systematic variance can be 
approximated by dividing the existing 105 flight lines into two groups of 52 flight lines.  
This conservative variance estimate can be substituted for what might be expected if 
two systematic samples of 105 flight lines had been flown instead of one.  This is 
certainly a rather coarse approximation, but experience has suggested that this estimate, 
calculated using eqn. 1, is more stable, and smaller, than the inflated MD variance.   
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              where      
      jrb̂  =  an estimate of biomass per hectare for the rth systematic 

                                        sample in the jth cover class, and 
        sysn  =  the number of systematic samples. 
 
 The Ståhl et al. (2011) variance estimator (their eqn. 14) has two components, a 
first term characterizing sampling variability and a second term that incorporates the 
variation associated with the model coefficients.  The systematic variance formula 
reported directly above (eqn. 1) accounts only for systematic sampling variability; no 
model error is included.   In order to more fairly compare the empirical systematic SEs 
with MD SEs, the model error term is subtracted from the MD variance estimates prior 
to comparison.  The empirical systematic SEs are compared to the Ståhl et al. SEs with 
model error removed in order to assess the inflationary effects associated with treating 
a systematic lidar sample as if it had been acquired randomly. 
  
3.  Results  
 
3.1.  Bias in Mean Estimates of Biomass 



Figure 1 reports mean biomass values estimated using the reference equations 
(“entire County”) versus four sector equations, i.e., northern half of the County (“north 
end”), south end, and the east and west sides, for four land cover classes.   
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Figure 1.  Biomass estimates for four cover classes in Hedmark County – nonproductive forest (NPF), 
low productivity forest (LPF), medium productivity forest (MPF), and young forest (Yng For).  The error 

bars depict 2 standard errors, i.e., 95% confidence limits on the mean estimates. 
 

Figures similar to Figure 1 were generated for northern and southern 
administrative districts and for two municipalities located within the administrative 
districts.  The figures (not presented) look very similar to Figure 1, mean differences 
and cover class trends are consistent as one considers smaller and smaller domains.  
Considering Hedmark County, estimates based on equations formulated using only 
north end laser-ground plots underestimated biomass by 5.9% (Yng For) to 12.2% 
(MPF).  South end equations overestimated County means by up to 12.6% (NPF).  
East-West differences ranged from -5.9% (East equations, LPF) to +4.6% (West 
equations, LPF).   Evidently the most productive Hedmark forests are in the southwest 
quadrant of the County.   Biomass estimates in young forest are essentially unaffected 
by the provenance of the biomass equations, regardless of the size of the domain 
considered. 
 
3.2.  Bias in Estimates of Standard Error of Biomass 

Figure 2 illustrates, for Hedmark County, the relationship between empirical, 
systematic standard errors (SEs), i.e., the solid lines, and model-dependent estimates of 
standard error, i.e., the dashed lines, for two cover class groups and one cover class – 
(1) all 8 cover classes, (2) the four productive forest classes, and (3) low productivity 
forest.  If the model-dependent (MD) estimator (Ståhl et al. 2011, eqn. 14) is unbiased 
and if there are no biases introduced by ignoring assumptions, then the empirical SEs 
should, on average, approximately equal the MD estimates of SE across the entire 
range of sampling intensities considered.  Obviously, as Figure 2 depicts, they do not.  
In Hedmark, considering all cover classes (the blue lines), the MD-SE is, on average,  
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Figure 2.  Empirical SDs - solid lines - compared with MD estimates of SE - dashed lines - for 
three cover classes in Hedmark County: (1) all 8 cover classes - blue, (2) the four productive 

forest classes - yellow, and (3) low productivity forest - brown. 
 
3.3±1.3 (1 σ) times larger than the empirical SE across all sampling intensities 
considered.   For the productive forest class (yellow),  that number is 1.8±0.5  times 
larger, and for low productivity forest (brown), the multiplier is 1.9±0.6 times larger.  
This inflationary tendency was also found, though somewhat less pronounced, in AD04 
(Figure 3) where multipliers ranged from 1.7±0.7 (productive forest) to 2.3±1.4 (all 
cover classes).  The degree to which the MD variance estimates are inflated is 
dependent not only on the model used to predict biomass for a given cover class but  
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Figure 3.  Empirical SDs - solid lines - compared with MD estimates of SE - dashed lines - for 

three cover classes in Administrative District 4: (1) all 8 cover classes - blue, (2) the four 
productive forest classes - yellow, and (3) low productivity forest - brown. 

 



also on the domain being considered.  Regardless, in this Hedmark study, the tendency 
toward overestimation of the variance estimate relative to empirical systematic error is  
unmistakable.  This conservative tendency may be due to an inappropriately conceived 
estimator, i.e., the Ståhl et al. (2011) estimator may inherently overestimate variance, or 
it may be due to a misapplication of estimator.   Which is it? 

Monte Carlo simulations runs by L. Ene on a simulated Hedmark forest 
population have shown that the MD estimator is unbiased if the first phase (lidar) 
sample is randomly allocated.  The inflationary effects noted in Figures 2 and 3 are due  
to a  violation of this assumption, one clearly stated by Ståhl et al. (2011) on page 99.  
The inflation is most likely exacerbated by the presence of a marked N-S trend in 
biomass across the County and by the fact that we flew our flight lines E-W.   We 
suspect, though cannot prove, that the MD variance estimates would also have been 
inflated, though to a lesser degree, had we flown systematic lines N-S since there seems 
to exist a less remarkable biomass trend E-W (see Figure 1). 
                                   
4.  Discussion 

Extrapolation biases can be appreciable and in this study, on an AOI with an 
obvious biomass trend N-S, differences between means were occasionally significantly 
different.  Situations requiring extrapolation are commonly found in the scientific 
literature because, basically, one of the strengths of aircraft and satellites is that they 
can go where field crews cannot.  For instance, Nelson et al. (2009a), in Quebec, 
developed biomass equations using ground plots located only in the southern half of the 
Province but applied them both north and south.  Asner et al. (2010, supporting 
information, Figure S1(d)) used plots located in the eastern and southern portions of 
their Peruvian study area and applied them in the central and NW quadrants.  Any 
extensive study of the northern boreal forests or primary tropical forests will face 
access problems, necessitating extrapolation of optical-, radar-, and/or lidar-ground 
relationships to the entire AOI.  In such situations, analysts, and those who use their 
results, face a question.  Is it better to have potentially biased estimates or no estimates 
at all?  This study is just one example of the magnitude of these extrapolation biases.  
We do not suggest that biased estimates are without merit but we do recommend (1) 
that scientists who generate such estimates should clearly state that their numbers may 
be biased and that the magnitude of the bias is unknown, and (2) that managers or 
policy makers who make use of these estimates recognize the potential for error. 

A comparison of empirical, systematic SEs and MD-SEs quantify the penalty 
paid for treating a systematic sample of flight lines as a random sample.  MD estimator 
SEs are inflated ~1.5 - 3.5x, depending on the cover class and domain.  It is now 
apparent, based on the results of Ene’s Hedmark simulations and based on the empirical 
results reported in this manuscript, that a significant variance penalty may be inflicted if 
a systematic sample is treated as a random sample, and this penalty is expected to 
increase in the presence of a linear trend.  

Five years ago, the Hedmark study was undertaken to determine if an airborne 
laser profiler could be used as a sampling tool to augment a ground-based national 
forest inventory.  We expected that the additional spatial coverage afforded by the laser 
would increase the precision of the ground sample.  The results of that study were 
surprising in that the SEs of the laser-augmented estimates of biomass were not 
consistently smaller than the ground-based SEs.  It is now apparent that the MD 
variances were overestimated and that the lidar-based approach was more competitive 



than first realized.  Given the constraint that, in Hedmark, our flight lines had to 
traverse ground plots laid out along lines spaced 3 km apart, perhaps the easiest way to 
approximate systematic sampling error in the context of a flight-line-rich environment 
is to calculate an empirical systematic variance as per eqn. 1,2.   The empirical variance 
would provide a conservative estimate since our mean estimates would be based on one 
systematic sample of 105 fls, not, for instance, on two groups of 52 fls or 3 groups of 
35 fls.  Though this approach would not account for model error, perhaps the model 
error component of the MD estimator could be added to this systematic sampling term 
to approximate the variance of biomass estimates generated based on a systematic 
sample of lidar flight lines.   This hypothesis may be investigated with the Hedmark 
simulator.    
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1. Introduction 
 
The wood industry has precise requirements towards the qualitative properties of its purchased 
raw material mainly regarding volume, species, dimension, length, diameter, knottiness, taper, 
sweep and the absence of defects. Thereof the results of inventories under central European 
conditions only cover information per species on wood volume and diameter. To plan their own 
supply with regard to product demands the wood industry needs early information on the 
prospective wood quantity from the designated harvestable stands with the respective quality 
properties. 
To assess the volume and the distribution of assortments there exist numerous long-standing 
inventory methods within a certain range of error (SMALTSCHINSKI, 2009). When it comes to 
quality, objective methods are scarce. Laser technology could provide a technical solution to 
support quality assessment of sorting trees within a stand prior to cutting. Amongst other 
partners, the Institute of Forest Utilization and Work Science (FOBAWI) and the Department of 
Remote Sensing and Landscape Information Systems (FELIS) of the University of Freiburg are 
working together on this issue in the framework of the European project FlexWood 
(www.flexwood-eu.org). 
Wood quality is determined by external and internal characteristics. Important external features 
are the stem form, size and number of live and dead branches, the knot-free length of the stem 
or visibly noticeable stem injuries. Internal properties apply to the annual ring width, density, 
early and late wood, reaction wood, and internal defects such as fungi or insects. 
Here, at first the external quality features are considered and how they can be judged via 
airborne and terrestrial laser scanning. In addition, already existing recordings of terrestrial 
inventories and of forest management plans were integrated in this research in order to not 
exclude the possibilities for improved multiphase sample inventories (de VRIES, 1986). All 
recordings are in the same projection (Gauss-Krüger strip 3), to allow for simultaneous editing. 

2. Material 
 
The test area is located in the SW of Germany north of the city of Karlsruhe. The dataset of the 
actual forest inventory of Baden-Württemberg was available (KÄNDLER a. BÖSCH, 2002). 
Within the forest, the plots of the forest inventory form a regular grid of mesh size 100 x 200 m 
(Fig. 1). 
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The design of the forest inventory provides at each sample plot four concentric circles. The trees 
are divided in 4 diameter-classes and in the fourth circle only the trees of the biggest diameter 
class are recorded, in the third only the trees of the third diameter-class and so on (KÄNDLER a. 
BÖSCH, 2002). From these data age series of the important tree species are deducible including 
stand parameters like diameter distribution, height curve and volume (SMALTSCHINKI a. 
BECKER, 2009). For this study in addition to the tree data of the forest inventory all trees of a 
sample plot were recorded by polar coordinates from the plot centre. The coordinates of the plot 
centre were remeasured as precise as possible (±20 cm), by FELIS, to harmonize the 
georeferenced tree positions with remote sensing data (Fig. 2) 

 
 
Fig. 2: Concentric circle of a sample plot of the forest inventory with a radius of 12 m and the positions 
of the plot trees and the plot centre (green) resp. additionally measured trees outside the circle. 
Rectangle signature Fagus sylvatica, circle Quercus robur, triangle Carpinus betulus, pentagram Prunus 
avium. 

Fig. 1: Research area and plots of the forest inventory (yellow)



SilviLaser 2011, Hobart, Tasmania 

 3

Over the test area the company TopoSys GmbH conducted a flight mission in summer 2007 
using the Harrier 56 system. It consists of a full-waveform laser system (ALS) of the company 
Riegl (Riegl LMS-Q560). The system has a laser recording of the first and the last pulse. The 
used line scanner records the following four channels: B-G-R-NIR (Fig. 3). 
 

 
 
 
 

Furthermore, a terrestrial record (TLS) with the laser scanner CX 3D, (Fig. 4) by Trimble has 
been performed in the test area. The scanner records a hemisphere, so that, beside external 
quality characteristics on the trunk, the heights of the trees on the plot could be estimated or 
measured. Per direction 50,000 data points are measured. The angle of progress of the directions 
can be defined according to the object of focus. 
 
 

Fig. 4: Trimble terrestrial laser scanner CX 3D 

Fig. 3: Airborne Laserscanning 
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3. Methods 
 
To derive quality relevant data from the dataset of the test area (forest inventory, ALS, TLS) the 
following analytical steps were conducted.  
 

3.1. 3D-shape crown structure model 
 
At first a dataset of the digital terrain model (DTM) from the test area was created using the 
“last pulse” of the ALS. The raw data points of the laser scanner can be normalized with this 
digital terrain model. A vertical structure analysis was used for 3D modeling of the crown 
(WANG et al, 2005, 2008, KOCH et al., 2004). This analysis is based on a laser point cloud and 
the previously computed digital elevation model. They can then be assigned to a voxel space. 
The number of normalized raw data points that fall within a particular voxel represents the value 
of the voxel. The voxel space was divided into a series of 2D layers to reduce the complexity of 
the calculations. The actual algorithm for the formation of the crown margins is based on the 
evaluation of each horizontal projection image. 
 

(a) (b) (c) (d) 
Fig. 5: Hierarchical morphological based crown outline extraction at several height levels. (a) 39m, (b) 
38m, (c) 36m and (d) 35m. 
 
The basic principle of the algorithm is the monitoring of crown boundaries in the projection 
images from top to bottom (WANG et al. 2007, WEINACKER et al. 2004). A hierarchical 
morphological opening and closing process with a set of predefined structural elements is 
carried out here (Fig. 5) 
 

 
 
 

Fig. 6: Prismatic 3D tree structure model 
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The crown contours from higher levels already evaluated are expanded according to their 
proximity as “cluster property” in the current projection layer until they coalesce with 
neighboring regions. The "root node” of a tree is the region which is in the highest layer. A 
"pre-order” tree traversing process is carried out in order to “visit” all the regions that exist in 
the layers of different height classes. Because the voxels have a defined height (0.5-1m), 3D 
prisms can be reconstructed for each of the 2D crown regions in the different crown heights. 
The combination of these 3D prisms enables the generation of a prismatic 3D tree crown models 
for each tree (Fig. 6) 
 

3.2. Development of a crown sphere model 
 
For the determination of quality relevant parameters of the upper part of the tree, it is useful to 
convert the voxels or cells of the tree crowns into continuous crown sphere models (Fig. 7). 
 

 

 

 

 

For that purpose the centers of the voxels were surrounded by a 25 cm buffer strip. The 
individual polygon rings of the crown were then meshed with each other, so that a closed space 
was created representing the crown surface (Fig. 8). 
 
Each crown surface is a 3D-Shapefile, which was calculated in ArgGis 9 as a spatial data set. 
This allows to link geometries of the crown with attribute data describing these geometries. 
Quality relevant crown parameters can than be derived and used to predict wood quality 
features - especially branches, knots - as follows. Fig 8. shows the crown shapes derived from 
voxels of the forest inventory sample. Fig. 9 shows the crown of the turquoise coloured tree of 
Fig. 8 in detail. With the quality relevant parameters which can be derived as attribute data from 
the geometry (triangular mesh) are shown as an example. 
 
The crown length allows to separate the total high of the tree (stem) into the crown parts (which 
shows green knots as an important quality feature) and the trunk of stem which usually show 
dry or dead branches or no branches at all.  
 

Fig. 7: horizontal projection of 3D points 
(voxels) of a sample of the inventory. 
Individual trees have different colors. 

Fig. 8: Crown shapes derived from 
voxels of an inventory sample. 
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Well established allometric functions proposed by NAGEL (1997) can be used to derive the 
diameter of the tree:  
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Furthermore there exist well established allometric functions between branch length and branch 
diameter at the insertion points to the stem (KLÄDTKE, 2005). These functions link the diameter 
of a branch to its length. According to the European sorting rules for round wood, a 4 cm knot at 
the log surface is a limit between the classes B (good) and C (low grade). Fig. 10 shows how the 
branch length can be extracted from the crown sphere model and subsequently indicates the 
height, where quality decisive knot diameters are exceeded. 
 

 

 

 
 

 
tree height ~ 28,5 m         

stem length ~ 22 m     

branch length > 4 m      

branch length < 4 m        

Fig. 9: values derived from the crown shape. Crown length = tree height – stem length 

Fig. 10: Geometry and attributes of the spatial data set of the tree crown. The selection of 
the attribute crown radius (Kr) > 4 m leads to the height levels of 23 and 24 m. Here 

branches with diameters > 4 cm can be expected. 
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3.3. Terrestrial laserscanning (TLS) 
 
As shown above ALS-data are only useful to predict quality parameters, namely knot diameter, 
within the canopy. It is difficult if not impossible to derive quality features from the stem below 
the crown which normally represents the most valuable part of the whole tree. To get more 
information about this lower part of the tree, TLS-data may be used (and eventually be 
combined with crown quality parameters derived from ALS-data). Important stem quality 
features are length of the utilizable log, shape, diameter distribution along the stem and bark 
features including bumps, dead knots or bark injuries. 
Fig. 12 shows an example of the laser scanning image of the trunk below the crown with quality 
relevant features like overgrown branches, bumps and bark characteristics. 
 

Fig 11: Taper curve of a tree with the quality levels A (very good), B (good) and C (bad) 

Fig. 12: Terrestrial laser scanning image: analysis capabilities of the trunk surface with 
overgrown branches and other characteristics 
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4. Conclusion and outlook 
 
Future objective is to combine existing forest inventory data, with ALS-data combined with 
multispectral data to identify species, tree positions and crown shape and to derive quality 
relevant characteristics, namely knot sizes in the upper part of the tree and with TLS-data which 
can give a more detailed picture of the dimensions and quality parameters of the lower part of 
the stem.  

 
Already today, the three inventory approaches allow predicting dimension and quality 
parameters on a stand level with mean values and distributions. To predict quality features on a 
single tree level, the challenge is to combine inventory data, ALS-data and TLS-data by exact 
geo-referencing (Fig. 13). 

Fig 13: Combination of terrestrial inventory data, airborne and terrestrial laser scanning 
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Abstract 
 
Aerial LiDAR offers a fast and efficient means to estimate wood quantity, but there has been little 
work to date on wood quality.  In this study we investigate the hypothesis that remotely sensed 
crown structure from Aerial Laser Scanning (ALS) can be used as an indicator of log quality at an 
individual tree level. 
 
A New Zealand Pinus radiata forest was flown with aerial LiDAR at 8 pts per m2.  Five trees from 
within the forest were scanned with a terrestrial laser scanner (TLS) to determine external signs of 
log quality.  These measurements were diameter at breast height (DBH), volume, taper, sweep, 
lean, circularity and average internode distance.  In this study we develop a series of metrics from 
ALS point clouds for each tree to describe the crown structure, which are then correlated against 
the TLS data.  To derive these metrics, novel algorithms were developed for TLS data which 
extend the level of detail previously obtainable.  These algorithms are also detailed in this paper.   
 
As only five trees were studied, the results are proof-of-concept more than outright proofs.  The 
purpose of this paper is to document techniques which will be employed in the future over a much 
greater sample, proving the preliminary findings presented here.  In this small sample we found 
that crown area from ALS had a moderately strong correlation with DBH and sweep.  Crown 
density from ALS was also moderately correlated to average internode distance.  The correlations 
show that there is at least a moderate connection between crown structure and log properties, and 
that at higher LiDAR pulse densities and a larger sample size we can expect to describe this 
connection with greater certainty. 
 
In further studies we also hope to correlate ALS and TLS metrics with internal wood properties, as 
found from destructive sampling. 
 
Keywords 
 
Aerial LiDAR, Terrestrial LiDAR, ALS, TLS, crown shape, stem shape, wood properties 
 
1. Introduction 
 
There have been numerous studies to quantify the biomass content of forests (Lefsky et al., 2005; 
Stephens, 2010).  For commercial forest managers it is important to know not just the quantity but 
also the quality of wood.  This is the research question that we address here. 
 
1.1 Wood Quality 
 
Wood quality is the basis on which the value and use of timber is decided, and has been quantified 
– rigorously or not – for centuries.  For an excellent overview of wood quality and its applicability 
to be remotely sensed the reader is directed to van Leeuwen et al., 2011.  In this study we use the 
term log quality to mean externally detected wood quality indicators on single trees.  
 
Indicators of log quality from Terrestrial Laser Scanning (TLS) and field measurements were 
compared for with crown metrics from Aerial Laser Scanning (ALS) for five Pinus radiata trees 



from a commercial plantation in New Zealand.  Log quality indicators derived in high detail from 
field measurement and TLS are extremely time-consuming and costly.  The hypothesis tested here 
is that the canopy structure is related to log quality, and so ALS can offer surrogate indicators 
across a much larger scale and at a greatly reduced cost per tree. 
 
1.2 LiDAR 
 
Light Detection and Ranging – or LiDAR – has been used in forestry since the early 80s for 
providing 3D point cloud information on forests (Nelson et al., 1984).  Lim et al., (2003) gives a 
thorough description of the technology, whilst Adams et al., (2011) details the applications for 
New Zealand commercial forestry.  Within commercial forestry LiDAR is predominantly operated 
from two platforms – aerial and terrestrial.  For an explanation of ALS and TLS systems the reader 
is directed to Lim et al., (2003). 
 
2. Method 
 
2.1 Study site and data collection 
 
Five mature 30 year old trees in Kaingaroa forest, New Zealand were selected as representative in-
stand trees.  The area was flown with ALS at 8pts per m2 in August 2006 by New Zealand Aerial 
Mapping with an Optech ALTM 3100 EA.  The trees were selected to be in a flight line overlap 
where they would receive double the point density.  They were subsequently scanned with TLS in 
December 2010 with a RIEGL PTM98 Laser Profile Measuring Systemset supplied by Aerial 
Surveys, set with a horizontal and vertical scan step of 0.036º.  Each tree was scanned twice from 
opposite sides, and three artificial markers were used for scan alignment.  After scanning, the trees 
were measured for diameter at breast height (DBH), felled and the branch locations noted. 
 
2.2 Metric extraction 
 
Table 1 gives a brief summary of the TLS and ALS metrics are given below, followed by an in-
depth description. 
 

Table 1 – Summary of metrics derived from TLS and ALS 
 

 

TLS 
DBH Diameter at breast height.  The mean diameter 1.4m above the ground 
Stem volume The total stem volume from 0.4m above the ground to 25m 
Form value A value indicating taper, see equation 5 
Sweep The maximum deviation of the centreline in any 5m section between 0.4 

and 20m up the stem 
Lean The elevation angle between the stem centre points at 0.4m and 20m, 

and a horizontal plane 
Stem circularity The average circularity (see equation 3) of the stem between 0.4 and 6m 
Median internode 
distance 

The median vertical distance between detected branch nodes in the 
bottom 25m of the tree 

ALS
Crown area The projected area of the crown viewed from directly above 
Crown volume The net volume of the crown, fitted by convex hull 
Crown circularity The average circularity (see equation 3) of the crown as viewed from 

above 
Crown density The number of LiDAR canopy returns divided by the crown volume 
Net bending moment The net bending moment on the stem base if every LiDAR return had 

unit mass 
Net water transport 
distance 

The total travel distance required to supply all detected foliage elements 
with water from the stem base 

 



2.3 TLS data 
 
Initially the two TLS scans for each tree are centred on the mean position of the artificial markers 
(which were placed around the tree), and clipped to remove points belonging to other trees.  The 
centre points (۾ଵ, ۾ଶ) of the artificial markers are found in both scans and the least-squares solution 
to 
 
 RP1   T ൌ Pଶ           (1)  
 
is obtained, where R is the rotation matrix and T is the translation vector.  This is solved using 
Horn’s quaternion-based method without scaling in Matlab (MathWorks, 2000).  In some instances 
a fourth datum was used – normally a distinctive branch fork high in the tree visible in both scans – 
to improve the fit in 3D.  Once the scans are aligned they are merged.  Figure 1 shows a merged 
point cloud with the two scans in different colours. 
 
2.4 Fitting a geometric model to the stem 
 
The model starts with 0.1m vertical slices of the point cloud, for which the centre is found by a 
least squares circle fit as in Bienert et al., (2007).  If the tree is approximately centred at (a,b) with 
radius r, we look to minimise the error term ε in 
 
 ሺݔ െ ܽሻଶ  ሺݕ െ ܾሻଶ െ ଶݎ ൌ  (2)         ߝ
 
Where x and y are the coordinates of each return.  This minimisation is performed in Matlab using 
the fminsearch function, which is an unconstrained nonlinear optimisation algorithm based on 
the Nelder-Mead simplex method (Lagarias et al., 1999).  The crucial difference here is that we are 
only looking for an approximate centre, not the diameter of the circle as in Bienert. 
  
This approach is widely used and accepted, but can be thrown off by buttressing, or material close 
to the stem such as branches or dead needles.  To minimise this effect points are removed that are 
at a distance of 1.25× the previous radius but this is still not perfect, particularly when there is a lot 
of dead foliage.  Figure 2 shows examples of this.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 – Aligned point cloud from two scans 



    

Figure 2 - Circular fitting on a) round section b) buttressed section c) section with dead foliage against stem 
 
In this study we are looking for log quality information, so it is crucial to describe the stem as 
accurately as possible.  To get around the circle-fitting limitations, we describe the stem cross 
section as a circular harmonic.  In polar coordinates (ρ,θ) with the origin on our approximate centre 
(a,b), we remove any points more than 0.05m away from our circular fit.  The remaining points are 
then binned according to θ into 100 equally spaced bins from –π to π radians.  To eliminate the 
effects of branches and litter, the smallest value of ρ is taken for each bin.  The remaining values 
for ρ(θ) can be approximated by a Fourier series, and by restricting the number of terms we can 
eliminate the higher frequency components to produce a smooth curve.  Five terms were sufficient 
to allow for most features.  This process is shown in figure 3 for the 4m height section shown in 
figure 2a.  The stem sections shown in figure 2 are shown again in figure 4 with the improved fit 
(black line), which will be referred to as the harmonic fit.  In addition the mean of the harmonic fit 
gives a slightly improved centre estimate, shown by the blue diamond in figure 4. 
 

 
Figure 3 - Fitting a low-pass Fourier series to the stem points in polar coordinates 
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Figure 4 - Stem sections showing circular fit (green) and harmonic fit (black) 
 

The stem tends to become obscured behind branches and other trees higher up.  If the algorithm 
fails to find a good circular fit the vertical window is increased by a further 0.1m.  This increase 
will continue until either a good fit is reached, or the algorithm fails on a 1m section in which case 
it gives up and moves further up the tree.  The failed section can be interpolated later, although in 
general the data becomes sparse 20-25m up the tree.  We have not analysed any of the data above 
25m as it is too unreliable.  Fortunately wood from the top of the tree is seldom used as timber due 
to its young age and narrow diameter.  Figure 5 shows the series of stem shapes stacked to produce 
a meshed model of the stem viewed from the side and above. 
 

 
Figure 5 – Mesh construction of stem from TLS scanning. 

 
2.5 Describing the stem 
 
From the above analysis, it is easy to extract a centre point (x,y,z) for each slice, a circumference d, 
and a mean radius r. 
 
We can also define stem circularity as S where 
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            (3) 

 
Where d is the circumference, and A is the area.  Note that S is a unitless variable, independent of 
size.  For a circle S=1, and will increase as the ratio of circumference to area increases. 
 
In order to remove noise in r, the equivalent of a moving average filter is run across the series.  
Instead of taking the average value for the window, the 20th percentile was taken, as the values 
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have a much greater tendency to over-estimate than underestimate.  After this filter a 6th-order 
polynomial is fitted to the calculated metrics x,y,r and S as in Bienert et al., (2007). Figure 6 shows 
the curve fitting for these metrics. 
 

 
Figure 6 – Polynomial smoothing for stem metrics x,y,rmean and S 

 
We now define single values to describe our tree – DBH, volume, form value, sweep, lean and 
circularity.  DBH is defined as twice the mean radius at 1.4m.  Volume is the sum of the volumes 
of each 0.1m slice assuming a circular cross section of radius rmean, given in equation 4. 
 
 ܸ ൌ  ∑ ሺ0.1ݎߨଶሻ            (4) 
 
Form factor f represents taper, and is essentially the ratio of space filled by the stem vs. the 
available space if it had no taper.  We consider the usable stem from 0.4m to 25m.  Schardt et al., 
(2002) gives the following equation for f 
 
 ݂ ൌ ସ

గௗమ
            (5) 

 
Sweep is initially defined at every point on the stem between 2.5m and 17.5m based on a 5m 
sliding window.  Within each window position, two points at the top and bottom X1 and X2 define 
the average lean.  The sweep for that window is then defined as the maximum deviation of any 
other centre point from that line.  To calculate this we use the distance from a point to a line in 3D 
as given in Anton (2010).   
 
 ݀ ൌ |ሺ܆ି܆ሻൈሺ܆ି܆ሻ|

|܆ି܆|
          (6) 

 
The maximum of these values is retained and used to quantify the sweep in the tree. 
 
The angle between the stem at 0.4m and 20m was used to define lean. Circularity is defined as the 
average circularity of the bottom 6 metres of the stem (before it is affected by branching). 
 
2.6 Finding branch nodes 
 
Internode distance is also an important metric of log quality.  In Pinus radiata branches tend to 
occur in nodes, and the distance between these nodes is crucial for log grading. 
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Once we have mapped the stem we can orientate each horizontal slice on the centre line, effectively 
straightening the tree.  After removing points on the stem, the remainder are due to branches and 
leaf litter (which accumulate on the stem near branch clusters).  To find branch clusters we adapt 
the theory behind a Hough transform – which looks for straight lines in space.  We know that all 
branches must radiate from the stem, and that they should occur in an angle greater than 0º and less 
than 90º from horizontal. 

Figure 7 - Diagram of conical search for branches.  Note returns from the stem would normally be removed 
prior to analysis 

 
Figure 8 - Plot of n(h,φ), showing local maxima relating to branch clusters 
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So we construct a conical search around our stem, counting all points in the TLS point cloud that 
fall within a cone of width w and angle φ from a horizontal plane at height h (see figure 7).  We 
sweep this cone through φ from 15º to 80º, and move h up the tree in 0.05m increments.  In the end 
we have a value n(h,φ) for every combination of h and φ.  Local maxima in n(h,φ) are likely 
locations of branch clusters, defined in terms of the height at which they intercept the stem and 
their average angle φ.  A plot of n(h,φ) is shown in figure 8.  Note that maxima in h are much more 
apparent than in φ.  This is because the branches in a cluster can have a range of φ, but all have a 
similar h. 
 
If we define N(h) as the sum of n(h,φ) across all φ we get the plot shown in figure 9, shown 
alongside the centred point cloud for comparison.  Locations with a high N(h) are more likely to 
contain a branch cluster than locations with low N(h).  A simple first-derivative peak detection 
algorithm has been used to identify the peaks in N(h), which can then be compared with the known 
branch locations (measured in the field) as shown in figure 10.  In figure 10a the measured 
branches (shown in blue) are scaled in length and width by the average branch diameter.  In figure 
10b the detected branches (shown in red) are shown scaled in width and length by N(h). 

 
Figure 9 - Peak detection in N(h) to detected branch clusters, and centred point cloud 

 
In figure 10 it is apparent that the automatic detection does a good job of detecting the large 
branches that are lower in the tree.  The algorithm is less dependable with higher and smaller 
branches.  In this study we are interested in a single value to describe the general internode 
distance, so we take the median of the spacing between the detected clusters.  In comparison, if we 
perform this median spacing approach on the real data (between all branches >40mm in diameter) 
we get a comparable set of values, as shown in figure 11.  This value is not meant to explicitly 
represent the exact internode distance – which varies up the tree and is largely dependent on what 
constitutes a branch – but is a comparable value that gives a general impression of log quality in 
terms of branch cluster spacing. 



 
Figure 10 – a) Branches measured in the field and b) detected branches 

 

 
Figure 11- Comparison of median internode distance for five trees as measured on the tree and automatically 

detected in the TLS point cloud 
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2.7 Individual branch searching 
 
To extend this work, it would be possible to retain θ as an independent variable, and count the 
number of points n(h,φ,θ).  Local maxima in n(h,φ,θ) in 3D space would relate to individual 
branches.  Individual branches could be identified, and potentially branch diameters determined.  
Figure 12 shows an example of this algorithm in operation.  However, θ was not collected in the 
field for the branches on our study trees, so there was no way of verifying our findings.  In 
addition, ALS will never pick up individual branches (except special cases in which the tree 
overhangs a road or compartment edge), so individual branch metrics were not used in this study.  
However, individual branch detection remains an interesting problem for future work. 

 
Figure 12 - Example of individual branch detection algorithm.  Red lines show detected branches, blue dots 
show the point cloud.  As there was no field data to verify the results this algorithm was not used to generate 

the final set of TLS metrics. 
 
2.8 ALS data 
 
For comparison with our TLS log quality metrics we derive a similar set from ALS to describe the 
structure of the crown.  
 
2.9 Segmenting crowns from ALS data 
 
Before the crowns could be analysed, they had to be segmented from the full set of ALS data.  GPS 
points were taken with a Trimble ProXRT on each stump after felling to minimise the effect of 
canopy on GPS accuracy.  All coordinates were differentially corrected and reported to be of sub-
metre accuracy.  Automatic segmentation is never perfect, so in this study an automatic 
segmentation was manually improved to give the best point clouds possible. 
 
2.10 Crown area, volume, circularity and density 
 
Once the crowns have been segmented a polygon was fitted to the 2D projection of the crown 
(figure 13a) and a convex hull to the canopy (figure 13b).  To determine the 2D crown area, the 
centre point is set as the origin (defined as the mean of returns from the bottom ⅔ of the tree), and 
the points converted to polar form.  All points are then binned according to θ, and the maximum 
value of ρ is taken for each bin.  Bins with no points are not included as vertices.  Connecting these 
points results in our polygon which can be used to find the crown area A.  Also the circumference d 
can be obtained and the circularity found as per equation 3. 
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            (3) 

 
The volume of the crown V is defined as the volume of a convex hull containing all crown returns.  
Convex hulls were created in Matlab using the convhull function, which is based on the Qhull 
algorithm in Barber et al., (1996).  Once V has been calculated the crown density is calculated as 
ேೝೢ


, where Ncrown is the number of LiDAR returns in the crown. 

 

 
Figure 13 – a) Aerial view of crown with circumference defined (black line) and b) canopy with convex hull 

overlaid 
 
2.11 Net bending moment 
 
For this metric, we assume that every above-ground return relates to foliage or branch matter that is 
connected to the stem.  This assumption is heavily dependent on good segmentation.  If the 
assumption is true, then the mass (whatever it is) must exert a net bending moment on the stem.  
For example, if during the life of a tree its neighbour died opening up a canopy gap next to the tree, 
the tree is likely to grow towards the gap, perhaps straightening up again if the gap became filled.  
This would lead to the canopy being heavily weighted on one side of the stem, and would lead to 
compression wood on the side towards the gap.  If we assume the net moment M is  
 
ܯ  ൌ |∑ ܚܑ ൈ ۴ |           (7) 
 
where ri is the distance from the LiDAR return i to the point at which the stem joins the ground.  Fi 
is the force exerted by the mass at that point.  Obviously we don’t know the mass of the reflecting 
foliage – if it was foliage – but is a reasonable assumption to suggest that the foliage mass doesn’t 
vary significantly across the regions in which it is detected.  As we are only looking for relative 
measures, we can assign unit mass to each LiDAR point making 
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Where g is the acceleration due to gravity.  A larger assumption is to assume that the foliage 
detected is representative of all of the foliage on the tree.  Many authors (Chasmer et al., 2006; 
Hilker et al., 2010) have noted that ALS tends to bias the upper canopy.  We can justify this 
assumption by noting that under closed canopy conditions the lower canopy is hemmed-in, and any 
asymmetry is much more likely to become apparent in the upper canopy.  In order to determine ri, - 
the distance from each LiDAR return to the base of the stem - we must also make an assumption as 
to where this base actually is.  As the path of the laser is always close to the zenith, the stems are 
generally obscured by the foliage and returns from the stem are rare and unreliable.  So we make 
the assumption that the lower canopy is likely to be centred on the stem whilst the upper canopy is 
freer to deviate.  Thus we determine our approximate stem-base location as the average of the 
returns from the lowest ⅔ of the point cloud.  This allows us to find ri, and hence M. 
 
2.12 Net water transport distance 
 
If each LiDAR return in the canopy represents foliage, then there must be sufficient stem and 
branch infrastructure to supply it with water for photosynthesis to occur.  The work of Pont (2003) 
shows that the stem diameter at any point can be related to distance above it that water must be 
transported to the foliage.  Again, we do not know the exact path that the branches (and hence 
water) take, so we have to approximate a path that goes vertically from the stem base to the height 
of the return, and then radially outwards from there.  If each return i is defined in cylindrical 
coordinates as (r,θ,z), then W, the net water transport distance is 
 
 ܹ ൌ ∑ ݎ  ݖ            (9) 
 
3. Results 
 
Results for the five trees are given in table 2.  Table 3 shows a correlation coefficient matrix (R) 
between the TLS metrics and the ALS metrics. 
 

Table 2 – Metric results for five study trees 

 
 
 
 

Method Metric Tree 1 Tree 2 Tree 3 Tree 4 Tree 5 
TLS DBH 0.472 0.485 0.516 0.399 0.474
 Volume 2.12 2.80 2.57 1.44 1.80
 Form value 0.492 0.617 0.498 0.468 0.414
 Sweep (m) 0.020 0.057 0.054 0.034 0.038
 Lean (º) 3.23 1.70 2.59 4.41 3.20
 Stem circularity 1.0081 1.0086 1.0148 1.0123 1.0048
 Median internode 

distance (m) 
1.11 1.46 1.38 1.46 0.96

ALS Crown area (m2) 25.9 34.1 49.4 27.7 41.9
 Crown volume (m3) 568 891 1117 720 1191
 Crown circularity 3.41 3.12 1.58 2.03 2.69
 Crown density (returns 

m-3) 
0.304 0.448 0.538 0.556 0.427

 Net bending moment 
(Nm) 

2390 786 3610 1780 820

 Net water-transport 
distance 

5220 10700 17800 11400 13500

 



Table 3 – Correlation coefficient matrix between TLS and ALS metrics. 
 

 
4. Discussion 
 
The purpose of this study is to investigate whether crown structure has any relationship to log 
quality, and if the structure can be quantified by aerial remote sensing.  Although our small sample 
size of five trees is not sufficient for conclusive proof, it can suggest indicative TLS log quality 
metrics that can be approximated with ALS canopy metrics.  DBH correlates moderately well with 
crown area (R2 = 0.48).  This is not surprising, and is similar to the work of Popescu et al., (2003b).  
Crown volume also correlates well with crown area (not shown), with an R2 of 0.84, although the 
DBH responds only weakly to crown area with an R2 of 0.26. 
 
It is surprising that stem volume does not correlate particularly well with crown volume (R2 = 
0.04), in contrast with Chen et al., (2007) who obtained an R2 of 0.78 with a similar linear 
relationship.  Values for individual crown volume and area are extremely dependant on the 
segmentation, and it is likely this may have caused some errors.  The fact that crown area was 
better than crown volume suggests that insufficient returns were obtained from the canopy base to 
reliably estimate the volume.  In addition the good results from Chen et al. are based on summing 
individual crowns together to obtain a net volume for a stand.  This technique is used as it makes 
up for poor segmentation, as omissions and commissions generally cancel out.  It is very unlikely 
they would have got such a good result for individual trees.  If timber volume is the principle aim, 
then empirical functions such as Stephens (2010) to determine volume over an area give better 
results than single trees analyses (Schardt et al., 2002). 
 
Form factor does not show any promising correlations, perhaps due to its lack of variation across 
the five trees.  Stem circularity also is very similar across our sample (the variation from maximum 
to minimum was only 2.5%). As a result, whilst this does show good correlations with net bending 
moment and crown density, it is unlikely that these models would hold on larger numbers of trees 
and samples with values for circularity ranging beyond those measured here. 
 
Sweep exhibits moderate positive correlations with crown area, volume and density.  This would 
imply that trees with more foliage are more prone to sweep.  This agrees with the findings of 
Suarez et al. (2010) who found that stem straightness was inversely proportional to stand spacing.  
It is well known that canopy size and volume are proportional to stand spacing. 
 
Lean did not correlate well with any ALS metrics, perhaps again because there was not a 
significant degree of variation within our sample.  The median internode distance shows a 
moderate positive correlation with crown density, implying that as crowns become denser the 
branches become bigger and more spread out.  This is feasible, as fewer larger branches would be 
likely to yield a greater number of LiDAR returns than many small branches due to the blind spot 
in discrete aerial LiDAR (see Reitberger et al., (2008)). 
 

  ALS 
  Crown Area Crown 

Volume 
Crown 
circularity 

Crown 
density 
(returns m-3) 

Net bending 
moment 
(Nm) 

Net water-
transport 
distance 

T 
L 
S 

DBH 0.70 0.51 0.02 -0.22 0.33 0.36
Stem volume 0.39 0.21 0.15 -0.12 0.17 0.17
Form Value -0.14 -0.23 0.30 -0.02 -0.12 -0.16
Sweep (m) 0.65 0.62 -0.39 0.57 -0.03 0.70
Lean (º) -0.41 -0.34 -0.28 0.19 0.10 -0.16
Stem circularity 0.24 -0.06 -0.76 0.68 0.77 0.46
Median internode 
distance (m) 

-0.08 -0.21 -0.41 0.65 0.20 0.22

 



Canopy metrics such as area, volume and density give better correlations than net bending moment 
and net water transport distance.  This is probably due to the fact that the latter two metrics are 
extremely dependant on the supposed stem location – which simply cannot be inferred accurately 
from aerial LiDAR.  The lack of correlation of lean with any metrics confirm that the canopy does 
not necessarily track symmetrically with stem, and thus our assumption of the stem base being the 
mean value of the returns from the bottom ⅔ of the point cloud is likely to be false. 
 
We have only been able to assess five trees.  With a greater number of trees, and larger range in 
metric values, we may have been able to detect more correlations and achieve more meaningful 
correlations on those that we did pick up.  Of the correlations we were able to detect, surrogate 
variables can be derived from ALS for DBH, sweep and internode distance.  However the 
correlations were only moderate.  There are two potential reasons for this: 
 

- Crown structure is only moderately correlated to log quality 
- ALS at 8pts per m2 had insufficient resolution to determine canopy structure accurately 

enough 
 
It is the author’s opinion that the reality is a combination of the two, and more heavily weighted on 
the latter.  By showing even moderate correlations between crown structure and log quality we 
know that canopy does - to some extent – indicate log quality.  As remote sensing technology 
improves and becomes more affordable (higher point densities, greater resolution, improved 
canopy penetration etc.) it is extremely likely that these correlations will improve.  Theoretically 
these correlations would asymptote to a value which expresses the ‘complete knowledge’ 
connection between crown structure and log quality, without any reduction due to remote sensing 
inaccuracies.  The values shown in this study are more a statement about the ability of ALS (and 
subsequent algorithms) to describe crowns, than the actual correlation between crown structure and 
log quality.  As technology improves we can get closer and closer to this theoretical ‘complete 
knowledge’ value, but we have shown that even with modest technology we can gain moderate 
inferences of practical use and value. 
 
A subsequent part of this investigation will be to investigate links between ALS crown shape, TLS 
stem shape and internal wood properties. 
 
5. Conclusion 
 
Five mature Pinus radiata trees in Kaingaroa forest, New Zealand were flown with Aerial LiDAR 
(ALS) at 8pts per m2 and scanned with terrestrial LiDAR (TLS).  Novel algorithms were developed 
for the TLS data to extract log quality metrics for the trees.  These were tree diameter at breast 
height (DBH), volume, taper, sweep, lean, stem circularity and internode distance. 
 
The five study trees were manually segmented from the aerial LiDAR point cloud.  Metrics were 
derived for each individual tree to describe the crown area, volume, density, circularity, net 
bending moment and water-transport distance. 
 
Despite the small sample size, a promising relationship was found between ALS-derived crown 
area with DBH, and stem sweep.  Crown density also showed potential as an indicator for internode 
distance.  Net bending moment and net water transport distance did not show good correlations, 
most likely due to our inability to pinpoint the stem base in aerial LiDAR. 
 
It is thought that the correlation between crown structure and log quality is greater than these 
results suggest, and the moderate strength correlations are due to poor resolution in the ALS.  
Higher point densities and technological improvements should increase the strength of these 
correlations.  
 
 
 



Acknowledgements 
 
This work was funded by Future Forests Research (FFR), and the Scion Capability Fund.  Many 
thanks to Tim Farrier from New Zealand Aerial Mapping, Steve Smith from Aerial Surveys for the 
loan of the TLS, and David Pont, Peter Beets, Andrew Dunningham, Jonathan Harrington, Rod 
Brownlie, Mike Watt, Thomas Paul and Margaret Horner from Scion. 
 
References 
 
Adams, T., Brack, C., Farrier, T., Pont, D., Brownlie, R., 2011. So you want to use LiDAR? - A 

guide on how to use LiDAR in forestry. New Zealand Journal of Forestry 55, 19–23. 
Anton, H., 2010. Elementary linear algebra. Wiley. 
Barber, C.B., Dobkin, D.P., Huhdanpaa, H., 1996. The quickhull algorithm for convex hulls. ACM 

Transactions on Mathematical Software (TOMS) 22, 469-483. 
Bienert, A., Scheller, S., Keane, E., Mohan, F., Nugent, C., 2007. Tree detection and diameter 

estimations by analysis of forest terrestrial laserscanner point clouds. In, SilviLaser 2007, pp. 
50–55. 

Blair, J.B., Hofton, M.A., 1999. Modeling laser altimeter return waveforms over complex 
vegetation using high resolution elevation data. Geophysical Research Letters 26, 2509-
2512. 

Bucksch, A., Fleck, S., 2009. Automated detection of branch dimensions in woody skeletons of 
leafless fruit tree canopies. In. Citeseer. 

Chasmer, L., Hopkinson, C., Treitz, P., 2006. Investigating laser pulse penetration through a 
conifer canopy by integrating airborne and terrestrial lidar. Canadian Journal of Remote 
Sensing 32, 116-125. 

Chen, Q., Gong, P., Baldocchi, D., Tian, Y.Q., 2007. Estimating basal area and stem volume for 
individual trees from lidar data. Photogrammetric engineering and remote sensing 73, 1355. 

Henning, J.G., Radtke, P.J., 2006. Ground-based Laser Imaging for Assessing Three Dimensional 
Forest Canopy Structure. Photogrammetric engineering and remote sensing 72, 1349. 

Hilker, T., van Leeuwen, M., Coops, N.C., Wulder, M.A., Newnham, G.J., Jupp, D.L.B., Culvenor, 
D.S., 2010. Comparing canopy metrics derived from terrestrial and airborne laser scanning 
in a Douglas-fir dominated forest stand. Trees-Structure and Function, 1-14. 

Hopkinson, C., Chasmer, L., Young-Pow, C., Treitz, P., 2004. Assessing forest metrics with a 
ground-based scanning lidar. Canadian Journal of Forest Research 34, 573-583. 

Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E., 1999. Convergence properties of the 
Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization 9, 112-147. 

Lefsky, M., Harding, D., Cohen, W., Parker, G., Shugart, H., USDA, F., 1999. Surface Lidar 
Remote Sensing of Basal Area and Biomass in Deciduous Forests of Eastern Maryland, 
USA. 

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for ecosystem 
studies. Bioscience 52, 19-30. 

Lefsky, M.A., Harding, D.J., Keller, M., Cohen, W.B., Carabajal, C.C., Espirito-Santo, F.D.B., 
Hunter, M.O., de Oliveira Jr, R., 2005. Estimates of forest canopy height and aboveground 
biomass using ICESat. Geophysical Research Letters 32, L22S02. 

Lim, K., Treitz, P., Wulder, M., St-Onge, B., Flood, M., 2003. LiDAR remote sensing of forest 
structure. Progress in Physical Geography 27, 88. 

Maclean, G., Krabill, W., 1986. Gross-merchantable timber volume estimation using an airborne 
LIDAR system. Canadian Journal of Remote Sensing 12, 7-18. 

MAF, 2010. New Zealand Forest Industry Facts and Figures. In. 
Mannes, D., 2009. Operational Trial to Operational Reality - LiDAR at Forestry Tasmania. In, 

ForestTech 2009. 
MathWorks, I., 2000. MATLAB: the language of technical computing. Using MATLAB. 

MathWorks. 
Morsdorf, F., Kotz, B., Meier, E., Itten, K., Allgower, B., 2006. Estimation of LAI and fractional 

cover from small footprint airborne laser scanning data based on gap fraction. Remote 
Sensing of Environment 104, 50-61. 



Morsdorf, F., Meier, E., Kotz, B., Itten, K.I., Dobbertin, M., Allgower, B., 2004. LIDAR-based 
geometric reconstruction of boreal type forest stands at single tree level for forest and 
wildland fire management. Remote Sensing of Environment 92, 353-362. 

Murphy, G.E., Acuna, M.A., Dumbrell, I., 2010. Tree value and log product yield determination in 
1 Radiata pine plantations in Australia: Comparison of terrestrial LIDAR with three other 
measurement systems. 

Nelson, R., Krabill, W., MacLean, G., 1984. Determining forest canopy characteristics using 
airborne laser data. Remote Sensing of Environment 15, 201-212. 

Nelson, R., Krabill, W., Tonelli, J., 1988. Estimating forest biomass and volume using airborne 
laser data. Remote Sensing of Environment 24, 247-267. 

Pont, D., 2003. A model of secondary growth for radiata pine.  Masters thesis University of 
Canterbury, Christchurch, New Zealand. 

Popescu, S., Wynne, R., Nelson, R., 2003a. Measuring individual tree crown diameter with lidar 
and assessing its influence on estimating forest volume and biomass. Can. J. Remote Sensing 
29, 564-577. 

Popescu, S.C., Wynne, R.H., Nelson, R.F., 2003b. Measuring individual tree crown diameter with 
lidar and assessing its influence on estimating forest volume and biomass. Canadian Journal 
of Remote Sensing 29, 564-577. 

Reitberger, J., Krzystek, P., Stilla, U., 2007. Combined tree segmentation and stem detection using 
full waveform lidar data. International Archives of Photogrammetry, Remote Sensing and 
Spatial Information Sciences 36, 332-337. 

Reitberger, J., Krzystek, P., Stilla, U., 2008. Analysis of full waveform LIDAR data for the 
classification of deciduous and coniferous trees. International journal of remote sensing 29, 
1407-1431. 

Riano, D., Chuvieco, E., Condés, S., González-Matesanz, J., Ustin, S., 2004. Generation of crown 
bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment 92, 345-352. 

Riaño, D., Valladares, F., Condés, S., Chuvieco, E., 2004. Estimation of leaf area index and 
covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural 
and Forest Meteorology 124, 269-275. 

Schardt, M., Ziegler, M., Wimmer, A., Wack, R., Hyyppa, J., 2002. Assessment of forest 
parameters by means of laser scanning. International archives of photogrammetry remote 
sensing and spatial information sciences 34, 302-309. 

Stephens, P.R., Kimberley, M.O., Bell, A., Brack, C., Searles, N. and Hagger, J., 2010. Airborne 
scanning LiDAR in a double-sample forest carbon inventory. Report for Ministry for the 
Environment, Wellington. 

Suarez, J.C., Gardiner, B.A., Luca, M.d., Goudie, J., Polsson, K., 2010. Consequences of stanjd 
structure on timber quality. In, SilviLaser 2010, Freiberg, Germany. 

Thies, M., Pfeifer, N., Winterhalder, D., Gorte, B.G.H., 2004. Three-dimensional reconstruction of 
stems for assessment of taper, sweep and lean based on laser scanning of standing trees. 
Scandinavian Journal of Forest Research 19, 571-581. 

van Leeuwen, M., Hilker, T., Coops, N.C., Frazer, G., Wulder, M.A., Newnham, G.J., Culvenor, 
D.S., 2011. Assessment of standing wood and fiber quality using ground and airborne laser 
scanning: A review. Forest Ecology and Management. 

Watt, P., Donoghue, D., 2005. Measuring forest structure with terrestrial laser scanning. 
International journal of remote sensing 26, 1437-1446. 

Wezyk, P., Koziol, K., Glista, M., Pierzchalski, M., 2007. Terrestrial laser scanning versus 
traditional forest inventory first results from the polish forests. pp. 12-14. 

 



SilviLaser 2011, Oct. 16-19, 2011 – Hobart, Australia 

 1

Towards automated and operational forest inventories with T-Lidar 
 

A. Othmani1, A. Piboule2, M. Krebs3, C. Stolz1 and L.F.C. Lew Yan Voon1 
 

1 Laboratoire LE2I – UMR CNRS 5158, F-71200 Le Creusot, France 
{ahlem.othmani, christophe.stolz, lew.lew-yan-voon}@u-bourgogne.fr 

2 ONF, R&D department, F-54000 Nancy, France, alexandre.piboule@onf.fr 
3 ENSAM, Equipe Bois, F-71250 Cluny, France, michael.krebs@ensam.eu 

 
Keywords: terrestrial laser scanning, forest inventory, tree detection, DBH. 
 
Abstract 
 
Forest inventory automation has become a major issue in forestry. The complexity of the 
segmentation of 3D point cloud is due to mutual occlusion between trees, other vegetation, or 
branches. That is why, the applications done until now are limited to the estimation of the DBH 
(Diameter at Breast Height), the tree height and density estimation. Furthermore other 
parameters could also be detected, such as volume or species of trees (Reulke and Haala) . . . 
This paper presents an effective approach for automatic detection, isolation of trees and DBH 
estimation. Tree isolation is achieved using an innovative approach based on a clustering 
methodology followed by a skeletonization step. The DBH of trees is then determined 
automatically. The efficiency of our algorithm is evaluated with comparison with ground data, 
measured by classical methods. 
 
1. Introduction 
 
Terrestrial laser scanner has become, in recent years, an important focus in forestry area. This 
technology allows to completely digitalizing a forest as a dense 3D point cloud. This gives a 
faithful and very accurate picture of a stand at a given time. The visual exploration of 3D point 
cloud gives lots of possibilities concerning the description of stem and branch structure of a tree. 
However, the challenge is to extract pertinent and correctly estimated forest inventory 
parameters from these raw data. 
The absolutely needed parameters are the detection of trees and the estimation of the DBH. This 
has been already achieved in different works (Dassot et al 2010), with different degrees of 
success and robustness, but the real benefit in using the T-Lidar for forest inventory is due to 
determining others parameters which are very difficult or long to identify using traditional field 
methods, as stem volume, total tree volume, tree height, flexuosity, branchiness … 
The “Computree” software presented in this paper, is developed by Office National des Forêts 
(French institute of forest management of public forests), with the goal of an operational 
approach, identifying all the parameters which can be detected by the T-Lidar. This approach 
has to put into consideration the important needs of an applied method:  

• Robustness regardless different stand types and compositions. 
• The approach must be the most computerized as possible, minimizing the ratio between  

time-consuming (ground and treatment) and quality of the data extracted. 
• Try to be the most exhaustive as possible in tree detection and measurement, which 

requires us to correctly take into account the inter-trees occlusions. 
This paper is organized as follows: section 2 presents a short review of recent methods to isolate 
tree and estimate the DBH. Section 3 details the methods used in Computree followed by a 
result analysis, a discussion and a conclusion. In the present paper the analysis of Computree's 
results will focus on DBH and localization. Indeed, the estimation methods of the other 
parameters are currently a work in progress. 
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2. State of the Art 
 
The algorithms developed for forest inventory applications and reported in the literature usually 
require an estimation of the Digital Terrain Model (DTM) (extraction of ground profile), the 
detection of the position of the trees, the estimation of the height and the DBH, and sometimes 
other parameters like volume. In the subsequent sections, we will give a brief description of the 
common methods used to obtain theses parameters. 
 
2.1 Summary of the different methods used in forest inventory applications 
 
2.1.1 Digital Terrain Model 
  
All the applications start by the generation of the DTM, which serves as a height reference for 
the determination of the DBH. Different approaches have been proposed: 

1. Lowest Z-value: the point cloud is separated into horizontal grid with a regular cell size. 
In each cell, the lowest Z-value is selected and specified as a ground height reference.  

2. Density allocation along the z-axis: the ground reference height is determined by an 
analysis of the vertical density point repartition. 

3. TIN model: a triangulated irregular network (TIN) model is iteratively created and used 
to isolate ground points. 

4. TerraScan and TerraModeler software: the DTM is generated using TerraScan and 
TerraModeler softwares by company Terrasolid Ltd, which use a low point’s routine. 
This process is not always a simple task because of the ghost points occurring below the 
ground, which should be reclassified. 

5. Searching for maxima: It is similar to density allocation along z-axis, followed by a 
neighborhood consistency check and bilinear interpolation. 

 
2.1.2 Tree detection method 
 

1. Hough transformation 
2. Fitting circles : Segmentation based on point cluster search, followed by a least square 

circle fitting 
3. Point density raster analysis: two-step segmentation method based on point density 

raster analysis. The first segmentation step is a point cluster search in a cross section of 
the point cloud. In second step all clusters are analyzed to determine their point density 
inside a raster. 

4. Crescent Moon method: creating a 'Crescent Moon' template by subtracting two, radially 
shifted circles. The points situated at the minimum, the mean and the maximum angle of the 
template are used to fit a circle. When the diameter is inside a certain range, then the 
position and diameter of the tree is recorded, otherwise not. 

5. Improved Hough transformation: the trees stems are detected by using a 
Hough-transformation and measured accurately using a circle fitting and an ellipse 
fitting algorithm. 

6. Fitting cylinder:  Reconstructing trees from 3D point cloud automatically by fitting 
consecutive cylinders to the trunks. The reconstruction based on nonlinear least squares 
estimation is finalized as far as the RSME of the fitting exceeds a pre-defined value.  

7. Circle fitting statistics: applying a least square circle fitting routine of the 
circular package of R. 
 

2.1.3 Tree Height method 
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1. Difference between lowest and highest point: The tree height is defined as the 
difference between the lowest point (soil reference for the DBH) and the highest point 
inside of a cut cylinder. 

2. Difference between DSM and DTM: Calculating the height as the difference between 
the DSM (Digital Surface Model) and DTM. 

3. Simple taper function: Extrapolation of a simple taper function from DBH to estimate 
the height. 
 

2.1.4 DBH method 
 

1. Fit a circle at 1.3m: The breast height diameter is determined by cutting a slice of 
thickness d at a height of 1.30 meter above the representative terrain model point. An 
adjusting circle is fitted into the 2D projection of the points of the slice. 

2. Manual Mark: DBH of each tree in the forest was determined and durably marked 
with reflecting tape before any measurements were carried out. As a fourth method of 
DBH derivation the intensity images of the sample plot were used to measure DBH in 
the scans manually. 
 

2.1.5 Stem profiles estimation 
 
Because of the difficulty of the segmentation of the 3D point cloud, only two approaches were 
found: one that uses segmentation in a layer with height close to 1.3 m above terrain while the 
other calculates a stem profile at different heights. We did not find any approach that isolate and 
extract the whole tree. 
 
2.2 Synthetic view of the combinations of methods 

 
The following table summarizes the state of the art 
 

Table 1: state of the art 
 

Authors DTM Trees 
Detection 

Trees 
Description 

DBH Tree height 

Simonse  
et al. 2003 

Lowest Z-value 
+ exclusion cone 

Hough 
transform 

Layer between 
1.25 and 1.35 m 

Fit circle 
at 1.3m 

    
- 
 

Bienert 
 et al. 2006 

Density 
allocation along 
the z-axis 

Fitting circles Layers at 
different heights 

Fit circle 
at 1.3m 

Difference 
between lowest 
and highest point  

Bienert et 
al.2007 

Density 
allocation along 
the z-axis 
 

Point density 
raster analysis 

Layers at 
different heights 

 
   - 
     

        
         - 

Maas  
and al 2008 

Searching for 
maxima 

Fitting circles Cutting a 
vertical cylinder 
+ Layers at 
different heights 
 

Fit circle 
at 1.3m 

Difference 
between lowest 
and highest point  

Aschoff and 
Spiecker 2004 

TIN model Hough 
transform 
+ fitting 
ellipses 
+ fitting circles 
 

Layers at 
different heights 

Fit circle 
at 1.3m 

 
- 
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Thies and 
Spiecker 2004 

Lowest Z-value Hough 
transform 
+ fitting circle 
 

Layers at 
different heights 

Manual 
Mark 

Taper function 

Brolly and 
Kiraly 2008 
 
 
 
Klemmt et al. 
2010 

TIN model 
 
 
 
      
      - 

Fitting circles 
Crescent moon 
method  
 
 
Circle fitting 
statistics 

Layers at 
different heights 
 
 
 
Layers at 
different heights 

Fit circle 
at 1.3m 
 
 
 
Fit circle 
at 1.3m 

Difference 
between DSM 
and DTM 
Taper function 
 
        - 
      
 

 
3. Proposed methodology 
 
3.1 Material 
 
The data set presented in this paper was acquired with the terrestrial laser scanner Faro Photon 
120 (Figure 1.a). This scanner with an horizontal and vertical fields of view of respectively 360° 
and 320° has a range up to 153 m with a distance accuracy of +- 2mm. Seven minutes scans were 
chosen as a good time /quality trade-off, which give a cloud of 44 million of points (Figure 1.b). 
The distance between two points is 6.3 mm at 10 m (it can reach 1.6 mm at 10 m at maximum 
resolution). The acquired data in native Faro files format are filtered and exported in Faro Scene 
as binary format XYB, where each point is defined by its three Cartesian coordinates (x, y, z) and 
information on the reflectance. 

 
Figure 1: (a) laser scanner Faro Photon 120, (b) a 44 million points scan quick view 

3.2. Computree algorithm 
 
3.2.1 Soil extraction and DTM generation 
 
This step consists in determining if each point belongs to soil or vegetation. This allows a size 
reduction of the analysed cloud by searching trees only in vegetation points, and the 
computation of the DTM used to have Z base reference for each stem.  
An horizontal grid with a regular cell size of 50 cm x 50 cm is created and for each cell, the 
lowest Z value of points is stored in the “Zmin grid”.  
The density of points between Zmin and (Zmin + 32 cm) of each cell is computed. Each cell 
with a density below 200 pts/m²  is affected with a NA value (no soil points in this cell). 
Each cell is compared with the 4x4 cells around. If at least one neighbour cell has a Zmin 
forming an angle with the observed cell upper than 45°, then a NA value is also affected to the 
observed cell.  
The DTM is computed from the Zmin grid, interpolated with a Delaunay triangulation. Each 
cell with a NA value is estimated as the inverse distance weighted mean of its neighbours in the 
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triangulation. The soil points – between Zmin and (Zmin + 32 cm) – are separated from 
vegetation points which are the only points that will be analyzed in the next step.  
 
3.2.2 Clustering 
 
The goal of this step is to obtain clusters of points. All of the points from one cluster have to 
belong to only one tree stem. The cloud of vegetation points, is sliced in horizontal Z-layer 1 cm 
thick. In each Z-Layer, points are grouped according to their proximity: two points belong to the 
same group if their distance is lower than 3 cm. Clusters with three or less points are dropped 
for next steps. For each points cluster, a circle is fitted by a least square routine (assuming 
trunks are approximately circular in horizontal plane). If the error of the circle fitting is too 
higher, the cluster is also dropped. Each fitted circle is compared to fitted circles of the ten 
Z-layers above and the ten Z-Layers below. If at least one circle in these layers has its centre 
horizontally included in the observed circle, and has a similar radius (between 0.67 and 1.5 
times the radius of observed circle), it is kept else it is dropped. This test assumes that a stem 
should have a minimum degree of vertical continuity.  
At the end of this step only the clusters of points that have some degree of circularity 
(crescent-shape if only one centre scan has been done) should remain. 
 
3.2.3 Creation of virtual sections 
 
In this step, 1 cm thick clusters are aggregated in vertically-oriented virtual sections. Two 
clusters are affected to the same virtual section if the bounding rectangles are horizontally 
intersected, and their Z-distance is less than 50 cm. The bounding rectangle of one cluster is the 
smaller XY oriented rectangle that contains all the points of the cluster. The sections containing 
less than 20 clusters are dropped. Previously, dropped clusters are tested again with each virtual 
section by the bounding rectangles intersection routine. 
At the end of this stage a real tree could be represented by several virtual sections (figure 2A), 
due to occlusions. 

 
Figure 2 (A) trees represented by a mosaic of virtual sections, (B) trees after sections merging 

  
3.2.4 Skeletonization 
 
The goal of this step is to merge virtual sections belonging to the same tree. For each virtual 
section, a skeleton is created by merging the clusters of the section into skeleton slices, with a 
thickness of 10 cm. The nodes of the skeleton are defined as the barycenter of the successive 
skeleton slices. Two sections are merged together if they have approximately the same vertical 
extend (or one having its vertical extend included in the other ones), and having a maximum 
horizontal distance lower than 50 cm (figure 3A). The sections vertical continuity is tested. If 
the skeletons of two sections have their extremity in a reciprocal alignment, then the sections are 
merged in the same stem (figure 3B). Two sections are considered aligned if the directional 
extrapolation of the skeleton of each one is intersecting the other one's extremity, close to its 
node. The proximity criterion from node is defined by the horizontal extends of the extremity 
slice of the section. After merging the sections together the final skeleton is computed again and 
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smoothed (with a mobile-mean routine). 
At the end of this step, it should be one virtual stem for each real tree stem or branch. The figure 
2A shows the virtual sections, and the figure 2B shows the resulting virtual stems.  

 
Figure 3: (A) virtual sections, (a) fusion, (b, c) no fusion, (B) segments, (d) fusion, (e,f,g) no fusion 

 
3.2.4 Position and DBH calculation 
 
This step fits a circle to each virtual stem at 1.30 m from the DTM. The centre of the circle 
gives the position of trees, and its diameter is given as an estimation of the DBH. For each 
skeleton node of a virtual stem, between 0 and 3.30 m from the DTM, a circle is fitted for the 
node’s points, perpendicularly to the skeleton direction in this node. A linear regression is 
computed for the diameter of theses circles against the height value. The outliners circles (from 
the Cook’s distance criteria) are iteratively removed and the linear regression fitted again. The 
DBH is estimated from the fitted model.   
 
4. Results and discussion 
 
4.1 Tree detection 
 

 
Figure 4 : Detection rate by plot 

 
The test site was composed by 17 plots (of beech, with oak, hornbeam and sycamore maple) of 
mixed forest in state forest of Montiers-sur-Saulx, (Meuse, France) with a basal areas between 3 
and 65 m²/ha and a density between 56 and 3600 stems/ha. The plots numbered (13, 14, 16, 17, 
43, 84, 93, 95) are coppice with standards while the plots numbered (4, 31, 40, 54, 94, 106, 110) 
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are even-aged stands. The rest (73, 83) are pole stands. The plots were recorded from one laser 
scanner position. The figure 4 presents the detection rate by plot. Our algorithm has an average 
of detection rate of 90, 6% which shows excellent results especially considering the complexity 
of segmentation of 3D cloud point. Just one plot (14) presents a bad detection rate of 62,5%. 
Plot 14, has not many trees, far from the centre (between 13 and 15 m) with, between the centre 
and the trees, a lot of seedlings (3 to 6 m), which completely mask the background: there is a 
regeneration gap. The results of the detection and the isolation of trees done with Computree 
software are showed on figure 5.B. 
Detection rate could probably be increased with a multi scans approach. It will be tested in the 
future, considering that our algorithm is low time-consuming, so testing a larger point cloud is 
not a matter. At the moment, the processing time for a 44 million point cloud is about 3 min on a 
computer with Intel © i5 processor. The time factor is extremely important for operational 
efficiency, it was taken into consideration throughout our development.  
 

 
Figure 5: (A) isolated trunk (red color), branches (yellow color), (B) complete isolation of trees with 

Computree (a different color for each isolated tree) 
 
4.2 DBH estimation 

 
Figure 6 : Diameters computed from Computree Software in comparison with the diameters obtained 
manually. The identity line is figured as a black line, and the linear adjustement as a thick gray one 

.  
The dispersion between Computree estimation DBH and the DBH from the field inventory is 
presented in figure 6. The objective is to quantify the rate of data variability around the central 
value that is measured on the field. The algorithm is more powerful as the measures of 
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difference between the two data sets is optimal and our values are closer to the identity line. 
Their is some little biais related to diameter. The estimation is globally good, 80 % of point 
having an absolute error below 5 cm. But it remains a little but significant proportion of very 
bad estimations. Their are essentially due to some residuals problems in tree isolation, or to 
counter-productive effect of the Cook's Distance criteria (then it is more bad circle than good 
ones). One way of resolution would probably to improve clusters filtering before virtual section 
creation.  
To well analyze the error estimation we study the error estimation by plot (figure 7). 
 

 
Figure 7: Error in DBH estimation 

 
The figure 7 show the same results but splitted by plots. It gives for each plot the distribution of 
estimation error on the diameter. The gray area (median) represents an error of + - 5 cm. We can 
observe that the distribution is good and in the middle range for most of the plots, except for rare 
extreme outliers cited previously. 
Two plots present a lower distribution: plot 13 and 14. For the plot 14 the result is a consequence 
of the structure of the plot which is a regeneration gap, containing a very important quantity of 
seedling, generating a lot of occlusions. The phenomenon is accentuated by the fact that the 
majority of tree in this plot are far away from the centre. The plot 13 is in a similar situation of 
occlusion by seedlings, but with a best spatial distribution of trees. 

4. Conclusion and perspectives 

 
The approach described provides an automatic method of detecting trees in terrestrial laser scans 
of forest sites and estimating their DBH. Our approach is very relevant and solves several 
problems of segmentation of 3D point cloud such as shadow effects and mutual occlusions. Our 
algorithm is very fast: a 3D point cloud of about 44 million points is processed in few minutes. 
The process of detection of trees gives a mean rate of 90% what is very accurate. In the future, it is 
planned compare simple scan versus multiple scans efficiency of Computree estimations, 
particularly for the case of plots with lots of seedlings. For the estimation of DBH, the results are 
very encouraging, but some problems have to be solved to avoid the small remaining proportion 
of outliers. The skeletonization approach seems to be a very interesting way of tree isolation. 
Several improvements are planned with a more comprehensive study of the ramification of the 
branches. We also have to implement and test other parameters calculations, like volume or 
branchiness. Finally a Ph. D. Work has been initiated for automatic species identification.  
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Abstract:  
 
Assessing forest aboveground biomass at global scale is crucial to address the challenge of 
sustainable management of forest resources and to strengthen forest-based climate change 
mitigation. To achieve this goal relying on spaceborne lidar missions is acknowledged to be a 
highly relevant solution. However, if this is taken as a given from the measurement point of 
view, the premise that spaceborne observation is the most suitable solution to provide 
information for sustainable management of forest resources is worth discussing. In this paper 
we suggest to take a fresh look at measurement processes designed to support the monitoring of 
Earth resources. We discuss the sustainability of Earth observation from space considering (1) 
issues that call into question the assumption that Earth-orbiting platform will always be 
available to the civilian remote sensing community and (2) issues concerning environmental 
impacts of space activity on the Earth. This leads us to suggest some actions that could help to 
design future observation systems in a more sustainable way in order to strengthen the capacity 
of measurement processes to meet their stated functional goal, i.e. sustainable management of 
forest resources.  
 
Keywords: space remote sensing, lidar, forest, biomass, sustainability, sustainable management 
 
 

1. Introduction 
 
Robust systems for measuring, assessing, and reporting key forest parameters, e.g. biomass, 
carbon, are needed to define adequate management practices and policies to address the 
challenge of sustainable management of forest resources and to strengthen forest-based climate 
change mitigation (Baker et al., 2010; Bernier and Schoene, 2009; Liu and Han, 2009; Thürig 
and Kaufmann, 2010). A spaceborne lidar that acquires samples of vegetation height and 
canopy closure measurements, used alone or in combination with optical and radar imagery, 
appears as the most promising way to estimate aboveground forest biomass and carbon at a 
global scale. Indeed such a solution combines beneficial measurement properties of spaceborne 
remote sensing and lidar technology. Spaceborne remote sensing greatly facilitates the 
acquisition of worldwide information consistent in both space and time. This information, 
supported by ground observations, is considered as the key to effective monitoring (DeFries et 
al., 2007; Fuller, 2006; Kleinn, 2002). The utility of lidar with respect to forest structure 
measurements and biomass estimation has been widely demonstrated  (Lim et al., 2003; Næsset, 
2004; Wulder et al., 2008) even in closed-canopy tropical areas supporting high biomass forests 
(>200 Mg ha-1) (Kellner et al., 2009; Lefsky et al., 2005) where optical vegetation indices and 
volumetric radar measurements typically saturate (Castro et al., 2003). This led scientists to 
design and propose to space agencies, so far unsuccessfully, space lidar missions with forest 
measurement and monitoring as the primary scientific objectives (e.g. VCL, LVTM, Carbon-
3D, DESDynI-Lidar, LEAF).  
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ICESat (2003-2009) was the first spaceborne lidar system designed to measure terrestrial 
surfaces. Despite the ice-centric design, several studies used ICESat/GLAS data to estimate 
forest structure and biomass at regional and global scales (Boudreau et al., 2008; Helmer et al., 
2009; Lefsky et al., 2005; 2007; Lefsky, 2010; Nelson et al., 2009). However Nelson (2010) 
outlines some of the limitations associated with GLAS-based biomass estimates. ICESat-2, 
scheduled for launch in 2016, also includes among its secondary scientific objectives large-scale 
biomass and biomass change estimations (Nelson et al., 2010). But some simulations showed 
that the ground signal is expected to be lost at canopy closures exceeding ~95%, thus making 
calculation of canopy height impossible.  
 
Even if the relevance of a spaceborne lidar mission designed to monitor global forest biomass is 
taken as a given from the measurement point of view, the premise that spaceborne observation 
is the most suitable solution to provide information for sustainable management of global forest 
resources should be discussed. Indeed the sustainability of Earth observation from space is not 
as obvious as it might seem.  
 
The paper is structured to take a fresh look at measurement processes designed to support the 
monitoring of Earth resources and to promote discussion about the place of remote sensing 
within the context of sustainable management of these resources. Sustainability is defined as the 
capacity to endure and sustainable development as “development that meets the needs of the 
present without compromising the ability of future generations to meet their own needs” (UN, 
1987).  Section 2 examines issues that call into question the basic assumption that Earth-orbiting 
platforms will always be available to the civilian remote sensing community.  Section 3 focuses 
on the environmental impacts of space activity on the Earth and reports how these impacts 
affect sustainability.  Section 4 suggests possible actions that might be taken to mitigate impacts 
associated with space missions by depending more on existing infrastructure to gather global 
observations. 
 

2. Uncertainties about the future of Earth observation from space  

2.1 Historical context, current state and future tendency of space activity 

The development of space began in 1957 with the launch of Sputnik, the first artificial Earth-
orbiting satellite.  The total number of launches since 1957 exceeded 5000 during year 2009 
(Figure 1) and the mean annual number of launches over the 10 past years has been slightly 
higher than 65 (McDowell, 2011).   
 
The development of space has long been driven by the political and military aspirations of the 
two main actors of this sector, USA and Russia.  With the end of the cold war in 1991, the rise 
of commercial interests in some applications – e.g. telecommunication and Earth observation - 
and the emergence of new space powers have led to a drastic transformation of the space sector. 
There are currently about 1000 active satellites, operated by 41 countries and several 
international consortiums (UCS, 2011). Figure 2 shows the distribution of satellites according to 
orbit classes and scientific/commercial disciplines. Of the 135 active Earth observation 
satellites, 120 are on LEO.  The profound changes in the space sector led to a reduction in 
public investments that have weakened this sector (Pasco, 2003), at least as measured by launch 
activity. However, according to Pasco (2003), projects like the European Global Monitoring for 
Environment and Security (GMES) that bring space to society rather than the converse, could 
bolster this sector. Furthermore the development of satellite constellations and of micro-satellite 
technology, making space technology affordable for developing countries (Woellert et al., 
2011), is assumed to result in an ongoing increase in the number of active satellites. 



SilviLaser 2011, Oct. 16-20, 2011 - Hobart, Australia 

3 

Annual and cumulated number of launches from 1957 to 2010
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Figure 1: Evolution of the number of launches since 1957 estimated using the McDowell’s data base 

(McDowell, 2011). The histogram represents the number of annual launches (Y left axis) while the curve 
represents the cumulated number of launches since the launch of Sputnik (Y right axis).  

 

(a) Distribution of active satellites 
according to orbit classes
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(b) Distribution of active satellites 
according to the discipline in which the satellite is used
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Figure 2: a) Distribution of the 957 current active satellites according to orbit class: Low Earth Orbit 
(LEO) refers to orbit with altitudes between 80 and 1,700 km;  Medium Earth Orbit (MEO) to orbits 

between  1700 and 35,700 km ; Geosynchronous Orbits (GEO) are around 35,700 km; Elliptical orbits 
have a non constant altitude. b) Distribution of active satellites according to their use.  

These figures result from analysis of the UCS database  (UCS, 2011)  
 

2.2 Space junk and its consequence on future activity 

Space development has resulted in an increase in the amount of space debris, i.e.non-functional 
satellites, upper stages of launchers, functional debris (bolts, belts,…) and fragments originating 
from collisions, launcher upper stages, and spacecraft explosions, up to a point where orbital 
debris is currently a threat to spacecraft health and safety (Newman, 2010). The current number 
of catalogued objects, i.e. objects larger than 5 to 10 cm in Low Earth Orbit (LEO) and 30 to 
100 cm at geostationary altitudes, that are tracked by the US Space Surveillance Network is 
higher than 13 000 and is increasing by several hundreds per year (Newman, 2010). Estimations 
of non-catalogued objects vary depending on the source; according to the CNES, there would be 
~200 000 objects between 1 and 10 cm and ~35 millions between 0.1 and 1 cm (CNES, 2011).   
 
The larger part of orbital debris population, ~40% of the total debris larger than 1 mm in size, 
resides in LEO (CNES, 2011). LEO space debris mitigation is a critical issue for space activity 
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sustainability. Up to now 4 accidental collisions have been identified (CNES, 2011) and 3 other 
are suspected (Flohrer et al., 2009). To prevent collisions with catalogued debris, alert systems 
for high-risk conjunction events have been developed by space agencies, permitting them to 
implement avoidance manoeuvres when necessary (Flohrer et al., 2009; Newman, 2010). Non-
catalogued debris ranging from 1 to 10 cm can also generate very significant damage but the 
collision risk can only be studied statistically through analysis of impacts on dedicated 
experimental platforms or on launchers and large space debris that returns to Earth. Table 1 
reports collision probabilities. A simulation model of LEO predicted that, even with no future 
launches, the critical point where the population of artificial space debris would grow at a faster 
rate than the natural decay rate could be reached in about 50 years (Bradley and Wein, 2009). 
The possibility that LEO could be made inaccessible for thousands of years by a chain reaction 
of debris collisions is underlined by several authors (Bradley and Wein, 2009; Weeden, 2011; 
Williamson, 2004). 
 
Table 1 : Probability of collision over one year according to debris size for a satellite with a  20m2 surface 

area at an orbital altitude similar to SPOT, i.e., 825 km (CNES, 2011). 
 

Debris size > 0.1 mm > 1mm > 1cm > 10 cm 
Probability of collision over 1 year 1 0.5 3x10-3 2x10-4 

 
 

3. Space activity a source of pollution for the Earth environment 
 
The risks linked to space activities that are most frequently discussed in the literature are on-
orbit collision risks, which threaten the commercial exploitation of space, and risks to people on 
the ground during natural re-entries of debris, which  is currently estimated to be lower than the 
risk associated with meteorite impact (CNES, 2011).  
We discuss now a more seldom addressed topic: space activity as a source of pollution for the 
Earth environment.  We focus on environmental impacts with respect to launch, life on-orbit, 
and end-of-life.    

3.1 Launch and Orbit Insertion 

The launch stage is responsible for two main kinds of pollution. The first one is the immediate 
return-to-Earth of the accelerator stage that separates from the launcher after fuel exhaustion 
and that is not systematically salvaged and seldom reused. The second one is related to 
propulsion system functioning. Most spacecraft depend on a rocket engine for propulsion. 
Approximate emissions for the main propellant types are given in table 2 and include, as for 
aircraft, greenhouse gases that directly add to radiative forcing and warming, as CO2 and water 
vapour, and compounds that indirectly contribute to production or loss of green house gases 
such as ozone and methane (Ross et al., 2009).  The amount of emitted gases is trivial compared 
to other sources. For example annual CO2 emissions are estimated to be several kilotons 
compared to emissions of several hundred kilotons from aircraft, which is in turn between 2 an 
3 % of the total emissions from all activities (Leary, 1999; Ross et al., 2009; Wilkerson et al., 
2010). However, besides transient changes near the launch site that affect the lowermost 
troposphere, emissions may cause global  lasting changes in the stratosphere where atmospheric 
circulation is characterized by an horizontal mixing of gases occurring faster than the vertical 
mixing (Ross et al., 2009).  
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Table 2: Approximate emissions for the four main propellant types (one solid and three liquid) given as 
mass fraction for each propellant. The total mass fraction exceeds unity because of the assumption that air 

mixed into the plume oxidizes CO and H2  (source : Ross et al., 2011).  
 

Propellant type N2 CO2+CO H2O + H2 ClOx, HOx, 
NOx 

HCl Alumina 
soot 

Solid (NH4ClO4/Al) 0.08 0.27 0.48 0.1 0.15 0.33 
Cryogenic (LOX/H2O) - - 1.24 0.02 - - 
Kerosene (LOX/RP-1) - 0.88 0.30 0.02 - 0.05 
Hypergolic (UDMH/N2O4) 0.29 0.63 0.25 0.02 - Trace 

 
Local impacts of launch events are studied at the French Guiana Space Center (CSG). At each 
launch, 600 measurements are taken at several distances from the launch zone and include 
concentration measurements of hydrochloric acid, nitrogen dioxide, hydrazine and alumina. 
Analyses  show that impacts are mainly localized nearby the launch area (<2.3 km) where high 
levels of HCl and Alumina concentrations are registered (see Table 3). Impacts were found to be 
low at intermediate distance (up to 8 km) and non-significant beyond. Impacts on water quality, 
vegetation and fauna are also monitored; up to now no significant negative impact has been 
noticed (CSG, 2011)  
 
Table 3: Example of maximal concentrations of HCL and Alumina  measured during an Ariane 5 launch 
(flight 185, 24-08-2008). Near field refers to a distance from launch site <2,4 km and far field from 2,4 to 

24 km. Measures are compared to human toxicity thresholds (source: http://www.ggm.drire.gouv.fr/) 
 

 Maximal near field 
concentration (mg/m2) 

Maximal far field 
concentration (mg/m2) 

Toxic limits defined for humans  

Ion CL- 
(HCL) 

5136.2 
 

89.84 
(measured at 4.350 

Km ) 

90 mg/m3: irreversible effect after 30 mn 
exposure  

700 mg/m3: lethal effect after 30 mn 
exposure  

Alumina 94.68 3.49 Acceptable mean exposure value for 
workers = 10 mg/m3 during 8h, 5 

days/week  
 

Part of the rocket combustion products are injected directly into the middle and upper 
stratosphere. The stratosphere is characterized by a low concentration in water vapour and 
includes the major part of the ozone layer. While climate response seems to be independent of 
where CO2 emissions occur (http://www.co2offsetresearch.org/aviation/DirectEmissions.html), 
the increase in forcing due to water vapour emitted in the stratosphere is significant compared to 
a similar water vapour emission in troposphere (Leary, 1999). Furthermore emitted compounds 
contribute to ozone depletion in several ways. Some of them are highly reactive radicals - 
NOx,HOx,ClOx - directly involved into catalytic cycles leading to an increase in the ozone 
removal rate while others contribute to increase the tropospheric radical reservoirs. As for 
emitted water vapour, it is the source gas for HOx radicals and contributes to the formation of 
ice particles also responsible for ozone loss. Ozone loss from water vapour is highly nonlinear 
and difficult to predict (Ross et al., 2009). The ozone layer is protected by international 
agreements that limit the production of substances causing ozone depletion (i.e. the Montreal 
Protocol on Substances That Deplete the Ozone Layer) and Ross et al. (2009) demonstrated that 
if the Space Shuttle had met its original goal of weekly launches it would have been, alone, 
responsible for an ozone loss close to a quantity assumed by these authors to be the upper limit 
acceptable by the stratospheric protection community, even considering the unique value of 
space activity. 
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3.2 On-orbit life  

Several compounds are also released in the upper atmospheric layers during the on-orbit 
lifetime of LEO satellites. First, the atmospheric drag in LEO causes orbital decay and the 
platform has to be repositioned occasionally. This is usually done using nozzle-based systems, 
most of them employing hydrazine as monopropellant. The highly exothermic catalytic 
decomposition of hydrazine produces jet of hot gas and thus thrust. The expulsed gas is 
composed of ammonia (NH3), dihydrogen (H2) and nitrogen (N2).  Second, the presence of a 
diffuse atmosphere causes wearing effects on satellite platforms. Atomic oxygen, the 
predominant component in LEO atmosphere, is responsible for the degradation of thermal, 
mechanical, and optical properties of exposed materials (Liu et al., 2010). It interacts with 
hydrocarbon polymers (e.g., Kapton, Teflon, Mylar…) that are used to thermally 
insulate/protect parts of the satellite (Banks et al., 2011); important Kapton mass losses have 
already been observed attesting to the fact that volatile oxidation products have been released 
into the LEO domain.  

3.3 End-of-life 

The on-orbit lifetime of non-active satellites and other debris depends on the presence and 
density of the terrestrial atmosphere at a given altitude.  Atmospheric drag slows down orbiting 
objects, making them return to Earth. During atmospheric re-entry objects are intensively heated 
and part of the material is sublimated. However large debris pieces can return to Earth. Most of 
them (> 70 %) will impact bodies of water (Johnson, 1999). As an example, during the Mir 
controlled re-entry, while the initial mass in orbit was around 140 tons, 30 tons of debris fell 
into the Pacifique Ocean.  
Another environmental threat from space activities comes from the use of nuclear reactors. Such 
reactors generate very high electrical power levels. Their use on military satellites drives the 
increased spatial resolving power of on-board radars and does away with the need for large solar 
sails. Decreasing the satellite cross-sectional area is paramount, making localization more 
difficult and lowering risks of hostile actions from anti-satellite systems (ASAT) (Finn, 1984). 
Nuclear  generators also enabled missions such as Apollo Lunar surface experiments and 
interplanetary missions requiring to go where the sunlight intensity and the temperatures are low 
and the radiation belts very severe (Bennett, 2006). Since 1961, the USA and the former Soviet 
Union used nuclear energy to provide power for respectively 24 and 37 space systems (Bennett, 
2006).  Several nuclear-powered space vehicles are known to have fallen to Earth and were 
responsible for the release of radioactive elements either in atmosphere or on the Earth’s surface 
(Finn, 1984), e.g. Cosmos-954 in 1978 or Transit satellite in 1964.  

3.4 Impact of space activities on the Earth system  

As a consequence of space activity in general and of LEO missions more specifically, debris, 
particles, and various chemical compounds are released within all the layers of the atmosphere, 
from the troposphere to the Exosphere (up to 10000 km).  A portion of these elements falls back 
onto the Earth surface.  
Our current atmosphere is the result of a long, progressive, and continuing evolution. The 
ocean-atmosphere envelope demonstrates non-linear dynamics, making relatively rapid changes 
in climatic patterns a likely feature of the future Earth. Forcing on the parameters that affect 
change (e.g., the greenhouse effect) may increase the speed and unpredictability of such changes 
(Adams, 2006).  Historical and ongoing examples of the negative impacts associated with 
anthropogenically-induced atmospheric changes include acid rain, ozone depletion, and climate 
change.  A unique characteristic of space activity is that it is the only human activity that 
releases elements in the upper atmospheric layers where concentrations of natural compounds 
are low. Consequently even the introduction of elements in small quantities can greatly affect 
atmospheric composition and chemistry; witness the effects of reactive radicals on the ozone 
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cycle (Ross et al., 2009). Impacts of space activity on complex processes occurring in upper 
atmospheric layers have been little studied until now and there is a clearly a lack of knowledge 
on the potential consequences of space activity on atmosphere composition and on radiative 
transfer. Environmental impacts and the amount of radioactivity that would reach the Earth 
surface in the case of the disintegration of a reactor core in the upper atmosphere during an 
accidental re-entry are also unknown (Finn, 1984). Based on current knowledge we can only say 
that, due to its special features, space activity brings with it a pollution capacity difficult to 
assess but presenting potentially high risks. Furthermore we only discussed in this section 
environmental impacts from launch to satellite end of life.  With many products a large share of 
environmental impacts is not in the use of the product but in its production and transportation 
(Guinée et al., 2011). Therefore impacts associated with launcher, platform and instrument 
manufacturing and those impacts related to the functioning of ground segments should be also 
examined.  

 

4. Toward sustainable Earth observation systems for forest monitoring 
 
This last section discusses sustainable Earth observation networks or systems, i.e. systems 
involving measurement processes that are compatible with sustainability principles. In a first 
sub-section we will focus on elements concerning space activity in general while in a second 
sub-section we will consider actions that could be implemented when designing systems based 
on lidar technology for forest structure measurement.   

4.1 Toward sustainable space activity  

Two main problems hamper the development of space activity in a sustainable way: space 
debris, which threaten the activity itself, and potential negative impacts on both space and Earth 
environments. According to Willianson (2003) ethical and code policy for space should include 
protection of Earth orbit as a commercial and scientific resource by formalising debris 
mitigation measures. Space agencies, e.g., CNES, ESA, NASA, have already developed 
guidelines to mitigate space debris. At an international level, the United Nations Committee for 
the Peaceful Uses of Outer Space (UNCOPUOS) has already taken interest in space debris and 
in the use of nuclear energy in space.  But, as a consultative body, it has no legislation power 
(Williamson, 2003; Williamson, 2004).  Bradley and Wein (2009) demonstrated that achieving 
full compliance with the 25-year spacecraft deorbiting guidelines could maintain the lifetime 
risk from space debris at a sustainable level. However Taleb and al. (2009), who analysed 
common errors in risk management strategies, maintain that it is more efficient to reduce the 
impact of threat we cannot control rather than to focus on statistical predictions of low-
probability high impact events. Following such advice would involve 1) doing all that is 
possible to reduce space junk by developing, for example, orbital debris removal operations as 
proposed by Weeden (2011), 2) making best efforts to mitigate future launch pollution and 
debris, keeping space as pristine as practically possible, and 3) thinking about alternatives to 
spaceborne solutions in case LEO becomes inaccessible. 
 
We consider what could be done to protect the Earth environment from damages related to 
space activity, specifically addressing issues related to risk management and recycling. This 
discussion may require the reader to adopt non-traditional points of view. Concerning risk 
management, it would be necessary to shift from minimizing type-I error, i.e., rejecting the null 
hypothesis (or status-quo) when it is true, to minimizing type-II error, i.e., accepting the null 
hypothesis when it is false (Bergen et al., 2001). Usual scientific approaches tend to minimize 
type-I errors as a means to achieve high levels of confidence in the decision to throw out a null 
hypothesis and accept that some sort of change has occurred or that a “new” condition exists. 
When applied to environmental management, minimizing type I error means that we need to be 
near-certain that environmental or ecological damage has occurred (due to space activity in our 
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case) before we would accept the alternative hypothesis (Bergen et al., 2001). The net effect of 
relying on such an approach to determine action is that the damage would be done by the time 
the test tells us to act.  With respect to prevention, mitigation, or remediation, this course of 
action is counterproductive. 
 
Concerning recycling, it is worth noticing that, for the space activity sector, any object (satellite, 
piece of launcher…) is considered to be recycled when it has been destroyed during its re-entry 
in atmosphere or has fallen back on the earth surface. This is far from the notion of recycling in 
the context of sustainable development. The Earth’s capacity to sequester human waste is 
limited (Adams, 2006) and recycling aims to reduce waste.  Furthermore part of so-called 
“recycled” spacecraft is pollutants emitted into atmosphere or on the ground. To better grasp 
this issue research is needed to assess the behaviour of material released into the upper 
atmospheric layers by space activity. In addition to site impact studies realized on industrial 
sites, life cycle assessment (LCA) could be used to help quantify environmental impacts of 
Earth observation systems and to identity critical stages where these impacts might be 
mitigated. Environmental LCA are standardized (ISO 14040 and 14044) multi-criteria, 
quantitative approaches that permit to assess environmental impacts associated with all the 
stages of a product's life, from-cradle-to-grave (Guinée et al., 2011).  

4.2 Designing systems based on lidar technology for forest structure measurement  

Acquiring consistent and extensive spatial data for statistical reporting and mapping of forest 
resource is a technological issue required to address the challenge of sustainable management of 
forests. Integration of spaceborne and/or airborne lidar data with ground-based information is 
now widely advocated. However small steps, including some very simple actions, could help to 
optimize the way the several measurement processes are designed and used to provide 
information on forest structure and biomass.  
 
Due to geopolitical constraints, satellite-based solutions seem to be currently the only way to 
acquire data globally. However, when designing space missions, actions could be done to make 
them more compatible with sustainability principles. A first step is to think about a mission as a 
contributor to space activity as a whole and therefore as a contributor to the problems discussed 
in this paper. Priority might be given to missions with long lifetimes in order to reduce the 
number of launches, space debris, and to lessen environmental damage.  Priority might also be 
given to international missions in order to reduce mission duplication, e.g., multiple L-band 
radars, multiple 30m Landsat-like clones. Consideration should also be given to the use of 
existing space infrastructure. For instance, the International Space Station could host a lidar 
package to make measurements of the Earth’s forests south of 51.6ºN over the life of the ISS 
(current expectation ~10 year). 
 
The relative contribution of each kind of measurement method, i.e. spaceborne, airborne 
acquisitions and field data, could be also cautiously compared considering a cost/benefit balance 
including economical, environmental, and societal aspects. For example, from a strictly 
economical point of view, space remote sensing is considered cost effective for end-users, 
especially given that much of the data are freely available. But this statement does not take into 
account all national funding invested into space activity. Consideration of the full compliment 
of expenditures might indicate that airborne solutions are more viable. Meanwhile, field data are 
often described as being costly and time consuming (Thuresson, 2002). But field campaigns, 
which are essential to develop models to assess forest parameters (calibration/validation steps), 
also provide information that cannot be acquired by other means, e.g. assessment of local 
biodiversity. Environmental impacts of complementary measurement processes could be 
compared using LCA in order to define the best way to combine them to reduce environmental 
impacts.   
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To end, we are going to suggest alternative solutions to current systems that might be worth 
exploring in the future. Traditional lidar acquisitions with topographic airborne systems are cost 
prohibitive, in particular for developing countries. Developing low cost, light systems designed 
specifically for forest resource assessment, e.g. PALS (Nelson et al., 2003) or LAUVAC 
systems (Allouis et al., 2010; Cuesta et al., 2010), might be one way to provide to developing 
countries a capacity to achieve accurate forest inventories. Thinking outside the box, can we 
embed light lidar systems on commercial jet aircraft? This could diminish both cost and 
environmental impacts. Figure 4 gives an idea of the distribution of the main commercial 
aircraft lines over the world and we can see that all terrestrial areas, except Antarctic, are 
covered, albeit at greatly varying flight line densities.  Handling such data sets acquired on these 
commercial routes would certainly be challenging from a statistical standpoint. 
 

 

 
Figure 4: This figure presented in Wilkerson (2010) shows the total CO2-C (kg/m2) emitted from 
commercial aviation for the year 2006 and indirectly gives an idea of commercial traffic density 

worldwide   
 

5. Conclusion  
 
There is a consensus to consider remote sensing from space as a technology of high value to 
provide worldwide measurements consistent in time and space. In this paper we proposed to 
change our view on measurements and to shift from a traditional view where measurement 
quality is assessed through metrology properties alone and where measurement processes are 
designed taking into account mainly economical and technological constraints to a more holistic 
view considering interactions between remote sensing observation systems and the Earth 
environment. This led us to suggest that regional and global forest measurements should be 
acquired in accordance with sustainability principles and with the willingness to reduce 
environmental impacts.  Such goals strengthen the capacity of measurement processes to meet 
their stated functional goal, i.e., sustainable management of Earth resources. Currently, space 
remote sensing is mainly driven by economic and technical constraints, and is far from 
sustainability; there are notable uncertainties concerning the future of LEO accessibility and on 
the effects of pollution concomitant with space activity. We suggest some actions that could 
help to design future observation systems, in particular for measuring forest structure, in a more 
sustainable way. To that end, studies that cautiously assess environmental impacts of the several 
currently available measurement approaches should be considered.   
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The aim of this pilot study was to investigate to which degree the accuracy of automated 
vegetation classification in the Swedish sub-arctic could be improved by combining optical 
satellite data with airborne laser scanner (ALS) data, compared to using satellite data only. This 
information is of interest in an ongoing discussion about the possible inclusion of the mountains 
in northern Sweden in the national laser scanning that started in 2009. A SPOT 4 scene and ALS 
data from an Optech ALTM Gemini scanner, both from 2010, were used in maximum likelihood 
classification. Data for training and validation was obtained from 279 plots with 20 m radius 
that were visited in field 2010. These plots were located near Abisko in northern Sweden (lat. 
68° 23' N, long. 18° 53' E), on the north and south side of Lake Torne Träsk. A classification 
scheme with 7 classes based on the Swedish mountain vegetation map was used. Classification 
using only SPOT data gave an over-all accuracy of 75.6%, and the combination of SPOT data 
and ALS data increased the accuracy to 81.4%. 

 
 
 
1. Introduction 
 
Existing vegetation maps of the Swedish mountains were produced 30 years ago by manual air 
photo interpretation. There is currently no funding available for producing an updated version of 
the map with entirely manual methods. 

Automated satellite image classification is widely used for large area land cover 
mapping, for example in the Swedish national version of the CORINE Land Cover data base  
(Hagner and Reese 2007); a state-wide land cover mapping of Wisconsin (Reese et al. 2002); 
the Land Cover Map of Great Britain (LCMGB) (Fuller et al. 1994); and MODIS Land Cover 
(Friedl et al. 2002), just to mention a few. In Sweden, images from the SPOT satellites are 
freely available from the SACCESS data base, which is updated yearly with a dataset covering 
the entire country during the vegetation period. 

Airborne Laser Scanner (ALS) data has proved useful in mapping of certain vegetation 
types such as mires (Korpela et al. 2009). Several studies have shown the benefits of combining 
ALS data with different kinds of imagery, for example for estimations of forest variables 
(Erdody and Moskal 2010; Holmgren et al. 2008; Hyde et al. 2006), and for classification and 
mapping of forests (Dalponte et al. 2008; Hill and Thomson 2005; Ke et al. 2010), rangelands 
(Bork and Su 2007), and coastal and estuarine areas (Chust et al. 2008; Kempeneers et al. 2009). 
Starting in 2009, the Swedish National Land Survey (Lantmäteriet) is collecting laser scanner 
data for most of the country andit is presently discussed whether the mountain areas should be 
included in this national scanning. Although the main purpose is the production of a new 
national Digital Elevation Model (DEM), this data set could also be a resource for future 
vegetation mapping. In a previous study we used a combination of SPOT images and ALS data 
from the national laser scanning to classify vegetation in a boreal forest area in mid Sweden. 
Over-all accuracy was up to 16% higher than when using only SPOT data (Nordkvist et al. 
submitted). In this study, we have investigated if a similar method is useful for classification of 
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sub-arctic mountain vegetation in northernmost Sweden. 
 
2. Material and methods 
 
2.1 Study area 
 
The 6 km × 23 km study area was located near Abisko in northern Sweden and centred around 
lat. 68° 23' N, long. 18° 53' E, altitude 340 to 1370 m a.s.l. (Figure 1). The vegetation on the 
south side of Lake Torne Träsk is predominantly heath above the tree line, and mountain birch 
forest (Betula pubescens ssp. Czerepanovii) below. The dominant vegetation on the north side is 
heath and a forest belt with a few large birch trees on tall herb meadows. The tree line is at 
approximately 650 m a.s.l. (Dahlberg et al. 2004).  
 

 
 

Figure 1. The map to the left shows the study area near Abisko in northern Sweden and the lower right 
image shows the distribution of plots within a cluster. 

 
2.1.3 Vegetation reference data 
 
Vegetation reference data was acquired at 532 circular sample plots with 20 m radius, grouped  

in clusters of 9 (Hedenås et al. submitted). The clusters were distributed on a systematic 1 km 
grid, with 60 m between the plots in each cluster. Plots were located on both the north and south 
side of Lake Torne Träsk (figure 1). The plots were visited in field during summer 2010 and 
classified according to the legend used in the Swedish mountain vegetation map. Plots where 
the dominating class covered less than 90% of the area, plots containing water and plots from 
classes with fewer than 8 members were excluded. The final training data set comprised 279 
plots. After classification, extremely dry, dry and fresh heath were combined to form one single 
class called other heath. 
 

Table 1:Vegetation classes used in the classification 
 

Class Short name No. plots 
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Blocky areas and bedrock outcrops Blocks and bedrock 15 
Grass heath Grass heath 26 
Extremely dry heath Other heath 8 
Dry heath Other heath 129 
Fresh heath Other heath 11 
Alpine meadow with low herbs Meadow 11 
Moderate snow-bed vegetation Snow-bed 12 
Birch forest – heath type with mosses Birch forest 42 
Birch forest – sparsely grown Sparse birch forest 25 
Total  279 

 
2.1.4 Remote sensing data 
 
Optical satellite data used in the study was a multispectral SPOT 4 scene from August 20, 2010. 
The pixel size was 20 m × 20 m and the image had been geo-rectified and co-registered to the 
Swedish grid system SWEREF 99 with an error of less than 0.5 pixels. ALS data was acquired 
on August 20, 2010 as a test flight for the national laser scanning. The scanner was an Optech 
ALTM Gemini scanner carried by a fixed wing aircraft. The flying altitude was approximately 
1700 m above ground level and the average point density was 1.4 points m-2.  
 
2.1.5 Processing of remote sensing data 
 
Laser returns were classified into ground and non-ground points using a progressive 
Triangulated Irregular Network (TIN) densification method implemented in the TerraScan 
software (Soininen 2011). A DEM was estimated by linear TIN interpolation with the laser 
returns classified as ground hits. In a first step, ground elevation was calculated in 1.0 m raster 
cells as the mean elevation of ground hits within each cell. Secondly, empty cells were assigned 
elevation values by TIN interpolation of the filled cells. The height value, h, of a laser return 
was computed as the height above the DEM. A height threshold of 0.5 m above the DEM was 
applied in order to separate canopy returns from returns of ground, stones and low 
vegetation.Laser data was extracted for the 20 m radius field plots, and several features were 
extracted based on the h distribution of the laser returns. The 10th, 20th, ..., 100th and 95th height 
percentiles (H10, H20, ...) were calculated for laser returns above the 0.5 m threshold. Mean and 
standard deviation of h were calculated both for returns above the threshold ( h and σh) and for 
all returns classified as non-ground ( allh and σh,all).A vegetation ratio, V, was calculated as the 
number of returns above 0.5 m height divided by the total number of returns. 
 
2.1.6 Classification 
 
Image data from the SPOT scene was extracted using nearest neighbour sampling. Maximum 
likelihood classifications were done with the Minitab software, version 16.1.1. A first 
classification was done using the four SPOT bands as predictors, then different laser features 
were used as additional bands. The Normalized Difference Vegetation Index (NDVI) was also 
tested. It should be noted, however, that no reflectance calibration was done before calculating 
the NDVI. After classification, the three classes extremely dry, dry and fresh heath were 
combined into one single heath class,other heath, and the result was evaluated using cross 
validation. 
 
3. Result 
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The three heath classes were very difficult to distinguish from each other, and were therefore 
combined to form one single heath class. Table 2 shows the classification results after the 
merging. The over-all accuracy when using only the four SPOT bands was 75.6%. The highest 
accuracy, 93.3%, was found for the blocks and bedrock class and the lowest, 28.0 %, for sparse 
birch forest. The error matrix (not shown) shows that the latter is classified as birch forest (heath 
type with mosses) in 60% of the cases. The highest over-all accuracy, 81.4%, was obtained 
when combining the four SPOT bands with mean height above ground of laser returns, allh . 
Accuracies for grass heath and other heath are improved and there is also an improvement in the 
two birch forest classes, although the confusion between the latter remains large. The 
combination of SPOT bands and σh,all gives similar over-all accuracy as when using allh . 
Vegetation ratio Vis the ALS feature that best discriminates the birch forest classes. Among 
different combinations of SPOT bands and NDVI, replacing SPOT band 3 (NIR) with NDVI 
gave the best result but did not give any improvement compared to using the four original bands. 
The use of height percentiles did not lead to any significant changes in the result. 
 

Table 2: Over-all accuracy and classwise producer’s accuracies for different band combinations. 
 

Bands† Blocks, 
bedrock 

Grass 
heath Heath Meadow Moderate 

snow-bed 
Birch 
forest 

Sparse 
birch forest 

Over-
all 

S1-S4 93.3 73.1 79.1 72.7 83.3 85.7 28.0 75.6 

S1,S2,S4,NDVI 93.3 76.9 77.7 81.8 83.3 83.3 28.0 75.3 

S1-S4, H10 93.3 73.1 81.1 72.7 75.0 88.1 28.0 76.7 

S1-S4, H95 86.7 69.2 79.7 72.7 75.0 81.0 36.0 74.9 

S1-S4, V 93.3 65.4 86.5 72.7 58.3 83.3 52.0 79.6 
S1-S4, allh  93.3 80.8 85.1 72.7 83.3 88.1 44.0 81.4 

S1-S4, σh,all 86.7 76.9 85.1 72.7 91.7 83.3 48.0 80.7 
†S1-S4 are the four SPOT bands, NDVI is the normalized difference vegetation index, H10 and H95 are 
the 10th and 95th height percentiles, V is the vegetation ratio, allh is the mean height of laser returns and 
σh,all is the standard deviation of h. 
 
4. Discussion 
 
The 5.8% improvement of classification accuracy when adding ALS data was small in the 
present study in the sub-arctic, compared to the results for a similar classification method 
applied in a boreal forest landscape reported by(Nordkvist et al. submitted). This could be 
explained by the relative height differences between classes being smaller above the tree line 
than in forest, and that some of the classes in the previous study were defined by height. A 
decision tree approach where the birch forest classes are separated from the others in a first step 
and then classified using vegetation ratio, which is correlated with canopy closure, might 
improve the result for these two classes. It should also be investigated to which degree texture 
features could improve discrimination between the remaining classes. Classification of laser 
returns into ground and non-ground is difficult in an undulating terrain with low vegetation. 

This study is the first results from a two-year project about methods for large area 
vegetation mapping in the sub-arctic mountains of northern Sweden, using the combination of 
laser scanning and optical satellite data. Further studies will include additional use of the laser 
data and slope correction of the satellite data. 
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Abstract 
 
A 2,300 hectare forested watershed in the coastal mountain range of Oregon, USA is the subject 
of collaborative research with a principal objective of evaluating uses of lidar and other 
remotely sensed data for the development of detailed forest inventories.  Panther Creek 
watershed (45° 18’ N, 123° 21’ W) is at an elevation of 100-700 m, about 57 km southeast of 
Portland.  Major species are Douglas fir, western hemlock, western red cedar, grand fir, red 
alder and bigleaf maple; tree heights are up to 60 m.  The Bureau of Land Management and 
other cooperators are using the watershed to test and develop methodology for detailed stand 
level forest inventories, the detailed mapping of soils and slope stability, and the assessment of 
other ecosystem functions. 
 
Wall-to-wall discrete return lidar has been acquired under leaf-off conditions annually starting in 
2007, and will continue through 2012. Leaf-on discrete return lidar was collected in 2007 and 
2010 and will be collected in 2012.  Surveys used Leica ALS50 Phase II or ALS60 lasers; 
pulse density is about 8 per m2; in 2010 selected areas received multiple passes, raising the 
density up to 50 pulses per m2.  Return intensities are being corrected for power output and 
camera-to-target distances. Full waveform lidar leaf-on data was acquired in 2010, as was 
4-band color-infrared imagery using a Leica ADS40 camera. Also in 2010, hyperspectral data 
from a Hymap sensor was acquired. Eighty-four cadastral-surveyed 0.08 ha stem-mapped 
permanent plots were installed, mostly in 2009; measurement will be repeated after the 2012 
growing season. Several other imagery sources are available. 
 
A project goal is to compare and evaluate methodologies. All data are available to research 
groups wanting to participate. Data are well documented and organized, and include cut-outs of 
the remotely sensed data at each of the plot locations.  
 
Key words:  crown delineation, fused data, cooperative research. 
 
1. Introduction  
 
Wall-to-wall lidar is increasingly available for large forested areas in the western United States. 
Acquisition is often funded by public agencies, though private companies are also funding some 
acquisition campaigns. The State of Oregon has recently been acquiring lidar data at a rate of 
over 100,000 ha. per year (Oregon Department of Geology and Mineral Industries, 2009).  
Current campaigns have lidar densities averaging eight pulses per m2. The expense of acquiring 
the data can often be justified without considering the use of the data for intensive forest 
inventory. However, public agencies including the U.S. Bureau of Land Management (BLM) are 
using the lidar data for stand delineation and estimation of per hectare attributes. The later are 
typically based on analysis techniques similar to those described by Næsset (2002).  
 
There is a common interest in exploiting the lidar data and fused imagery to obtain detailed 
forest inventories. Of particular interest are inventories with better information on species 
distribution and the mapping of dominant and co-dominant trees. Additionally, inferences 
related to habitat, fire risk, down woody debris and numerous other landscape feature are of 
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interest. To research and evaluate suitable methods, the BLM, together with other governmental 
agencies and private parties have a cooperative research effort focusing on the Panther Creek 
watershed. The watershed has been the target of multiple efforts to collect remote sensing data, 
particularly airborne lidar data. In support of the inventory effort, stem-mapped forest plots have 
been measured, and will be remeasured after three years. The U.S. Environmental Protection 
Agency (EPA) is conducting an intensive soil survey of the area. Other data gathering efforts are 
ongoing, including the collection of terrestrial lidar data and meteorological data. 
 
2. Panther Creek Watershed 
 
The Panther Creek study area is a 2300 hectare forested watershed in the east side of the coastal 
mountain range of Oregon, USA.  It is located 57 km southeast of Portland, Oregon, USA  at 
45° 18’ N, 123° 21’ W.  The elevation ranges from 100 to 700 m. Annual precipitation is about 
150 cm. The forests are mainly planted or natural stands of Douglas fir, with significant 
amounts of western hemlock, western red cedar, grand fir, red alder, bigleaf maple and several 
other species. Tree heights are up to 60 m. Management intensity throughout the watershed has 
been variable, with varying planting densities, and both thinned and unthinned regimes. The 
ecoregion classification is “Cascade mixed forest”(Bailey, 1995, p. 39-42). 
 
3. Panther Creek Data 
 
Much of the data for the Panther Creek project has already been collected. However, some data 
collection efforts, including soil sampling and meteorological data are ongoing, and other efforts 
are just getting started or are in the planning phase.  
 
3.1 Lidar data 
 
Six multi-point ALS data sets and one full waveform data set have already been collected (Table 
1); two more lidar acquisitions are anticipated. All data acquisitions have similar requirements 
for off-nadir angle (± 14°), flight line overlap (100%), and pulse density (≥8 pulses /m2). 
Ground densities average about 0.7 pulses per /m2 in the leaf-off data sets, and 0.5 pulses per m2 
in the leaf-on data sets. Horizontal 1-sigma absolute accuracies for slopes < 20% are 30 cm or 
less. Line to line divergence is typically less than 10 cm. Additionally, the 2010.07.15 
multi-point data set had some flight lines replicated so as to achieve very high pulse densities (≥ 
50 pulses / m2) for portions of the study area. The Leica ALS60 unit recorded data from the 
automatic gain control; these can be used to improve normalized intensities. 
 
Table 1: Present lidar data sets for Panther Creek. 
 

 
 
 
 
3.2 Other remotely sensed data 

Season Date Type Instrument 
2007 Leaf-on 2007.09.03 1-4 pts Leica ALS50 - Phase II   
2007 Leaf-off 2007.12.08 1-4 pts Leica ALS50 - Phase II.  
2008 Leaf-off 2009.03.28 1-4 pts Leica ALS50 - Phase II   
2009 Leaf-off 2010.03.29 1-4 pts Leica ALS50 - Phase II   
2010 Leaf-on 2010.07.15 1-4 pts Leica ALS60  
2010 Leaf-on 2010.07.15 Full wave Leica ALS50 - Phase II + Digitizer  
2010 Leaf-off 2011.04.17 1-4 pts Leica ALS60 
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The other remotely-sensed data sets include imagery from public sources and acquisitions 
specific to Panther Creek (Table 2).  Three-band (RGB) natural color imagery from the 
National Agricultural Imagery Program (NAIP) for 2005 and 2009 is available. Resolution is 1 
m; horizontal accuracy is quoted as ± 6 m to true ground. Quickbird Imagery in 2008 includes 
Panchromatic (blue visible - NIR) with 0.6 m pixels, and color with 2.4 m pixels. High 
resolution 4-band imagery was acquired in March, 2010 with a Leica ADS-40 camera at 30 cm 
ground sample distance (GSD); one image  with 30 cm pixels was ortho-rectified to a 20 m 
bare earth DEM and another was ortho rectified to a 0.3 m canopy surface model derived from 
the lidar data; an accuracy assessment in comparison with common linear features identified in 
the lidar data indicates spatial accuracy of about 40 cm. Hyperspectral data were collected with 
an Integrated Spectronics Hymap sensor. Four 32-band spectrometers were used with all data 
collected at a 3 m GSD. The hyperspectral data was collected without extensive ground survey 
pre-marks; in comparison with the lidar data there is a mean positional error of 6.3 m and a 
standard deviation of 4.5 m. Four flat black landscape targets (15 m × 15 m) had been 
established under the canopy for establishing spectral signatures. GeoEye-1 satellite imagery 
was acquired in April, 2011 and July, 2011; the NIR image is 0.46 m GSD, and the RGB image 
is 1.9 m GSD; pixel size for the images is 0.5 m. 
 
Table 2: Other remotely sensed data sets for Panther Creek. 
 

Date Type Details 
2005.06.28 RGB NAIP, Leica ADS 40 (1 m pixel) 
2008.06.29 NIR, RGB, pan QuickBird (0.6 m panchromatic, 2.4 m color) 
2009.06.23 RGB NAIP, Leica ADS 40 (1 m pixel) 
2010.03.19 NIR,RGB Leica ADS 40 (30 cm GSD) 
2010.07.30 Hyperspectral Integrated Spectronics Hymap (3 m GSD) 
2011.04.23 NIR, RGB, pan GeoEye-1 (41 cm GSD pan, 165 cm GSD Color) 
2011.07.06 NIR, RGB, pan GeoEye-1 (41 cm GSD pan, 165 cm GSD Color) 

 
 
3.3 Inventory sampling plan and tree measurements  
 
An enhanced ability to create inventories is a project objective. However, the derivation of an 
inventory for Panther Creek is not a specific objective. Before starting to develop a sampling 
plan, the 2007 leaf-off lidar data and the 2005 NAIP imagery was used to delineate 144 stands. 
The primary ground data was to be a series of fixed-area stem-mapped plots. Sampling was to 
be limited to stands with cooperating public owners and cooperating large forestry landowners, 
excluding stands which had been recently clear-cut. There are 64 such stands with a combined 
area of 1451 ha. The 2007 leaf-off lidar data was used to derive several statistics for 30 m grid 
cells throughout the watershed; the grid cell statistics were aggregated to provide stand-level 
statistics. The statistics included HPCT90: the 90th percentile of the first returns above 2m; 
RH10: the ratio of HPCT10 to HPCT90; CC: the number of 1st returns greater than 2m divided 
by the total number of first returns. Additionally the NAIP photography was used to obtain a 
visual estimate of percentage of each stand in hardwood. The coniferous stands (> 80% conifer) 
were divided into three height groups with HPCT90 cut-points at 20.3 m and 31m. The tall 
stands (> 31 m) were further dived into three groups based on RH10, a measure related to depth 
of crown. The intermediate height stands ( 20.3 m - 31 m) were similarly sub-divided. The short 
stands were divided into three groups based on CC, a statistic assumed to be related to crown 
closure. Thus nine coniferous strata were defined.  
 
A set of nine “modelling plots” was selected by choosing one stand in each of the nine strata, 
subjectively favoring the more extreme stratification statistics; within the nine selected stands, 
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sample locations were randomly selected; the first location which had lidar statistics similar to 
those for the average statistics for the whole stand was accepted.  
 
A design based sample was also created for the coniferous plots. Within each strata one stand 
was selected with probability proportional to area. Within each selected stand, three plot 
locations were randomly selected. Plots selected this way can be used to make valid statistical 
inferences, where as the “modelling plots” would not be suitable for that purpose. Additionally 
two plots locations were randomly selected within two of the non-conifer stands (< 80% 
conifer); and two plot locations were arbitrarily selected in riparian area. 
 
Yet another set of thirty-six plots were installed in conjunction with the soil survey; the location 
of these plots was not dependent upon the forest conditions. Three more plots were established 
by subjectively finding locations on the ground that appeared to be challenging due to the 
multi-story nature of the location; one more was located in a patch of red cedar, and two more 
were selected to capture specific edge condition between adjacent stands. All together, some 
eighty-four plot locations were selected. 
 
Plot centers were established using GPS. Exact locations were subsequently determined within 
0.25 m with a cadastral survey. Plots are circular, with all trees whose face is within 16.05 m of 
the center being measured. Effective plot area is slightly greater than 0.08 ha. Each tree was 
numbered with paint. Measurements included tree location (azimuth and direction), species, 
diameter (DBH), total height, and height to base of live crown. Live/dead status, broken-tops 
and extreme lean were noted. A subset of the trees were bored to obtain 5-year increment, 
sapwood area, and breast-height age. Tree measurements for seventy-eight plots were taken in 
the latter half of the 2009 growing season, or after the end of that growing season. 
Measurements for the final six plots were taken before the start of the 2011 growing season.  
 
3.4 Other field data 
 
In the summer of 2011, downed woody debris is being measured on all plots; large piece sizes 
anywhere on the full plot are being recorded; smaller pieces are measured on a smaller central 
portion of the full plot. Additionally hemispherical photos have been taken and ocular estimates 
of vegetation cover will be made. Terrestrial lidar data are being obtained at a majority of the 
plots during the 2011 growing season. 
 
The EPA is conducting an intensive soil survey at Panther Creek in conjunction with efforts to 
estimate aboveground and below-ground carbon, characterize the hydro geomorphology, 
conduct a systematic terrain analysis, and establish a network of weather and soil monitoring 
stations within Panther Creek. The analysis at Panther Creek will guide the development of a 
soil-landscape-climate model for the coast mountain range. Completed work includes the 
description and sampling of thirty-five pedons, with soil samples being analyzed for physical 
and chemical properties. 
 
3.5 Analyses 
 
Analyses directed towards improved inventories will rely heavily upon already-developed 
techniques, with an objective of comparing the quality of results obtained from various 
combinations of data sources and methodologies. The first-named author of this paper is 
collaborating with others to apply per unit area techniques and individual tree crown delineation 
methods to lidar and imagery data sets. Per unit area analyses are being undertaken with the 
Fusion Software (McGaughey, 2009). Crown delineation using both lidar data and imagery will 
be undertaken with ITC Suite (Gougeon, 2010). Another of the initial efforts will be 
three-dimensional crown segmentation of the full waveform data using techniques developed by 
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Reitberger et al. (2010). These segmentation efforts will be followed by efforts to better 
co-locate the various data sources and the field data, and to cross identify stem mapped trees 
and delineated crown segments. Automated object-based fusion is a possibility.  
 
Individual crown based methods are generally not expected to outperform area based methods 
of estimation for yield statistics (Peuhkurinen et al., 2011). Indeed individual crown methods 
can be seriously biased unless coupled with rigorous sampling methodology and models which 
account for the inability to correctly isolate all crowns (Flewelling, 2008). However, the 
individual crown based methods have the potential to improve species prediction, particularly in 
mixed species stands. Similarly individual crown methods have the potential of more fully 
utilizing high density lidar data fused with high resolution imagery. The multiple sources of 
remotely sensed data provide an opportunity to test many combinations of methods and fused 
data sources. 
 
4. Cooperative Research and Data Sharing 
 
The Panther Creek cooperative research project currently involves over forty researchers and 
land managers representing federal, state and local agencies, landowners, a lidar provider, 
universities, and consultants. The project is loosely organized but does have a formal operating 
policy, a policy committee and a science committee.  
 
A data sharing agreement exists, under which all of the airborne lidar data, other remotely 
sensed data, the field measurements for the stem mapped plots, and other selected data will be 
freely shared with any researchers who choose to participate. Additionally, much of the data will 
be made publicly available later; those data might not include some of the imagery which was 
licensed to the BLM but is not owned by the BLM. Most of the data relevant to forest inventory, 
including the stem-mapped plot data, the airborne lidar data and other remotely sensed data are 
available for sharing now. The tree data will subsequently be enhanced by “growing” the trees 
forward or backward to the dates of the lidar acquisitions. The data sharing mechanism is a 
password-protected web site, supplemented by the mailing of portable disks.  
 
Persons or organizations wishing to participate in the data sharing are invited to contact the 
authors of this paper. Participants will be encouraged - but not required - to share a statement of 
their research objectives; and hopefully to share various results. Research on crown 
segmentation, object-based fusion, and species imputation is especially encouraged. 
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Abstract 
 
Plot level mean dominant height and quadratic mean canopy height were estimated quite 
accurately using the LiDAR data, and a new method for estimating the number of trees per 
hectare from LiDAR data was developed and used to predict the stem density for sample plots 
from two different types of native sclerophyll forests. R2 of the regression model for the mean 
dominant height was 87.09 % for the Central Highlands Ash Regrowth (CHAR) and 92.1 % for 
the Black Range Mixed Species (BRMS) forest. Similarly, R2 of the regression model for the 
quadratic mean canopy height was 48.4 % for the CHAR and 92.7 % for the BRMS forest. The 
number of trees were predicted with mean prediction error of - 64.12 trees per hectare for 
calibration plots and 105.29 trees per hectare for validation plots in CHAR forest which is a wet 
sclerophyll forest. In the RRMS forest which represents a dry sclerophyll forests, prediction 
error for number of trees was 79.99 trees per hectare for calibration plots and 4.96 trees per 
hectare for validation plots. 
 
Key words: LiDAR, mean dominant height, quadratic mean canopy height, stem density.  
 
 
1. Introduction  
 
A forest stand is defined as a group of trees occupying a given area, which shares some 
characteristics such as species composition, size, or age (Newton, 2007). Oliver and Larson 
(1990) defined forest stand structure as “ the physical and temporal distribution of trees in a 
stand” which include the distribution of species, vertical and horizontal spatial patterns, size of 
trees or tree parts, tree age or combinations of these. Forests are three dimensional systems 
whose structure are a product of forest dynamics and biophysical processes and can be 
considered as a guide for biodiversity and ecosystem function (Spies, 1998).  
 
A single value that represents the height of a stand is useful in describing the structure 
of a forest and can be used to estimate the stand volume or biomass using the volume or 
biomass functions developed for a particular forest stand. There are different ways of 
estimating the stand height from the heights of individual trees. Average height of trees, 
quadratic mean canopy height (QMCH) of trees, Lorey's mean height and mean 
dominant height (MDH) are some ways of expressing stand height. Stand density or 
number of trees per unit area is an important structural attribute which is mainly controlled by 
the size of the trees as they grow close together (Zeide, 1995). As size of trees increases, they 
use more resources as well as growing space. Trees in stands compete for resources and if 
resources are not sufficient for all trees and other components, some trees die and the number of 
trees per unit area decreases (Pretzsch and Biber, 2005). This trade off between the size and the 
number of trees suggests that the product of these quantities is subject to minor changes through 
stand development and that there may exist a combination of size and number of trees that is 
constant during the development of forest stands (Zeide, 1995). The relationship between the 
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size and number of trees is considered as a foundation of ecology (Zeide, 1987) and vital to the 
forest management (Vanclay, 2009; Zeide, 2005; West, 1982) as these relationships can be used 
to estimate stand density and stocking, optimal thinning intensity as well as to determine the 
scale of disturbance and self -thinning and other processes and functions of forest ecosystems 
(Zeide, 1995). There are various ways to relate size and number of trees in a forest stand.  
 
Light Detection And Ranging (LiDAR) is relatively a new remote sensing technology that has 
advanced rapidly with advanced GPS and inertial navigation system and is capable of providing 
three dimensional structural information of global vegetation. LiDAR has been used to predict 
canopy height information, basal area and stem density as well as other structural information 
for different types of forest ecosystems (Dubayah et al., 2010; Duncanson et al., 2010; Chen et 
al., 2007; Coops et al., 2007; Andersen et al., 2006; Anderson et al., 2006; Bortolot and Wyne, 
2005; Lefsky et al., 1999). Application of LiDAR technology, however, has not been fully tested 
for native sclerophyll forest of Central Highlands of Victoria, Australia which have among the 
largest forest biomass stocks in the world (Keith et al., 2009). The main objective of this study 
was to estimate the mean dominant height, quadratic mean canopy height and the number of 
trees per hectare using LiDAR data in two different types of native sclerophyll forests.  
 
 

2. Materials and Methods 

2.1 Study areas 
 
This study concentrates on two different types of forest in the Central Highlands of Victoria 
which will be henceforth referred to as Central Highlands Ash Regrowth (CHAR) and Black 
Range Mixed Species (BRMS) forests. Both of these forests are part of Central Forest 
Management Area, one of the 14 forest management areas of Victoria. The Central Highlands of 
Victoria lies about 120 km north-east of the city of Melbourne and includes the foothills and 
mountains of the Great Dividing Range. The region covers approximately half a degree of 
latitude and one degree of longitude (370 20’ - 370 55’ S and 1450 30’ - 1460 20’ E) and covers 
an area of approximately 400, 000 ha. The elevation of the area ranges from 400 m to 1200 m 
above sea level. The region experiences mild, humid winters with occasional periods of snow 
with mean annual precipitation ranging from about 1200 to 2300 mm. Mean annual temperature 
of the area ranges from 7.8 deg to 13.4 deg  
 
 
2.2 Field inventory data  
 
Field inventory data for sampling plots of Central Highlands Ash Regrowth (CHAR) and Black 
Range Mix Species (BRMS) forests for the study area have been provided by the Victorian 
Department of Sustainability and Environment (DSE). Forest inventory data for 99 sampling 
plots for CHAR forest and 34 plots for BRMS forest were made available. All sampling plots in 
CHAR forest are of 0.04 ha (20 m ൈ 20 m), while for BRMS there are 20 sampling plots of 
0.04 hectares and 15 sampling plots of 0.25 hectares (50 m ൈ 50 m). The location of each plot 
was recorded using differential GPS. In CHAR forest, diameter at breast height over bark 
(DBHOB) for every individual tree having diameter greater than 10 cm were recorded. In 
BRMS forest the DBHOB of all trees  were recorded. Various plot level attributes were 
estimated from the inventory data provided by the DSE. Only trees having greater than 10 cm of 
diameter were used in this study.  
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2.2.1 Mean dominant height and quadratic mean canopy heights of the plots  
 
The height of individual trees was not measured in the field, instead, mean dominant height and 
mean dominant diameter of the plots were provided. We used a height functions provided by 
DSE to estimate the height of individual trees from the mean dominant diameter and mean 
dominant height of the plots, together with the diameter of individual trees (Equation 1 for 
CHAR and Equation 2 for BRMS).  
 
ࡴ                        ൌ ሾࢍࡸሺכࡴࡰࡹ.ሻାሺࡻࡴࡰ/ࡰࡰࡹሻכሼࢍࡸሺࡴࡰࡹሻିࢍࡸሺכࡴࡰࡹ.ሻሽሿ                ሺሻ 
 
ࡴ                     ൌ ሾࢍࡸሺכࡴࡰࡹ.ૢ ା .ૡૡૡሻାሺି.ૠି.ૡૠࡻࡴࡰ/ࡰࡰࡹכሻሿ                       ሺሻ 
 
where, H is height of trees in meter and 
 MDD = Mean Dominant Diameter (cm) (Average DBHOB of the 62 largest trees per ha) 
 MDH = Mean Dominant Height (m) (Average Height of the 62 largest DBHOB trees per ha) 
 DBHOB = Diameter Breast Height (cm) for the subject tree  
 
The DSE provided the mean dominant height for the plots which was estimated by taking the 
average height of 66 of the largest DBHOB trees per hectare. Quadratic mean canopy height 
(QMCH) is an index that can be used to describe the vertical structure of the canopy. This was 
developed by Lefsky et al. (1999b) and is defined as: 
 

ࡴࡹࡽ                                    ൌ  ඩ  ሻሺࡼࡴ ൈ   
࢚ࢎࢍࢋࢎ࢞ࢇ



                                                            ሺሻ 

                                                                  
where, ܲܪܥሺ݅ሻ is the fraction of total foliage at height at  ݅ and known as canopy height 
profile. 
 
By comparing this equation with the allometric relationship between height and diameter for 
angiosperm "champion" trees developed and reported by Niklas (1994), Lefsky et al. (1999) 
stated that "the canopy height profile is being weighted by a factor that is proportional to the 
diameter required to support it, and conversely its average is transformed, by the square root to a 
variable that is proportional to height". This suggests QMCH represents the height of the tree 
with the average diameter and can be used in a similar way that quadratic mean diameter has 
been used in forestry (Lefsky, 1997). This implies that if average diameter of trees in plots is 
determined and converted to a height of tree having that diameter by using allometric equations 
between height and diameter of trees, it represents the quadratic mean canopy height of the plots. 
It was found that the quadratic mean canopy heights for plots determined using this approach 
almost have a one to one relationship with the quadratic mean height of trees of the plots. 
Therefore, in this study, quadratic mean height of trees in plots is considered as the quadratic 
mean canopy height of the plots and this was estimated directly from the heights of all 
individual trees in the sampling plots using the formula: 
 

ࡴࡹࡽ                                          ൌ  ඨ
ࡴ∑


                                                                                         ሺሻ 

 
where, ݊ is the number of trees in the plots, ܪ is the height of individual trees in meter and  
 .is the quadratic mean canopy height for the plots in meter ܪܥܯܳ
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2.2.3 LiDAR data for the sampling plots 
 
LiDAR data of the entire area of Central Highlands were provided by DSE which were acquired 
by AAMHatch Pty Ltd on behalf of DSE from a fixed wing aircraft flying at an approximate 
height of 1300 m between November 19th 2007 and January 10th 2008. The LiDAR system used 
in data acquisition was Optech ALTM3100EA having a 0.26 m laser footprint size. The data 
were taken with 25 % side overlap and swath width of 945 m. Ground and non-ground point 
clouds (LiDAR data) of the area were provided in 2 km ൈ 2 km tiles separately. From these 
data tiles, LiDAR data for the sampling plots were extracted by using image processing 
software (ENVI, ITT Visual Information Solutions) and Lastools (free software) and the exact 
GPS coordinates of the sampling plots provided by the DSE.  
 

2.2.4 LiDAR metrics  

LiDAR data for sampling plots were processed using the software TiFFS (Toolbox for Lidar 
Data Filtering and Forest Studies) developed from Globalidar to generate digital elevation 
models (DEM) and canopy height models (CHM) and to derive various plot level LiDAR 
metrics such as mean heights, quadratic mean heights, percentile heights and standard deviation 
of all point heights of LiDAR data . 

The quadratic mean height (QMH) of LiDAR points is given by:  

ࡴࡹࡽ                        ൌ ඩ    ൈ ሻሺࡼࡴ
  ࢚ࢎࢍࢋࢎܠ܉ܕ



                                                                               ሺሻ 

 where, ܲܪܥሺ݅ሻ is the fraction of laser points at height ݅. 
 

 

2.2.5 LiDAR estimation of MDH, QMCH and stem density  

Sample plots were divided into calibration and validation plots before developing the predictive 
models from regression analysis. 75 sample plots were randomly selected for calibration and the 
remaining 18 plots were used as the validation plots in CHAR. In BRMS, 20 plots were selected 
randomly for calibration and 14 plots were left for the validation purpose. Stepwise regression 
techniques as well as the best subset regression were used to find out the most suitable LiDAR 
metric as a predictor of the mean dominant height and quadratic mean canopy height using 
statistical software Minitab 16. Finally, the field measured/estimated mean dominant height and 
quadratic mean canopy height for the plots were regressed on the selected LiDAR metric to 
develop the predictive models.  
 
Number of trees in sampling plots was estimated from LiDAR data in two steps. First, LiDAR 
estimated quadratic mean canopy heights of the sampling plots were converted to the average 
diameter of trees in sampling plots (quadratic mean height of trees represents the height of tree 
with average diameter) using the relationship between diameter and height of the trees  
developed from the regression analysis of the height and diameter data (Equation 6 for CHAR 
and Equation 7 for BRMS forests).  
 
ࡴࡰ                                                     ൌ .  כ  .                                                                ሺሻࡴ
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ࡴࡰ                                                     ൌ . ૠ כ  ( .ૡ                                                                   ሺૠࡴ
 
where, DBH is diameter at breast height and H is height of trees in meters. 
 
The LiDAR derived average diameter of the plots was then used to estimate the number of trees 
per hectare in sampling plots using the relationship between the number of trees and average 
diameter developed for CHAR (Equation 8) and BRMS (Equation 9) as suggested by Zeide, 
(1995) which is the slight modification of Reineke's equation.  
 
ሻࡺሺࡸ                                                  ൌ . ૡ െ .  כ  ሻ                                           ሺૡሻ࢜ࢇࡴࡰሺࡸ

 
ሻࡺሺࡸ                                                  ൌ .  െ .  כ  ሻ                                             ሺૢሻ࢜ࢇࡴࡰሺࡸ

where, ܪܤܦ௩ is average diameter of trees in meters and ܰ is the number of trees per hectare 
in the plots, ݊ܮ is natural log. 
 
 
3. Results  
 
Different structural attributes estimated from field inventory data show that there are 28 more 
trees per hectare in CHAR forest compared to the BRMS. Mean value of other attributes except 
mean dominant height are very close in both types of forests (Table 1). There was a very strong 
allometric relationship between diameter and height of trees in both types of forests. R2 value of 
the regression equation for CHAR (Equation 6) was about 0.8 and for BRMS (Equation 7) 0.93 
(Table 2). The relationship between number of trees per hectare and average diameter of trees in 
CHAR (Equation 8) was weaker (R2 = 0.52). The relationship in BRMS (Equation 9), however, 
was very strong (R2 = 0.97). The relationships are highly significant for both types of forests (p 
value < 0.0001) (Table 2).   
 
 

Table 1. Different structural attributes for CHAR and BRMS forest 
 

Structural attributes CHAR BRMS  

Number of trees/ha 819 791 

Mean dominant height (m) 39.8 33.6 

Average height of trees (m) 26.6 28.2 

Quadratic mean canopy height (m) 28.2 28.6 

Mean dominant diameter (m) 0.53 0.55 

Quadratic mean square diameter (m) 0.35 0.37 
 

 
The regression model for the MDH for CHAR forest with 100th percentile height of LiDAR 
points as the predictor (Equation 10) had an R2 of 87.1 % showing a very strong correlation 
between the field measured MDH and the 100th percentile height of the LiDAR points which is 
highly significant at 95 % confidence level (Table 2). Similarly, there was a very strong 
correlation between the field measured MDH and the 80th percentile height of LiDAR points for 
the BRMS forest as the R2 of the predictive model (Equation 11) was 92.1 %.  
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ࡲࡴࡰࡹ                                   ൌ െ.   . ૢ כ  ሺሻ                                                            ࢉࡴࡸ
 
ࡲࡴࡰࡹ                                  ൌ െ. ૠ  . ૠ כ  ሺሻ                                                                  ࢉૡࡴࡸ
 
where, ࡲࡴࡰࡹ is the field-measured mean dominant height, ࡴࡸࢉ and ࡴࡸૡࢉ are 100th 
and 80th percentile height of LiDAR points in meters.  
 
Regression analysis of field estimated quadratic mean canopy heights and the 70th percentile 
heights for the sample plots show that there was a good correlation between these two variables 
in CHAR as the R2 value of the regression model (Equation 12) was 0.48 and the correlation 
between these variables in BRMS is very strong as the regression model (Equation 13) has an 
R2 value of 0.93 (Table 2).  
 
ࡲࡴࡹࡽ                                  ൌ . ૡ  . ૠૡ כ  ሺሻ                                                                 ࢉૠࡴࡸ
 
ࡲࡴࡹࡽ                               ൌ െૠ. ૢ  .  כ  ሺሻ                                                                   ࢉૠࡴࡸ
 
where,ܳܪܥܯிis field estimated quadratic mean height and ܪܮ  is 70th percentile height of 
LiDAR points in meter. 
 
Scatterplots of the file estimated versus the LiDAR predicted values of MDH and QMCH for 
the calibration and the validation plots of the CHAR forest (Figure 1) and BRMS forest (Figure 
2) show that the regression models were well fitted to the calibration data and they were also 
able to predict the MDH and QMCH quite accurately for new observations as well.    

 
 

Table 2. Regression statistics for different regression models for CHAR and BRMS forest 
 

Regression 
model  

Regression statistics 
R2 RMSE (RMSE%) MAE (MAE%) p value R2 (Pred)

Equation 6 0.80 0.24 (15.2 %) 0.19 (11.8 %) < 0.0001 0.79
Equation 7 0.93 0.15 (13.6 %) 0.12 (10.9 %) < 0.0001 0.92
Equation 8 0.52  0.41 (6.3 %)  0.32(4.9 %) < 0.0001 0.50
Equation 9 0.97  0.13 (2.1 %)  0.09 (1.5 %) < 0.0001 0.96

Equation 10 0.87  3.8 (9.5 %)  2.6 (6.5 %) < 0.0001 0.86
Equation 11 0.92  1.9 (6.0 %)  1.5 (4.6 %) < 0.0001 0.90
Equation 12 0.48 4.9 (17.9 %) 3.5 (12.6 %) < 0.0001 0.45
Equation 13 0.93 1.9 (7.4 %) 1.3 (4.9 %) < 0.0001 0.91

 
 
When the method developed in this study was used to predict stem density, prediction bias 
produced for calibration plots in CHAR was - 64.12 trees per hectare (-7.6 %) which was very 
close to the prediction bias of stem density for calibration plots in BRMS (79.99 trees per 
hectare, 8.59 %) in terms of absolute error (about 8%). However, stem density in CHAR was 
underestimated whereas it was overestimated in BRMS. Prediction bias for validation plots was 
positive for both types of forests and it was significantly higher in CHAR (105.29 trees per 
hectare, 14.4 %) compared to that in BRMS (4.96 trees per hectare, 0.86 %) (Table 3). 
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Table 3. Prediction statistics for LiDAR predicted number of trees per hectare from LiDAR derived 
average diameter in CHAR and BRMS plots. 
 

  Number of trees per hectare 

  CHAR Forest BRMS Forest 

Prediction statistics 
Calibration 

plots Validation plots 
Calibration 

plots 
Validation 

plots 

Mean predicted value 776.5 838.2 1010.49 584.39
Mean prediction bias - 64.1 (7.6 %) - 105.3 (14.4 %) 79.9 (8.6 %)  4.9 (0.86 %)
MSEP 165163.4 181133.6 87179.21 19442.89
The variance of the 
prediction error 101117.0 189365.2 85031.53 20911.99
Standard deviation of 
prediction error 317.9 435.2 291.60 144.60
Standard error of the 
estimated mean bias 36.7 99.8 65.20 32.32

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Scatterplot of the field estimated versus LiDAR predicted values for the MDH and QMCH  
for the calibration and validation plots of the CHAR forest 
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Figure 2. Scatterplot of the field estimated versus LiDAR predicted values for the MDH and QMCH  
for the calibration and validation plots of the BRMS forest 

 
 

 
 

4. Discussion  
 
Measure of stand height is useful in estimating stand volume or biomass from a stand volume or 
biomass function and to determine site index. There are different ways of measuring stand 
height. The arithmetic mean of the height of all trees in the stand is a useful measure of 
stand height in even-aged stands. However, it is not suitable for uneven aged stands 
and mixed species multi layered forest stands. Mean dominant height and Lorey's mean 
height are also used to measure the stand height both of these are influenced by the 
height of the few large trees. Quadratic mean canopy height (QMCH) is a new index 
developed by Lefsky et al. (1999b) which is more appropriate for the measure of the 
stand height in uneven-aged stands and mixed species multi layered forest stands. 
QMCH represents the height of the tree with the average diameter in the stand and 
therefore cab be used to derive the average diameter of trees in stand from the 
allometric relationship between the height and the diameter of trees. This can also be 
used to develop more accurate stand volume or biomass functions as Lefsky (1997) 
found that QMCH of a stand had the highest correlation coefficient with the stand's 
basal area and biomass. QMCH is a weighted average of the canopy height profile and 
therefore is very useful in determining the two major characteristics of stand 
development: one distribution of foliage and the other size and number of stems. In light 
of the importance of QMCH to understand the stand dynamics, the results of this study 
in estimating QMCH for two different types of native sclerophyll forests using LiDAR 
data is very encouraging.          
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When the regression model for the MDH for the CHAR forest was used to predict the MDH 
from the 100th percentile height of LiDAR points for the 19 sampling plots which were 
randomly selected for validation purpose and were not used in the regression analysis, the mean 
value of the predicted MDH was 37.7 meters, which is extremely close to the mean value of the 
field-measured MDH (38.53 m) for the sampling plots. Similarly, regression model for the 
MDH for the BRMS forest was able to predict the MDH for the 14 validation plots with a mean 
prediction bias of - 0.31 m, less than one percent of the field measured MDH. When the 
regression models for the QMCH were used to estimate the QMCH for the validation plots, it 
was estimated with a mean prediction bias of - 3.5 m (- 11.9%) for CHAR plots and with - 0.39 
m (- 1.2%) for BRMS plots. This demonstrated that LiDAR underestimated the MDH as well as 
the QMCH for both types of forests. However, the underestimation of these stand heights in the 
BRMS forest was significantly lower than the underestimation in the CHAR forest. 
Underestimation of mean dominant height or quadratic mean canopy height for both types of 
forests from LiDAR data is consistent with the results of other studies conducted in different 
types of forests in which LiDAR underestimated various canopy height indices (Naesset,1997; 
Nilsson, 1996). The results of this study again confirmed that LiDAR estimation of canopy 
height indices are more accurate for uniform forests but the accuracy of estimation for mixed 
species multilayered forests is also good and can be used for many other purposes with a 
reasonable level of confidence. 
 
 
Estimating stem density (number of trees per hectare) is very important to understand the 
overall structure and the dynamics of the stand which are directly related to the basal area, 
volume and biomass of forest stand. LiDAR data have been used to estimate stem density in 
different type of forests. Various kind of LiDAR metrics have been used directly to develop 
predictive models for stem density. LiDAR estimates of various attributes including stem 
density in coniferous forests are more accurate than that of in broad-leaved and mixed species 
forests. Stem density (number of trees per hectare) is the most difficult forestry attribute to 
estimate from remote sensing technology including LiDAR (Hurich and Thoma, 2008; Lefsky 
et al., 2001). When various LiDAR metrics were used directly to develop a regression model of 
stem density in CHAR and BRMS forests, the models developed had very low (less than 0.3) R2 
.Therefore, in this study, an indirect method of estimating stem density using LiDAR data was 
developed. The results of this study in estimating stem density in CHAR and BRMS forest using 
Reineke's formula and LiDAR derived average diameter of trees is encouraging. Since other 
studies estimating stem density from LiDAR data using this method are not available, the results 
of this study cannot be compared with the results of other studies directly. However, the overall 
accuracy of this method in estimating stem density from LiDAR data can be compared to the 
accuracy obtained in some other studies. Lee and Lucas (2007) developed a model to estimate 
stem density in mixed species woodlands and open forests near Injune, Queensland, Australia 
from a complex LiDAR metric called Height-Scale Crown Openness Index (HSCOI) with an R2 
of 0.82 and RMSE of 133 stems per hectare. When they applied the model to estimate stem 
density in similar forest of northeast Victoria, the R2 was 0.19 with RMSE of 152 stems per 
hectare. As actual prediction bias was not reported, it is hard to compare the results with the 
results of this study. However, RMSE of prediction in northeast Victoria suggests that the 
prediction accuracy was not as accurate as the prediction of validation plots of BRMS forest of 
this study.  
 
Hurich and Thoma (2008) used a model developed with LiDAR metrics to estimate the number 
of trees per hectare in a coniferous forest in Germany. The prediction bias they obtained was 29 
trees per hectare which is certainly very small compared to the prediction bias produced for 
CHAR forest in this study, but it is very large compared to the prediction bias obtained for 
BRMS of this study. Nӕsset and Bjerknes (2001) developed a prediction model for number of 
stems per hectare with a LiDAR metric as the predictor for a forest of Norway spruce and Scots 
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pine in southeast Norway with an R2 value of 0.42 and in cross validation observed a very large 
standard deviation of prediction errors (1209 stem per hectare) which is significantly greater 
than the standard deviation of prediction errors obtained for calibration or validation plots of 
both CHAR and BRMS forest of this study. However, this study was conducted in forests 
having the MDH of about 40 m whereas the study conducted by Nӕsset and Bjerknes (2001) 
was concentrated on young forest lower than 8 m of height which could be the reason for the 
larger prediction errors.     
 
It was expected that the prediction of stem density for CHAR would be less accurate than that 
for BRMS because Reineke's formula was developed for even-aged fully stocked forest and 
CHAR is non-uniform forest compared to BRMS forest. The results of this study, however, 
demonstrate that the method developed and used in this study can estimate stem density with a 
reasonable level of accuracy even in comparatively non-uniform and mixed species multi 
layered forests such as CHAR forest.   
 
 
5. Conclusions 

Estimating MDH and QMCH for forest stands of two different type of forests using LiDAR data 
was quite accurate. QMCH is a new index of stand height measurement which represents the 
height of the tree with the average diameter of trees in stand and therefore can have wider 
application in sustainable forest management and in forest ecosystem studies. The results of 
estimates of stem density using LiDAR derived average diameter of trees in Reineke's formula 
can have a great impact on application of LiDAR as an operational tool in Australian forestry.      
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Abstract 
 
Exchanges of CO2 transported to eddy covariance instruments are often assumed to be 
representative of site average vegetation, understory, and topographical characteristics, 
regardless of the frequency with which these have been sampled. All sites have some degree of 
heterogeneity (e.g. an upland area, bog, area of dense understory, etc.), which could influence 
CO2 exchanges if scalar fluxes from prevailing wind directions frequently sample these parts 
more than others. This could have implications for site representation, model evaluation, and 
remote sensing product validation and scaling.  
 
The use of flux footprint models has improved our understanding of the spatial and temporal 
distribution of source/sink areas measured within the field of view of eddy covariance 
instrumentation (e.g. Schmid, 1994). The flux footprint is defined as the probability of flux 
contribution per unit area upwind of the eddy covariance instrumentation (Kljun et al. 2002, 
2004). When a footprint is combined with remote sensing data, the probability density function 
of the weighted source/sink contribution to the eddy covariance instrumentation provides 
spatially contiguous information on vegetation structural and topographic influences on net 
ecosystem production (NEP) (Chasmer et al. 2008). Simple logic follows: if CO2 fluxes 
originate from areas of higher biomass, then measurements of flux should indicate increased 
uptake (NEP) when compared with lower biomass areas (etc.), all else being equal.  
 
Combining footprints with high resolution spatially continuous remote sensing data from 
airborne LiDAR, hyperspectral or spectral imagery provides a powerful tool for characterizing 
the areas sampled most frequently by eddy covariance. In this study, we use a 3D classification 
methodology to characterize vegetation structural and topographic attributes most frequently 
sampled by eddy covariance within 1) a homogeneous mature boreal aspen stand; and 2) a 
heterogeneous upland aspen/wetland complex using airborne LiDAR. The vegetation and 
topographic characteristics found within the areas most sampled at each site were then used to 
classify the larger region for evaluation of the MODIS gross primary production (GPP) product, 
i.e. choosing MODIS pixels that have similar attributes to those found within footprint most 
frequently sampled by eddy covariance.  
 
The results of this study find that footprints from prevailing wind directions at the homogeneous 
mature aspen stand have, on average, taller trees (7%), greater effective LAI (30%), denser 
understory (5%), and fewer low-lying topographic depressions than secondary wind origins. At 
the heterogeneous aspen stand, footprints from prevailing wind directions have, on average, 
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shorter trees (-11%), lower effective LAI (-17%), and a greater proportion of topographic 
depressions. Classification of vegetation structure and topography within a 1 km radius of the 
homogeneous and heterogeneous stands indicated that 56% (homogeneous aspen) and 69% 
(heterogeneous aspen) were representative of vegetation and topographic attributes sampled by 
eddy covariance. Thus, prevailing wind directions may over- or under-sample some parts of the 
ecosystem more than others, which could result in over- or underestimates of NEP when 
compared with similar representative ecosystems.  
 
When scaled to MODIS GPP, correspondence with GPP estimated using eddy covariance and 
meteorological methods improved by 13% when using LiDAR ‘classified’ pixels as opposed to 
those pixels most proximal to the tower. This illustrates that airborne LiDAR and footprint 
analysis can be used to link eddy covariance measurements of ecosystem exchanges between 
scales. This has important implications for assessment of spatial variability of 
vegetation/topography on NEP; identifying landscape features that are frequently sampled; 
classifying spatial heterogeneity; and scaling. More detail of this study is provided in Chasmer 
et al. (2011). 
 
Key Words: CO2 flux, flux footprint modelling, scaling, MODIS, eddy covariance 
representation, airborne LiDAR. 
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1. Introduction 
 
The impact of wildfires at the urban interface is a major concern for people safety and property 
loss.  Different models have been used to characterise the threat at the interface (e.g. Ahern 
Chladil 1999, Cohen 1995, Theobald and Romme 2007, Leonard 2009 Gill and Stephen 2009) 
taking into account some of the following parameters: vegetation, weather, topography, and 
urban vulnerability.  Distance to forest has also been used to estimate the risk of house loss 
(Ahernad Chladil 1999).  Most of the studies consider only the natural forest as part of the risk 
assessment, and managed vegetation such as isolated trees and wind breaks are only taken into 
account for detailed risk assessment at the individual house level (e.g. Leonard 2009). However, 
there is some evidence that managed vegetation plays a significant role in the fire spread leading 
to house ignition (Ramsey 1987, Leonard 2003, Cohen 2008 and Gill 2009). 
 
The Australian forest fires of February 2009 resulted in the highest loss of life from forest fires 
in Australian history, and occurred in semi-rural and rural areas in Victoria. The most deadly of 
these fires occurred in the Kinglake region north of Melbourne. In this area there is generally no 
clear delineation of the urban interface. In this situation, where houses can be located within the 
natural forest, each house has its own unique forest boundary which must be defended in the 
event of a fire. Along with the natural forest, there are also small forest patches and isolated 
trees between houses and the forest that may provide a direct fuel path to the house for the flame 
front. These patches of vegetation are typically assumed to be ‘managed’ vegetation; areas from 
within which fire fighters can carry out suppression activities safely and effectively (Coleman 
1995, Gill and Stephen 2009). 
 
Due to the extent of the Kinglake fire, manual delineation of managed vegetation and natural 
forest would be a very time consuming process. Lidar data collected prior to the fire was used to 
generate maps of vegetation extent using a cover threshold method. Spatial patterns of 
vegetation extent were then used to discriminate managed vegetation from natural forest.  The 
proximity and cover density of both managed vegetation and natural forest were then derived 
for each house, both destroyed and undamaged. The significance of both the managed and 
natural components of the vegetation extent in determining the probability of house loss was 
then explored. 
 
2. Data and Methods 
 
 
The Kinglake fire burned an area north of Melbourne of approximately 180,000ha, resulting in 
the loss of 1244 houses, and 120 fatalities. As part of a vegetation assessment program 
conducted by DSE in late 2008, a large proportion of this area had been flown with lidar data 
for natural resource management programs. Post-fire surveys found that of the 3656 homes 
recorded within the fire extent, 34% were destroyed by the fire. The location of the approximate 
centre of each house, along with the severity of any damage was collected as part of these 
surveys. Of the 3656 houses, 2116 fell within the region defined by the lidar data, 921 were 
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classified as destroyed, 357 received minor damage, and 838 were undamaged.  For the 
purposes of this study, it was decided that the minor damage category was too ambiguous, and it 
was excluded from the analysis (Leonard et al 2009). 
 
The lidar data was collected by fixed wing aircraft using an Optech ALTM3100EA instrument 
during 2008, with data collection finishing late in the year.  The flying height was 1300m and 
the average point density for the entire area was 1.12 pulses per square metre.  Data were 
provided in LAS format, with points pre-classified as either ground or non-ground.  The 
ground point data were used to generate a two meter spatial resolution digital elevation model 
using an inverse distance weighted algorithm for all ground classified points within each grid 
cell: 
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Where wi is the weight of point i, and zi is the elevation of point i.  The weight w is calculated 
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Where di is the distance from the point to the interpolation point, and p is the power parameter 
(set to 2). 
 
All data were then corrected to height above terrain.  Vertically projected vegetation cover 
fraction (C) was calculated for each cell using equation 2, but in order to ensure that there were 
sufficient data to produce a robust cover estimate, each cell included data from a five by five 
metre area centred on the output pixel.  Cover was assessed for vegetation above two metres. 
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Where N is the total number of lidar points within five metres of the pixel centre, and ij is the 
height of the jth point above the DEM (Lovell et al., 2003). A final binary forest/non-forest layer 
was produced by imposing a 20% threshold on the cover layer.  Combing estimates of cover 
above two metres, with the 20% cover threshold, ensures that this forest/non-forest layer is 
consistent with the definition of forest as used in Australia’s State of the Forest report (Montreal 
Process Implementation Group for Australia (2008)). 
 
Managed vegetation includes patches of remnant forest, trees along roads and fence boundaries, 
and trees around homes. Tall shrubs (greater than two metres high) are also considered as part of 
the forest layer. These sources of managed vegetation can often connect to the natural forest, 
and can be difficult to remove without affecting the forest region delineation. An automated 
method of removal was employed using binary morphological erosion and dilation procedures. 
The details of this process can be found in Newnham et al (submitted). Two binary images were 
then generated; a natural forest/non-forest layer, and by subtracting this layer from the original 
lidar binary layer, a managed forest/non-forest layer. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: A subset of the fire affected area showing both managed and natural forest (a) Aerial 
photography provided by Google Maps, (b) the forest non-forest layer generated from the lidar data c) the 
natural forest layer and (d) the managed forest layer. 
 
The managed and natural pixel closest to each house was determined using a radial search. A 
200m radius region located around each house centre was then used to determine the total 
percentage covered for each of the vegetation classes. This resulted in four metrics associated 
with each individual house: 
 

• Minimum distance to natural forest 
• Cover fraction of natural forest within 200m 
• Minimum distance to managed vegetation 
• Cover fraction of managed vegetation within 200m 
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A binary-logistic regression model was then developed to explain the loss of homes in the fire 
based on these four metrics. 
 
  
3. Result 

 
 

The majority of managed vegetation occurred within 20 metres of the house, with no houses 
showing a minimum distance to managed vegetation of greater than 40m.  The minimum 
distance to natural forest was always less than 200 metres, with the majority of houses being 
within 50 metres of natural forest.  The cover statistics show that there is less managed 
vegetation surrounding houses in this area than the natural forest, though this managed 
vegetation generally occurs closer to the houses (see Figure2). 

 
Figure 2: Histograms of lidar metrics across all houses for a) minimum distance to managed vegetation, 
b) minimum distance to natural forest, c) average cover of managed vegetation, b) average cover of 
natural forest 
 
 
The binary logistic regression model showed that the significant factors in predicting the 
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destruction of houses in the Kinglake fire were the percentage of cover of natural vegetation 
(p<0.01), the percentage of cover of the managed vegetation (p<0.01) and the minimum 
distance to natural forest (p<0.01). The minimum distance to managed vegetation was not found 
to be a significant predictor of the destruction of houses (p=0.19). This may be due to the lack of 
variation in the distribution of distances to the managed vegetation for this particular fire 
affected area.   
 
A new model was created with total cover around each house represented as the combination of 
the natural and managed cover results, which showed both the total vegetated cover and 
minimum distance to natural forest were significant (p<0.01). The Akaike information criterion 
for this and the four parameter model was identical. Both models predict house destruction in 
approximately 55% of cases. 
 
 
4. Discussion 
 
The results of this lidar analysis suggest that the cover fraction and distance to natural 
forest were both significant variables in predicting the likelihood of a house being 
destroyed. The model predicted the destruction of houses correctly based on the 
characteristics of the surrounding vegetation in only 55% of cases. This is not surprising 
given the large number of factors not considered in this study that would have an effect 
on fire behaviour, including the topography of the land, wind speed and wind direction, 
as well as the vulnerability of the urban environment and the fire management processes 
employed during the fire.  Some of these additional parameters may also be derived 
from the lidar, such as the digital terrain model, and used in conjunction with data from 
other sources to further refine the model. 
 
Acknowledgements  
 
We gratefully acknowledge the Department of Sustainability and Environment, Victoria, for 
providing the lidar data that was used in this study. 
 
References 
 
Ahern, A., & Chladil, M. (1999). How far do bushfires penetrate urban areas. In,  
 Proceedings of the 1999 Australian Disaster Conference (pp. 21–26).Chen, K.P., 

& McAneney, J. (2004). Quantifying bushfire penetration into urban areas in 
Australia. Geophysical Research Letters, 31, L12212. 

Cohen, J. D. (2008). The wildland-urban interface fire problem. A consequence of the 
 fire exclusion paradigm. Forest History Today (Fall 2008): 20-26. 
Cohen, J. D. (1995). Structure ignition assessment model (SIAM). Biswell Symposium: 
 fire issues and solution in urban interface and wildland ecosystems. D. R. Weise 
 and R. F. Martin. Albany, CA, (USDA Forest Service, Washington, DC): 85-92. 
Gill, A. M. and S. L. Stephens (2009). Scientific and social challenges for the 
 management of fire-prone wildland–urban interfaces. Environmental Research 
 Letters 4(3): 034014. 
Haralick, R.M., Sternberg, S.R., & Zhuang, X. (1987). Image analysis using 

mathematical morphology. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 532-550. 

Leonard, J , Blanchi, R, Leicester, R, Lipkin, F , Newnham, G, Siggins, A, Opie, K, 
 Culvenor, B, Cechet, B, Corby, N, Thomas, C, Habili, N, Jakab, M , Coghlan, R, 



 

 6

 Lorenzin, G, Campbell, D, Barwick, M (2009). Building and Land use planning 
 research after the 7th February 2009 Victorian bushfires. Preliminary 
 findings, Interim report USP2008/018 - CAF122-2-12 
Leonard, J., R. Blanchi, et al. (2009). Profiling urban interface vulnerability. Fire and 
 Material 2009 11th Conference. 26-28 January 2009, San Francisco, USA. 
Leonard, J. E. (2003). People and property – a researcher's perspective. In Australian 
 Burning: Fire Ecology, Policy and Management Issues. G. Cary, D. 
 Lindenmayer and S. Dovers. Melbourne, Vic, CSIRO Publishing. 
Lovell, J.L., Jupp, D.L.B., Culvenor, D.S., & Coops, N.C. (2003). Using airborne and 

ground-based ranging lidar to measure canopy structure in Australian forests. 
Canadian Journal of Remote Sensing, 29, 607-622. 

Montreal Process Implementation Group for Australia (2008). Australia’s State of the Forests 
Report 2008. Bureau of Rural Sciences, Canberra. 

Newnham, G.J., Siggins, A.S., Blanchi, R., Culvenor, D.S., Leonard, J., Mashford, J. Assessing 
Vulnerability at the wildland-urban interface using airborne lidar. (in preparation). 

Ramsay, G. C., McArthur, N.A. Dowling, V.P. (1987). Preliminary results from an 
 examination of house survival in the 16 February 1983 bushfires in Australia. 
 Fire and Materials 11: 49-51. 
Serra, J.P. (1982). Image analysis and mathematical morphology. London ; New York: 

Academic Press. 
Theobald, D. M. and W. H. Romme (2007). Expansion of the US wildland-urban 
 interface. Landscape and Urban Planning 83(4): 340-354. 
 
 
 



Looking forward to 
LiDAR’s colourful future

Dr Iain H Woodhouse
i.h.woodhouse@ed.ac.uk
With thanks to: Caroline Nichol, Felix Morsdorf, Genevieve Patenaude, John 

Moncrieff, Jim Jack, Emal Rumi, David Henry, Mal MacDonald, Antonio 
Delussu, Jackie Rosette

Silvilaser 17-19th Oct, 2011, Tasmania



The value of forests

Radar

Multispectral Lidar (air)

Multispectral Lidar (space)



The value of forests

Radar

Multispectral Lidar (air)

Multispectral Lidar (space)



Global deforestation rate:





The pressure on forested land:

Agriculture

Biofuels

Timber
Cocaine

Urbanisation

DEAD!

Carbon 
dioxide 

harvesting
Water 

resources

Ground 
stability

Biodiversity

Sustainable 
timber

ALIVE!



The value of forests

Radar

Multispectral Lidar (air)

Multispectral Lidar (space)



“radar” and “forest”

“lidar” and “forest”

20
00

20
00

20
10

20
10

Total publications:



BIOMASS Mission Report



Canopy height from InSAR in savanna in Belize
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NDVI : Normalized Difference Vegetation Index

PRI : Photochemical Reflectance 
Index

Key Parameters for GPP Retrieval 

For absorbed photosynthetic active radiation (APAR): 

For Light Use Efficiency (LUE):



Model multispectral lidar waveform (Morsdorf et al, 
2009)

• Tree architecture from Treegrow
• PROSPECT model to compute reflectance and transmission
• POVRAY to simulate lidar profile



Simulated columnar returns                     TreeGrow model



4 wavelength lidar (laboratory)

Woodhouse et 
al, GRSL, 2011
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crown



The value of forests

Radar

Multispectral Lidar (air)

Multispectral Lidar (space)



Spaceborne Multi-Spectral Canopy LiDAR 
“SpeCL”



The SpeCL mission concept
• Large footprint (30m) waveform lidar
• Max 1 km grid sampling
• Revisit same footprint every 90 days
• 4 wavelengths (actually, 6!)

– PRI: 532nm (44mJ) and 570nm (44mJ)
– NDVI: 660nm (70mJ) and 780nm (27mJ)
– Additional: 1320nm and 1569nm

• Vertical information: structure and process



ALADIN on 
ADM-Aeolus

Source: diode-
pumped Nd:YAG
400mJ, 100ns, 
1064nm,100Hz

1.5m primary

(will be) mature, 
space based, 
efficient pulse 
emission for 

532nm



Scan Pattern

• Laser scan on 1km x 1km grid
• 13 shots per swath -> 12km wide swath
• Forward ground speed = 7.2 km/sec
• Time to travel 1km = 139 msec

SPECL Workshop, 2nd

November 2010 39

• Required time between shots = 139/13 = 
10.692 msec

• Required PRF = 93.525 Hz
• Along track distance between shots = 

7.2x10.692 = 77m



Using multispectral info for slope 
correction



Delussu, MSc thesis, 2011.
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System Performance 



Next: hyperspectral lidar on a cherry 
picker
A long-range time-of-flight scanning sensor based on high-speed time-
correlated single-photon counting



Four examples of measured
LiDAR data at 850nm, from a
pixel at the tree apex, going
outwards towards the ground
(bottom) with two intermediate
pixels shown from points
lower on the tree.
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SpeCL: A multispectral Canopy Lidar

• proposal was submitted to ESA Earth Explorer –
EE8 call, June, 2010

• Dec 2010 Earth Science Advisory Committee 
(ESAC)  selected 2 missions for Phase A, and 
advised that 11 out of 33 have scientific potential -
SpeCL was one of them.

• “a very innovative mission concept, but at present it 
is technically very immature.”

• “ESAC recommends that studies be conducted ..
“(1) to develop and demonstrate the observation 
technique, supported by airborne campaigns with 
a prototype instrument; “



Summary
• Multi- or Hyper-spectral LiDAR will come one day.
• It can work from space (if we need it).
• Final Report for SpeCL will be concluded in Oct, 2011 

(please email me for a copy)
• Cherry-picker field trials to be completed March 2012 

(please email me if you want to be kept in touch)
• Need to have an airborne demonstrator.



Dr Iain H Woodhouse
i.h.woodhouse@ed.ac.uk
http://forestplanet.wordpress.com
www.carbomap.com

Thank your for your 
attention. 
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Abstract 

This paper considers the potential of a new scanning photon-counting system for vegetation 
analysis.  The 3D Mapper sensor was developed by Sigma Space Corporation and is being tested 
within NASA’s Carbon Monitoring System (CMS) project (NASA, 2010).  The sensor is able to 
map 60 km2 per hour using less than 150 mW of 532 nm green light with about 30 cm between 
measurement points. While this area coverage rate is already several orders of magnitude higher 
than can be achieved by conventional lidar, substitution of higher power lasers would permit 
significantly higher mapping rates with the same resolution or much higher spatial resolution at the 
current rates.  Data were collected for a test site to the west of Fredericksburg, Virginia, USA and 
demonstrated the capability with a low powered laser, of relatively high density data collection, and 
good penetration through the canopy, despite high canopy fractional cover and a hazy atmosphere at 
the time of flight. This preliminary study supports the potential of this emerging technology for 
vegetation analysis. Further research is required to develop algorithms to exploit the capabilities of 
such systems and to provide a greater understanding of the interactions with vegetated surfaces.  
Studies of this nature will inform future photon-counting satellite lidar sensors such as NASA’s 
ICESat II, which is due for launch at the beginning of 2016. 
 
Keywords: Photon-counting, green wavelength, ambient noise, signal detection algorithms, Carbon 
Monitoring System (CMS) 
 
 
1. Introduction 
 
1.1. NASA’s Carbon Monitoring System project 

 
This research is being carried out within the context of NASA’s Carbon Monitoring System (CMS) 
initiative (NASA, 2010; Suárez et al., submitted this edition). One component of CMS is the local-
scale mapping of biomass using datasets which are expected to be readily available within the US 
(these include the US Geological Survey National Land Cover Data (NLCD) and lidar data).  The 
aim is to determine a methodology for county-level analysis which could be extended and applied at 
regional, State or national scales.  Since photon-counting lidar data offers prospects for future large 
area mapping for vegetation analysis, the potential of such sensors is being considered as part of 
this project. Further details of the CMS initiative are presented in Suárez et al., submitted this 
edition. 
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1.2. Photon-counting lidar systems 
 
The emerging technology of photon-counting lidar offers the potential for low energy expenditure 
and potential high altitude operation allowing extended laser lifetime and large area coverage.  This 
newest type of lidar technology is currently generally operated at green wavelengths (532 nm). For 
some airborne systems, this is due to a greater efficiency of the detector and in the case of NASA’s 
ICESat II, it is as a result of technical readiness for space flight. 
 
Low laser energy output ensures eye safety of these instruments despite operating at a visible 
wavelength.  A high pulse repetition rate and photon detection probability produces a high point 
density even whilst flying at greater altitudes whilst a narrow pulse duration (<1ns) allows photons 
to be located with greater vertical precision. 
 
One significant factor resulting from the green wavelength is that photons returned from the emitted 
pulse cannot be distinguished from detected photons resulting from ambient noise. A small detector 
field of view and narrow optical band-pass filter are two important elements to reducing the 
background noise as much as possible. Much of the remaining background can be eliminated by 
coincidence filtering. Acquiring data at dusk or night would further reduce the background noise. 
 
1.2.1.  Micro-Altimeter 
 
To date, few photon-counting systems have been developed and perhaps among the earliest of these 
was the Micro-Altimeter which flew several times in early 2001. It was a four channel, conical 
scanning instrument with a 7 to 20 mW micro-chip laser. The system produced profiles and terrain 
maps from 6 to 12 km including through heavy fog and under shallow bays (Degnan et al., 2001).  
Some further examples of profiling and scanning photon-counting lidar systems, from both airborne 
and spaceborne platform are outlined below. 
 
1.2.2. SIMPL 
 
The Slope Imagining Multi-polarisation Photon-counting Lidar (SIMPL) is an example of an 
airborne small footprint photon-counting profiling lidar which operates at both 1064nm and 532nm 
wavelengths (Dabney et al., 2010).  A single pulse is emitted which is split into four beams, each 
with four channels for green and NIR wavelengths each of which at parallel and perpendicular 
polarisations. The two polarisations respectively identify photons which have been reflected from a 
single surface or which have undergone multiple scattering.   The four beams are distanced 
approximately 5 metres apart, producing four profile ‘slices’ through the canopy. The laser 
repetition rate of 11.4kHz and an aircraft speed of 100m/second may be expected to produce 5-15 
detected pulses per square metre. 
 
Using SIMPL, Harding et al., in press 2011, have explored the influence of lidar wavelength on the 
ability to determine standard waveform metrics which may be employed to predict biomass. By 
aggregating detected photons over a distance along the transect, the authors calculated a cumulative 
height distribution (such as that used for waveform or discrete return analysis). Height of median 
energy (HOME) and canopy cover metrics were compared and little difference was found between 
the two wavelengths, suggesting that lidars using 532nm could produce comparable biomass 
estimates to those obtained by current 1064nm systems. 
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1.2.3. ICESatII and MABEL 
 
NASA’s forthcoming ICESat II mission is due for launch in early 2016 (GSFC, 2011a). In contrast 
to ICESat I, its successor will carry a medium footprint, photon-counting profiling lidar operating at 
532nm wavelength.  This instrument is named ATLAS, the Advanced Topographic Laser Altimeter 
System. 
 
The current planned configuration is for a single emitted pulse which is split into six beams, 
arranged as three adjacent pairs. Each pair will have a stronger and a weaker beam (100μJ and 25μJ 
respectively) which aims to address issues of detector dynamic range when alternating between 
bright and dark surfaces such as ice and water. A distance of 3.3km is anticipated between each pair 
and members of the pair will be separated by 90m.  The high repetition rate of 10 kHz from an 
altitude of ~496km will produce overlapping footprints of 10m diameter which will be distanced at 
0.7m intervals. 
 
1-3 photons are anticipated to be detected per footprint and, although the spatial location of photons 
within the footprint will be unknown, the aggregation of returns along the ground tracks will allow 
a vertical profile to be created. Like its predecessor, the primary objective of ICESat II is not the 
retrieval of vegetation, one of its science objectives is measuring vegetation height as a basis for 
estimating large-scale biomass and biomass change (GSFC, 2011a). This new technology will offer 
a new perspective of the world and open opportunities for different approaches to global vegetation 
analysis. 
 
Prospects for data collection in preparation of ICESat II are being tested using NASA’s high-
altitude simulator, the Multiple Altimeter Beam Experimental Lidar, MABEL (GSFC, 2011b). 
MABEL is a demonstrator instrument for the ICESat II mission, flying above the atmosphere at an 
altitude of 20km on NASA’s ER-2 aircraft. It has been flown in December 2010 and again in 
March-April 2011 at different times of day, producing different levels of solar background which 
can be used to test signal detection algorithms. Data have been made available online by NASA at 
GSFC, 2011b. 

 
1.2.4. Sigma Space 3D Mapper 
 
For the study presented in this paper, the prototype 3D Mapper photon-counting, scanning lidar 
developed by Sigma Space Corporation, USA, is being tested to assess the potential of this sensor 
for vegetation analysis within the context of NASA’s Carbon Monitoring System initiative (NASA, 
2010).   
 
The instrument measures approximately 60 km2/ hour with 30 cm postings using about 150 mW of 
green light, emitting a 532nm, 0.7ns (700 picosecond) laser pulse at a repetition rate of 20 kHz.  A 
10x10 array of beamlets is produced on the ground and two time-of-flight cards, each with 50 
channels, record the data collected. Photomultipliers were selected as the detectors for this system 
because of their very fast recovery time. The short system dead time, about 1.6 ns, means that each 
channel is armed and ready for the next event within 20 cm of a previous detection. This permits 
high resolution vertical mapping of forest canopies. The system uses 532 nm light because the 
detector has much higher quantum efficiency for green light than for the infrared. The green may 
have an additional advantage for vegetation measurements in that the lower reflectivity (relative to 
IR) significantly reduces multiple scattering and so improves the measurement fidelity. 
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Scanning patterns using this prototype instrument can be conical or near-linear. For a conical 
scanning pattern, the half-width angle is typically 9°, producing up to a 3-second difference 
between forward and backward views of the same location on the ground.  For this study, a near-
linear scan was used at a 45° angle to the flight path producing a swath width of approximately 
300m. 
 
2. Data collection 

 
A test site at Fredericksburg, Virginia, USA was flown on 12th May, 2011, using the 3D Mapper 
photon-counting sensor.  The data presented were acquired during a single pass flying at circa 280 
km/hour at an altitude of 1km. This prototype system, in this mode, can capture data over 6,000 
hectares per hour. Flight time was at 3pm, meaning that the sun angle and atmospheric haze 
observed during the flight produced challenging conditions to test the performance and capabilities 
of the instrument.   
 
The site is located at a distance of 15 km to the west of Fredericksburg, and approximately 80 km 
SSW of Washington DC.  The area contains predominately deciduous forest shown in lighter green 
in Figure 1 (below), of mixed height composition and density as well as residential and retail land 
use. The transect used for illustration of the sensor capabilities below crosses an area of evergreen 
(coniferous) forest with dense canopy cover (darker green, figure 1, below). 
 

 

 

Figure 1.  Test site near Fredericksburg, Virgina, USA.  Above: GoogleMaps image with a 800m section 
outlined in red; Below: National Land Cover Data (US Geological Survey). Mid green represents deciduous 
forest; evergreen forest is indicated in darker green, light green is mixed forest, pale pink is developed/open 
space, and beige is shrub/scrub.  Some misclassification can be observed which would have implications for 

biomass mapping using this dataset for stratification of the landscape. 
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3. Initial observations and results 
 
The area illustrated within Figure 2 is 800 metres across and shows a horizontal breadth 
through the canopy of 10 metres. The tree canopy and ground are clearly visible against the 
solar background above and below. At times, haze prevented visibility to the ground 
surface, however, even under these conditions, adequate signal photons were received to 
enable the ground and canopy surfaces to be differentiated from background noise. 
 
 

 
Figure 2.  Illustration of vertical profile showing signal and noise above and below the intercepted surfaces. 

 
Figure 3 shows a close-up view of the vegetation canopy. Emergent and suppressed crowns can be 
visually identified.  This suggests the potential for methods to be developed to distinguish 
understorey vegetation beneath an upper canopy. 
 

 
Figure 3.  Observation of understorey vegetation beneath a dense canopy. 

 
4. Next steps 
 
4.1. Research flights 
 
A research-focused photon-counting  lidar campaign is planned during Summer 2011 over the Jug 
Bay Wetlands Sanctuary (Jug_Bay, 2011). This is an area largely of mixed broadleaf forest, located 
approximately 32km to the southeast of Washington DC.  Field data were collected between 2003 
and 2005 by a team of volunteers of the Wetland Sanctuary, for 300 10x10m plots arranged at 100m 
intervals on the UTM 18N grid.  Discrete return lidar data were also acquired across this area of 
Maryland State in 2004. Additionally, some further field measurements were taken in 2011 as part 
of NASA’s CMS project (NASA, 2010; Suárez et al., submitted this edition).  
 
This will enable a comparison of photon-counting data with field measurements as well as 
conventional discrete return lidar data.  The time difference in lidar data collection along with 
repeat field measurements would allow growth to be observed and will assist in the assessment of 
biomass mapping as part of the CMS project. 
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5. Discussion 
 
5.1. Capabilities and potential applications 
 
Initial tests suggest that promising results may be obtained from small footprint photon-counting 
sensors for the generation of vegetation products.  The high density of the point cloud which is 
produced, in excess of that which is typically collected by discrete return airborne lidar data, aims to 
improve the characterisation of vegetation canopies and offers the opportunity for established 
analysis techniques to be applied to this new technology. 
 
The potential to maintain a high detection rate of photons from a high altitude, could reduce data 
acquisition costs and permit more economical inventory and mapping of broad areas. The 
observation of understorey vegetation (Hill, 2007), which is difficult to achieve using more 
conventional lidar systems, could improve the capabilities of identifying invasive species and 
accounting for over-reached trees in canopy metric-based statistical equations for biomass mapping.  
This also presents the opportunity for improvements in the detection of small and suppressed trees 
using  individual tree-level lidar inventories (Suárez, 2010). 
 
A greater number of returned photons are observed for more reflective surfaces (e.g. painted lines 
on roads) and so changes to photon density could offer the possibility of direct crown-width 
detection in open canopies by observations of shadowing effects on the ground.  Additionally, data 
acquisition during leaf- off conditions, and the improved vertical precision anticipated from the 
short duration pulse, may reveal potential applications for forestry such as timber quality (number 
and location of branches and tree architecture) seen in figure 4. 
 

 
 

Figure 4.  Canopy profile and branch architecture from an earlier test flight at the Smithsonian Environmental 
Research Center (SERC), Maryland, USA using the Sigma Space prototype photon-counting sensor. 

 
5.2. Challenges of green wavelength photon-counting 
 
The principal challenge of emerging photon-counting systems at green wavelengths is the ability to 
distinguish signal from noise. Photons returned from an intercepted surface cannot be differentiated 
from those originating from ambient noise and, whilst for planar surfaces such as roofs and bare 
earth, these can be classified reasonably easily, vegetation will require more careful consideration.  
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This is likely to be particularly important when identifying rough-surfaced transition zones such as 
the top of canopy.  Additionally, noise photons cannot be discriminated within the canopy region 
and therefore adaptations to percentile-based methods of statistical analysis will be required, which 
take into account the random but uniformly-distributed photons beyond the true intercepted surfaces 
in order to adjust for spatially-varying ambient noise. 
 
5.3. Prospects for photon-counting lidar 
 
NASA’s ICESat II mission is planned to be a green-wavelength, photon-counting, profiling system 
(GSFC, 2011a).  As the only currently-planned satellite lidar sensor, the subject of ambient noise 
and the development of canopy/ ground-finding algorithms are issues which will need to be 
addressed. Data from MABEL (GSFC, 2011b) gathered at an altitude of ~20,000 km aboard the 
NASA ER-2 aircraft are providing an opportunity to develop algorithms in advance of the launch of 
the satellite.  Possible future high-altitude airborne scanning photon-counting systems producing 
wider swaths would improve capabilities to map at landscape scales. For example a next generation 
version of the 3D Mapper flying at an altitude of 5-7000 km could cover circa 25,000 hectares per 
hour. 
 
Research using the FLIGHT and DART lidar simulation models (North, 1996; North et al., 2010) 
aims to further inform the understanding of photon-counting lidar and their interactions with 
vegetation canopies.  As a newly-emerging technology this will be subject to ongoing research and 
evaluation to extract the full potential and to develop new methods to process data which aim to 
offer new capabilities.  
 
6. Conclusion 
 
This paper has illustrated preliminary results of a test flight at Fredericksburg, Maryland, USA, 
using the Sigma Space prototype 3D Mapper photon-counting system.  Initial findings suggest great 
promise can be offered by such systems for vegetation analysis which may improve current 
capabilities offered by discrete return lidar systems.  Further work is required to address issues of 
ambient noise and to determine characteristics of photon interactions with the canopy.  A lidar 
campaign is planned for Summer 2011 over the Jug Bay Wetlands Sanctuary which will permit 
more in-depth analysis of the prospects of green-wavelength, photon-counting lidar for forest 
assessment. 
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Abstract 
 
Remotely sensed LiDAR data has become an important tool in the management of modern 
forest inventories. Monitoring the high frequency changes within forests with this data has been 
restricted by the cost and intermittent nature of LiDAR surveys. The use of Unmanned Aerial 
Vehicles (UAVs) as a remote sensing platform is a rapidly developing field and is capable of 
allowing highly dynamic environmental changes to be monitored. As such recent studies 
presented in the literature highlight the potential of UAV systems for forest monitoring. This 
study further investigates the potential of UAVs by examining the achievable accuracy of a 
newly developed UAV-borne LiDAR system in comparison to a traditional full scale system. 
The major contributions to the error budget of a UAV-borne LiDAR system are constrained 
through the use of a novel UAV specific processing workflow. Central to this workflow is the 
fusion of observations from a low cost Inertial Measurement Unit, a GPS receiver and a high 
definition video camera with a Sigma-Point Kalman Smoother allowing for highly accurate 
estimates of orientation. We found that using this workflow and under certain flying conditions 
accuracies similar to a modern full-scale system are achievable from this low-cost platform. 
 
Key Words: Unmanned Aerial Vehicles, UAV, LiDAR, Accuracy, Error Propagation. 
 
1. Introduction  
 
Airborne LiDAR remote sensing has become an important tool in the management of modern 
forest inventories (Hyyppä et al. 2008). Ongoing research into the processing and analysis of 
LiDAR data has allowed for the development of an extensive array of LiDAR derived data 
products from which a wide range of forest metrics can be derived (Akay et al. 2009). Stand 
metrics and tree-level statistics derived from LiDAR have provided forest managers with 
significantly richer information about their forests (Lim et al. 2003; Morsdorf et al. 2009). It is 
however evident that the full potential of LiDAR technology for forest measurement and 
management is yet to be reached. Prohibitive factors such as high survey costs and short flying 
seasons, in many areas, have meant that assessing factors such as forest health, defoliation and 
rate of canopy closure are not feasible from the current intermittent LiDAR surveys utilised by 
forest managers. 
  
Recently, improvements in small scale positioning technology have enabled the use of 
Unmanned Aerial Vehicles (UAVs) as a remote sensing platform offering a distinctive 
combination of very high resolution data capture at a significantly lower survey cost to 
traditional platforms. Jaakkola et al. (2010) provided the first example of the potential of this 
technology for use within the forest industry. By deploying a rotor wing UAV equipped with a 
number of positioning sensors, in combination with two on-board LiDAR sensors, Jaakola et al. 
(2010) produced high-resolution data sets capable of individual tree level mapping. Both 
Jaakkola et al. (2010), and more recently, Lin et al. (2011), have shown that due to the improved 
density of a UAV captured LiDAR point cloud several metrics (in particularly individual tree 
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heights) can be measured at a finer scale and with higher precision using already developed 
processing algorithms when compared to traditional LiDAR platforms. Because of their high 
spatial and temporal resolution, together with low operation costs, UAVs can provide a more 
targeted approach to forest monitoring and allow for the use of multi-temporal surveys such as 
forest health and canopy closure monitoring. Studies such as Jakkola et al. (2010) and Lin et al. 
(2011) suggest that the combination of low cost, high resolution data capture, UAV platforms 
are likely to be the next tool of choice for optimising detailed small area surveys within forests. 
 
Current research into the use of UAVs as a 3D data-capture platform includes application 
specific use in a variety of different fields ranging including for agriculture crop monitoring 
(Hunt Jr et al. 2010; Berni et al. 2009) to archaeology surveys (Eisenbeiss and Zhang 2006) for 
example. Despite significant developments into the use of UAVs for 3D mapping, a rigorous 
analysis of the error structure present within a UAV LiDAR based platform, and how these 
errors propagate into the final 3D measurements has yet to be undertaken. Such an analysis of 
error is necessary for use in forestry due to the use of UAV platforms for multi-temporal surveys 
and the need to distinguish small scale change from error. This paper presents an analysis of the 
propagation of error based on the stochastic error model of a UAV-borne LiDAR system 
developed at the University of Tasmania using lightweight, low-cost sensors. In this analysis, 
we make use of the well-known error propagation techniques used for full-scale traditional 
LiDAR systems to determine the achievable accuracy under a standard LiDAR processing 
algorithm and highlight the major sources of error. One of the novel contributions of this paper 
is in the development of an accurate position and attitude determination framework based on the 
use of a low cost Inertial Measurement Unit, High Definition video and a Sigma-Point Kalman 
Smoothing (SPKS).   
  
2. Methods 
2.1 Equipment 
 
The low-cost multi-rotor UAV (Droidworx/Mikrokopter AD-8) currently under development by 
the TerraLuma research group at the University of Tasmania will be used for this study (Figure 
1). In comparison to other UAV platforms multi-rotor UAVs offer increased stability and 
decreased vibration making it the ideal UAV for LiDAR mapping. However, the main drawback 
of multi-rotor UAVs is their limited payload. In the case of the TerraLuma UAV this is 2.8 kg, 
which when the primary sensor (Ibeo LUX Automotive Laser Scanner, 1 kg), batteries and 
logging equipment are taken into account allows for only a minimal payload for position and 
attitude sensors. Based on these requirements (and a desire to minimise cost) a lightweight 
sensor suite has been designed consisting of a Microstrain 3DM-GX2 MEMs based Inertial 
Measurement Unit (IMU) (50 g), a Novatel OEMV-1DF dual-frequency GPS receiver (21.5g + 
113 g antenna) and a ContourGPS digital video camera (150 g). 
 

  
 Figure 1. Schematic of the TerraLuma UAV remote sensing platform under development at the 

University of Tasmania.  
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The sensor payload is mounted on the UAV through a rigid sensor framework designed such 
that the lever arm offsets between the LiDAR, IMU, GPS and video camera are minimised and 
constant. The frame also allows for an adequate sky-view for the accurate operation of both the 
GPS antenna and GPS enabled video camera. The properties of each sensor have been 
rigorously tested in order to independently determine their standalone accuracy values under 
flight conditions. The results from these tests are displayed in Table 1 along with a brief 
explanation of the methods used to determine the estimates of instantaneous accuracy. Each 
sensor has been chosen to minimise both cost and weight while providing sufficient resolution 
and accuracy. All data logging and time synchronisation is performed using an on-board 
miniaturised computer (Gumstix Verdex pro). All other processing is completed offline. 
 

Table 1: Description of the sensors mounted on-board the TerraLuma UAV and the method used to 
determine the accuracy of the sensor. 

Equipment Description and Accuracy Determination Data Rate 
(Hz) 

Standalone 
Accuracy  

Dual-Frequency 
GPS receiver 

Provides 3D positional observation of the 
helicopter operating under typical short 
baseline (<3 km) configurations. The GPS 
receiver has been benched marked against a 
geodetic grade GPS receiver. 
 

20 Horizontal 
+/- 0.03 m 

Vertical
+/- 0.05 m 

 

Microstrain 
3DM-GX2 IMU 

A light weight - IMU consisting of MEMs 
based accelerometer, gyroscope and 
magnetometer triads. An independent 
calibration procedure following the methods 
of Zhang et al. (2010) has been performed to 
verify the calibration and accuracy of the 
sensor. 
 

100 Orientation 
+/- 2.0 o 

(+ bias instabilities 
and noise) 

ContourGPS HD 
video camera 

A high definition video camera equipped with 
a GPS antenna allowing accurate time 
synchronisation with the other sensors. The 
video camera has been calibrated and lens 
distortions removed using the procedure 
described by Bouguet (2010). The accuracy of 
the orientation as determined by video 
observation has been quantified using dense 
ground control as reference. 
 

30 Orientation 
+/- 0.2 - 0.5 o 

 
 

Ibeo LUX laser 
Scanner 

The Ibeo LUX sensor measures points in four 
scanning layers and in doing so can record up 
to 22000 returns/sec. The scanner has a 
measurement range of up to 200 m. The beam 
divergence of the Ibeo LUX laser scanner is 
0.08o horizontally and 1.6o vertically. 

880  
(per scan 

layer) 

Range 
+/-0.1 m 

 

 
2.2 Airborne LiDAR Error Propagation 
 
The calculation of the ground coordinates from the UAV-borne LiDAR system observations 
follow the same methodology as used for full scale traditional platforms. Coordinates of points 
that reflect the outbound laser pulse can be calculated directly from the range measurement from 
the LiDAR sensor, combined with data from the Positioning and Orientation System (POS) on 
board the UAV using the well known “LiDAR equation” (Eqn 1) (Baltsavias, 1999). 
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Where: 

ሾܺ ܻ ܼሿ் is the position vector as measured by the POS system expressed in 
the Earth Centred, Earth Fixed (ECEF) cartesian frame; 

ܴ is the attitude matrix as measured by the POS and parameterized by 
the pitch, roll and yaw angles; 

ܴ௦ is the boresight matrix describing the angular offset between the 
body frame and the LiDAR frame; 

 ௦ is the observation vector from the Ibeo LUX system and consists of aݎ
range observation as well as an encoder angle; and 

ܽ is the lever arm offset between the origin of the POS frame and the 
LiDAR frame. 

 
There has been significant and ongoing research into the various factors that affect the accuracy 
of coordinates derived from a LiDAR system (Schaer et al., 2007). Individual LiDAR systems 
will also contain unique factors that affect the overall error (see May & Toth, 2007 and Morin, 
2002 for an overview). However, these errors can be summarised into 17 error components 
which will occur in every system. These error components and can be described as:  

• 3 errors existing in the measurement of the absolute position (σx, σy and σz); 
• 3 errors existing in the measurement of aircraft orientation (σω, σφ and σκ); 
• 6 errors caused by the inaccurate calibration of the system affecting the boresight angles 

(σωb, σφb and σκb) and lever arm offset (σxL, σyL and σzL);  
• 3 Internal LiDAR System errors occur in measurements of range (σr) and the two 

encoder angles (σβ and σγ) measured from the UAV; and  
• 2 errors due to divergence of the laser beam which propagate in the horizontal direction 

(σBh) and elevation angle measurements within the laser scanner reference frame (σBe). 
These errors will be modelled as one quarter of the quoted beam divergence of the laser 
scanner following Lichti and Gordon (2004) and Glennie (2007).  
 

These error components can be propagated through the functional model of the LiDAR system 
equation enabling the magnitude of the error in the final coordinates of a point to be determined. 
Propagation for an individual LiDAR strike can be performed by linearising equation 1, through 
the truncation of the Taylor series expansion after the 1st term and assuming that each of the 
error sources are uncorrelated (Schaer et al., 2007). This enables the determination of the 3x3 
point covariance matrix ܥ௫௬௭, using equation 2 as follows: 
 

௫௬௭ܥ  ൌ   
௫ܥ ௫௬ܥ ௫௭ܥ
௬௫ܥ ௬ܥ ௬௭ܥ
௭௫ܥ ௭௬ܥ ௭ܥ

 ൌ  ்    (2)ܨܥܨ

 
Where:  
     is the Jacobian matrix of the linearised functional model; andܨ 

C  is the stochastic model given by a diagonal matrix containing the 
magnitude of the 17 summarised error sources. 

 
This covariance matrix can be used a-priori to a LiDAR survey in order to determine the best 
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and worst case point positioning accuracy. The analysis in this report will consider a scenario 
based on typical UAV flying heights (e.g. 30 – 120 m Above Ground Level), with the aircraft 
flying a flat northern path (i.e. ω, φ and κ = 0 o). Furthermore, it will be assumed that the 
observation of a LiDAR measurement has coincided directly with observations of position and 
orientation from which the expected accuracy of a single LiDAR measurement from this system 
can be simulated.  
 
2.3 Data Processing and Calibration  
 
The UAV’s position and orientation system consists of three sensors (IMU, video, and GPS), 
providing observations at variable rates up to 200Hz. The rate of the LiDAR sensor, however, is 
significantly faster, measuring up to 22,000 returns per second. Therefore, the observations from 
these sensors are required to be interpolated in order to determine the position and orientation of 
the LiDAR sensor at the instant of each range observation. The most commonly used algorithm 
for this purpose is the Extended Kalman Filter (EKF), which is limited by its complexity and in 
its accuracy by the inclusion of a first order linearisation of the functional model (Van Der 
Merwe & Wan, 2004). To overcome these limitations, the fusion of the positional data for the 
TerraLuma UAV is completed with the use of a loosely coupled Sigma-Point Kalman smoother 
(SPKS). It has been shown that variants of SPKS consistently outperform the EKF in terms of 
correctness, robustness and ease of implementation (Kelly & Sukhatme, 2009; Van Der Merwe 
& Wan, 2004). Therefore, the use of a loosely coupled SPKS with a potentially dynamic sensor 
set such as that on-board the UAV provides an ideal filtering option. 
 
To further improve the accuracy of the orientation estimates, the SPKS will be augmented with 
a novel algorithm that has been developed to include observations of orientation through the use 
of high definition video footage. The process used involves processing downward looking video 
footage using an algorithm that is similar to the Structure from Motion (SfM) technique often 
used in robotics or close range photogrammetry (Barazzetti et al. 2010). A post-processing 
based strategy allows for the optimal solution to be found through the use of a full bundle 
adjustment (Nagai et al., 2008). This inclusion of high definition video observation adds further 
redundancy and through direct observations of relative orientation provides greater accuracy in 
comparison to a traditional GPS/IMU positioning system. 
 
The output of the GPS/IMU/Video SPKS is the position and orientation of the origin of the 
body frame within the ECEF Cartesian system. Considering this information, the next step 
within the LiDAR workflow requires the position and orientation of the laser system within the 
ECEF system to be known, which is reliant on the calibration parameters. Within a UAV LiDAR 
system the effect of errors within the boresight angles are minimised due to the low flying 
height. For instance, a boresight misalignment of 0.01o, which results in an error of 1.31 m at a 
flying height of 700 m, will result in a horizontal error of only 0.005 m at typical UAV flying 
heights (30 - 120 m). The errors in the measurement of the lever arm offset, however, propagate 
directly into the accuracy of point position and need to be minimised by an appropriate 
calibration strategy. Conventional procedures for determining calibration parameters require a 
periodic survey of a well observed site (i.e. often an air field). However, the modularity of a 
UAV system suggests that the calibration parameters are likely to be significantly more dynamic 
and change between individual surveys. Therefore, a specific calibration procedure has been 
designed for this UAV. The procedure follows the three traditional stages of calibration for a 
LiDAR system outlined by Habib et al. (2010). For the purposes of this study the accuracy of 
the system calibration of the UAV will be considered to be equal to a full scale system based on 
simulation of the designed calibration strategy.  
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3. Results 
 
The propagation of error into LiDAR point clouds is usually based on the flying conditions and 
error expected within a state-of-the-art LiDAR system at the time of publication. For example, 
Goulden & Hopkinson (2010) reports on the error within a LiDAR system based on the Optech 
3100 scanner. The conditions of a UAV survey are, however, significantly different to full-scale 
surveys due to factors such as reduced flying heights and the greater inaccuracies of the 
miniaturised sensors. A comparison between the error contribution of each of the 17 
components within a TerraLuma system and typical Optech 3100 setup (Table 2) highlights the 
inaccuracy associated with the measurement of angular quantities in low cost systems. 
Furthermore, table 3 outlines a comparison of other key variables often used as a measure for 
data quality in forest surveys, highlighting the exceptionally high point density (1000 pts/m2) of 
the system. 
 

Table 2. A-priori standard deviation values of parameters within TerraLuma LiDAR System in 
comparison to a full scale system (adapted from Goulden & Hopkinson, 2010 and based on an Optech 

ALTM 3100 scanner)  

Parameter TerraLuma 
Value (1 σ) 

Full Scale 
Value (1 σ) 

σx, σy 0.03 m 0.03 m 

σz 0.05 m 0.05 m 

σω and σφ 0.2 - 0.5 o 0.005 ° 

σκ 0.2 - 0.5 o 0.010 ° 

σωb, σφb and σκb in σω , σφ & σκ in σω , σφ & σκ 

σxL, σyL and σzL 0.01 m 0.01 m 

σr 0.10 m 0.015 m 

σβ  0.125 o 0.003 ° 

σBh 0.020 ° 0.014 ° 

σBe 0.400 ° 0.014 ° 

 
Table 3. A comparison of the key LiDAR variables between the TerraLuma UAV and an Optech ALTM 

3100 scanner. 

Variable TerraLuma 
UAV 

Full Scale 
System 

Typical Flying height 50 m 1100 m 

Scan Angle Range -60 – 50 -25 – 25 

Swath width at 25o 47 m 1300 m 

Maximum Swath width 146 m 1300 m 

Point Density up to 1000 pt/m2 3-15 pt/m2 

Laser footprint 0.07x1.40 m 0.27x0.27 m 

Max. angle of incidence (flat terrain) 60 25 
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5. Conclusion 
 
This study has demonstrated that a UAV-borne LiDAR using low-cost, lightweight sensors can 
produce point clouds with only slightly worse accuracies than full-scale traditional systems but 
with much higher point densities. It has been shown that improvements in the estimates of 
system orientation, produced through the use of a novel video augmented SPKS, has allowed 
for a low cost, light weight sensor suite to produce a point cloud of adequate accuracy for 
forestry mapping. Furthermore, by showing the achievable accuracy of a UAV derived point 
cloud, the implications and potential of such a platform for hyper-temporal resolution forest 
surveys, especially in the areas of change detection have been highlighted in this study.       
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Abstract 

 
This paper presents a new generic method and format for storing and processing airborne and 
terrestrial LiDAR pulse data within a HDF5 file.   The format is specifically designed to 
support both traditional discrete return and full waveform data, uses a pulse (rather than point) 
based data model and has been developed and applied successfully using a wide range of 
disparate airborne and terrestrial LiDAR datasets.   The format is proposed as an alternative to 
existing solutions as it includes support for full waveform data, explicit pulse based data 
structures and flexible spatial indexing using cartesian, spherical and polar coordinate systems 
and projections.   The HDF5 format supports compression but in part due to the more complex 
data structures used the amount of compression that can be achieved is limited.   However, it 
compares favourably with the file size of uncompressed LAS files and is able to accommodate a 
much wider range of LiDAR datasets. 
 
Keywords: LiDAR, Storage, File Format, Waveform, Discrete Return, Pulses 
 
1. Introduction 
 
The uses and availability and application of Light Detection and Ranging (LiDAR) has grown 
significantly over the last 10-15 years (Shan and Toth, 2009) to the point that regular 
acquisitions across large areas and over time are commonplace.   However, new methods of 
data storage, including indexing and compression are needed because of the large quantities of 
data acquired as well as algorithms that take advantage of these.   New formats are also 
needed to support the use of full waveform LiDAR systems and Terrestrial Laser Scanners 
(TLS) data alongside the more traditional discrete return airborne datasets. 
 
Currently, LiDAR data are stored either in an ASCII format (often without a standard definition 
of the format) or American Society for Photogrammetry & Remote Sensing (ASPRS) LAS 
format, which has been the standard for storing discrete return LiDAR data as a binary file 
(ASPRS, 2011).   Extensions for the LAS 1.X format have recently been proposed and 
implemented (although not as part of the ASPRS standard) for indexing and compressing the 
LAS format (Isenburg, 2011).   However, the LAS format does have several current 
limitations: 

a) A suitable standard for storing full waveform data is lacking. Although LAS 1.3 has 
been proposed and the specification approved, only a partial solution for waveform data 
has been presented and the structures for all the necessary data are not provided.   
Additionally, it is worth noting that current open source libraries that read/write LAS 
1.3 currently ignore the waveform data. 

b) The waveform is also just viewed as an extension to the discrete return datasets for 
which LAS was designed.   Only a limited number of returns are permitted and not all 
attributes of discrete returns derived from waveform data can be stored. LAS 2.0 may 
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completely overhaul the LAS data structure to change this, but would likely result in a 
file format that was compatible with code written for LAS 1.X files, therefore making it 
equivalent to any other newly proposed file format with regards to software support. 

c) Data are viewed as discrete points rather than pulses.   There is no set mechanism to 
store information that can be associated with the transmitted as well as the received 
components of the laser pulse (e.g., pulse origin coordinate and shape).   Such 
information is particularly important for waveform analysis.  

 
As a result of difficulties in using full waveform data, particularly in relation to efficiently 
storing pulses rather than individual returns, this research aimed to develop a new LiDAR 
format that focused on the efficient storage of pulses rather than individual returns but allowed 
processing of both.   The format was designed to allow processing of all LiDAR datasets 
including those acquired by discrete return and full waveform airborne, spaceborne and 
terrestrial laser scanners.   The format was designed specifically for post-processing, rather 
than for use during acquisition, and to allow data to be efficiently accessed (through random 
spatial access procedures) such that a suite of data processing methods could be applied.   The 
following sections provide an overview of the format. 
 
2. Method 
 
To store the LiDAR data, from pulsed laser systems where power output takes the form of 
pulses of light on a time scale, a new set of data structures stored within the hierarchical data 
format version 5.0 (HDF5) file format was proposed.   The HDF5 format presents a number of 
advantages, including generic readability across a range of platforms and architectures, and 
support within common remote sensing software (e.g., ITTVIS ENVI) and programming 
languages (e.g., ITTVIS IDL, C++, Python, Java, C#).   The following sections therefore 
outline the pulse and point data representations and their relationship to the header file 
meta-data and the methods of data storage within the HDF5 file, including spatial indexing and 
compression. 
 
2.1 Data Representation 
 
The primary data types for LiDAR data are pulses and points (Figure 1).   A pulse represents a 
single measurement unit from a pulsed laser system and all the information common to the 
transmitted and received pulses of light is stored within this data type.   In addition to storing a 
list of points, the pulse also references two data blocks that store the transmitted and received 
waveform data when present, with these viewed as two samples from the same measurement.   
The transmitted and received waveforms are viewed as two samples from the one measurement.   
By contrast, a point represents a single discrete return from the transmitted pulse and can be 
measured directly at sensor or subsequently derived from the digitised waveform data.   
Where points are derived from a waveform, the waveform offset fields (the distance/time along 
the waveform) are used to connect the point with the waveform.  
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Figure 1. The structure of an SPD Pulse and Point 

 
A wide range of parameters have been associated with a pulse (Table 1), some of which (e.g., 
the scan angle rank and scan direction flag) map directly onto LAS version 1.3 data fields. 
However, in the new format, other parameters (e.g., origin, index point, azimuth and zenith 
angle) are uniquely defined.   The format stores the waveform as arrays of unsigned integer 
values (either with 32, 16 or 8 bits) where gains and offsets are defined for each pulse.   The X 
and Y values define the spatial location of the pulse when data are indexed; these are required as 
a pulse can be indexed in a number of ways (e.g., based on first or last return or maximum 
waveform amplitude), depending on whether discrete or waveform and the level of 
pre-processing applied.   The origin, zenith, azimuth and the range to the start of the waveform 
are required to locate the start of the received waveform in cartesian coordinates.   In addition 
to the X and Y and also Z origin parameters, the SPD pulse includes a height field that can be 
populated with the height of the origin above the ground surface following its identification.   
Azimuth and zenith fields can be defined for all datasets but are used mainly for TLS data 
which, when projected using a spherical coordinate system, can provide useful information on, 
for example, rates of river bank erosion.    
 

Table 1: Attributes defined for an SPD Pulse. 

Description Data Type Units 

Pulse ID – unique identifier for each pulse. Unsigned 64 bit Integer N/A 
GPS Time – pulse acquisition time 64 bit float Nano Seconds 

Origin (X, Y, Z) 64 bit float Dependent of 
Coordinate System 

Origin Height – height above ground surface 32 bit float Dependent of 
Coordinate System 

Index Point (X, Y) – point used to index the 
pulse 64 bit float Dependent of 

Coordinate System 
Azimuth 32 bit float Radians 
Zenith 32 bit float Radians 
Number of returns Unsigned 8 bit Integer N/A 
List of Points (Return) SPD Point N/A 
Number of transmitted waveform values Unsigned 16 bit Integer N/A 
List of values for transmitted waveform Unsigned 32 bit Integer N/A 
Number of received waveform values Unsigned 16 bit Integer N/A 
List of values for received waveform. Unsigned 32 bit Integer N/A 
Range to the start of the waveform 32 bit float Distance 
Amplitude of the transmitted pulse 
(intensity) 32 bit float Power 

Pulse ID
GPSTime
Origin [X, Y, Z, H]
Index [X, Y]
Azimuth
Zenith
TransmitAmplitude
TransmitWidth
SourceID
NumberOfReturns
Returns
NumberOfTransmittedBins
TransmittedBins
NumberOfRecievedBins
RecievedBins

SPD Pulse

Point ID
GPSTime
Location [X, Y, Z, H]
Classification
Amplitude
Width
Range
Red
Green
Blue
WaveformOffset

SPD Point

Point ID
GPSTime
Location [X, Y, Z, H]
Classification
Amplitude
Width
Range
Red
Green
Blue
WaveformOffset

SPD Point

Point ID
GPSTime
Location [X, Y, Z, H]
Classification
Amplitude
Width
Range
Red
Green
Blue
WaveformOffset

SPD Point
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Width of the transmitted pulse 32 bit float FWHM; Nano 
seconds 

User field – can be used to store additional 
information. Unsigned 32 bit Integer N/A 

Pulse source ID Unsigned 16 bit Integer N/A 
Edge of flight line flag. Unsigned 8 bit Integer N/A 
Scan direction flag Unsigned 8 bit Integer N/A 
Scan angle rank. 32 bit float Degrees 
Waveform Noise Threshold 32 bit float Power 
Transmitted Waveform Gain 32 bit float N/A 
Transmitted Waveform Offset 32 bit float N/A 
Received Waveform Gain 32 bit float N/A 
Received Waveform Offset 32 bit float  N/A  

 
The SPD pulse can also reference a list of individual returns associated with a pulse and 
represents these using a point structure (Table 2).   The majority of the fields are aligned with 
the LAS 1.3 specification but additional parameters such as the height of the point above the 
ground surface, range of the pulse from the origin (used for spherical coordinate systems) and 
the offset of the return within the waveform (if present) are included.   
 

Table 2: Attributes defined for an SPD Point 

Description Data Type Units 

Return ID – unique identifier for each 
return within pulse. Unsigned 8 bit Integer N/A 

GPS Time – return acquisition time 64 bit float Nano Seconds 

X, Y, Z 64 bit float Dependent of 
Coordinate System 

Height – height above ground surface 32 bit float Dependent of 
Coordinate System 

Range – range from origin defined in pulse 
(spherical coordinates) 32 bit float Dependent of 

Coordinate System 
Amplitude of the return (intensity) 32 bit float Power 

Width of the return 32 bit float FWHM; Nano 
seconds 

Red, Green and Blue values for 
visualization Unsigned 16 bit Integer N/A 

Classification of return Unsigned 8 bit Integer N/A 
User field – can be used to store additional 
information. Unsigned 32 bit Integer N/A 

Offset within waveform – in time and array 
index Unsigned 32 bit Integer N/A 

Model key point flag Unsigned 8 bit Integer N/A 
Low point flag Unsigned 8 bit Integer N/A 
Within overlapping region flag Unsigned 8 bit Integer N/A 
Ignore return flag. Unsigned 8 bit Integer N/A 

 
Representing the data as pulses presents a number of advantages over other point-based formats 
(e.g., LAS) in that: 
 

a) These correspond with the sensor-technology and process of data acquisition by pulsed 
laser systems, allowing all information associated with each individual pulse to be 
stored for processing. 

b) Pulses which did not result in a return are stored, with this being useful for applications 



SilviLaser 2011, Oct. 17-19, 2011 – Hobart, Australia 

 5

such as quantifying vegetation canopy structure (e.g., gap fraction) and cover from TLS 
data. 

c) Returns are explicitly connected and ordered within the pulse, allowing for easy 
processing. 

d) Waveform rather than only individual discrete returns are represented.   Returns are 
directly connected to the location within the waveform from which they were extracted, 
if decomposed. 

 
2.2 Header Meta-Data 
 
The SPD header attributes allow meta-data and other dataset parameters associated with the 
dataset to be stored within the HDF5 file.   Other advantages of the HDF5 format are that the 
dataset parameters can be easily edited within generic HDF5 software, such as HDFView, and 
other attributes can be added at any time without affecting the existing software (although new 
values would not be read or used).   For reference, the SPD format expects to find fields for 
the parameters listed in Table 3. 
 

Table 3: SPD File header parameters 

Parameter Description 

Spatial reference A variable length string data field which stores the projection of the 
dataset as a WKT string 

Index type Specifies how the file is a spatially indexed (not used for unindexed 
data). 

File type Specifies the file type and whether the data is unordered (i.e., no 
index) or written sequentially or non-sequentially if an index is used. 

Discrete points defined Specifies whether fields are defined for discrete return data. 
Decomposed points 
defined 

Specifies whether fields are defined for data which has been 
decomposed from a waveform. 

Transmitted Waveform 
defined 

Specifies whether the transmitted waveform data is stored within the 
file. 

Received Waveform 
defined 

Specifies whether the received waveform data is stored within the 
file. 

Version The major and minor version numbers of the SPD format used. 
Pulse Version Specifies the version of the Pulse data type, in the future multiple 

pulse data types could be defined as technology changes. 
Point Version Specifies the version of the Point data type, in the future multiple 

point data types could be defined as technology changes. 
Generating software The software used to generate the file. 
System identifier The system being used to generate the file. 
Date and time of creation The date and time the file was created. 
Date and time of capture The date and time the data stored within the file was captured. 
Number of points The number of points stored within the SPD file. 
Number of pulses The number of pulses stored within the SPD file. 
User meta data A variable length string field which can be used by the user to store 

further meta data. 
Bounding volume The minimum and maximum X, Y and Z bounds of the dataset. 
Bounding sphere The minimum and maximum azimuth, zenith and range bounds of 

the dataset (when a spherical coordinate system is defined). 
Bin size The size of the bins (units depending on index type and coordinate 

system) used for indexing the data (not used for unindexed data). 
Number of bins in the X 
axis 

The number of bins within the x axis of the spatial index (not used 
for unindexed data). 



SilviLaser 2011, Oct. 17-19, 2011 – Hobart, Australia 

 6

Number of bins in the Y 
axis 

The number of bins within the y axis of the spatial index (not used 
for unindexed data). 

RGB defined Whether the RGB values for each point have been defined. 
Pulse compression block 
size The size of the blocks used to compress the pulses written to the file. 

Point compression block 
size The size of the blocks used to compress the points written to the file. 

Received waveform 
compression block size 

The size of the blocks used to compress the received waveform 
written to the file. 

Transmitted waveform 
compression block size 

The size of the blocks used to compress the transmitted waveform 
written to the file. 

Temporal bin spacing The time in nano seconds between the waveform bins 
Waveform Bit Resolution The number of bits (i.e., 8, 16 or 32) used for storing each element of 

the waveform. 
Origin defined Specifies whether the origin and therefore the azimuth and zenith 

values have been defined. 
Method of pulse indexing Specifies how the pulse index X and Y fields are defined (i.e., if the 

first, last return or maximum intensity was used). 
Height defined Specifies whether the height fields within the SPD pulse and point 

have been defined. 
Synthetically generated 
return numbers 

Specifies whether the return numbers are not given in order for the 
pulse. For example, first and last returns maybe distributed separately 
with no means of reconnecting them so a pulse will be created for 
each point resulting in pulses containing a single return within a 
return number greater than 1. 

 
In addition, the following fields for defining the sensor and acquisition parameters are included 
within the SPD header: laser wavelength; pulse repetition frequency; beam divergence; sensor 
height; laser footprint; maximum scanning angle; sensor speed; scan rate; point density; pulse 
density; across track spacing; along track spacing; angular spacing in the azimuth; and angular 
spacing in the zenith.  
 
2.3 Storage on Disk 
 
To represent the data within the HDF5 file, a hierarchical directory structure is created within 
the top level of the HDF5 file (Figure 2).   This structure separates the LiDAR data, header 
attributes, spatial index (if provided) and overview image (only available if the file has a spatial 
index) into discrete sections, thereby allowing easier human navigation.   Within the data 
directory, separate lists (arrays) are used to store the received and transmitted pulses, points and 
waveforms.   The waveforms are stored as lists of integers, while the points and pulses are 
stored as the predefined types defined in Tables 1 and 2.   Header values are stored as 
individual datasets within the header directory (Table 3).   If a spatial index is used, two 
2-dimensional arrays (i.e., images) are defined within the index directory, which contain the 
pulse list offsets and the number of pulses within each grid cell.   These allow the pulse list to 
be accessed randomly.   Where a spatial index is provided, a ‘quicklook’ overview image of 
the dataset is also stored, with this being a single band image stored within the quicklook 
directory. 
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Figure 2. HDF5 file internal directory structure. The index and quicklook directories are only available 

when a spatial index is defined. 
2.3.1 Spatial Indexing 
 
When storing the pulse data within the HDF5 file, two options are provided for ordering the list 
of pulses.   The first is unsorted (pulse data; UPD) as no specific ordering is forced on the 
data.   In practice, however, this is usually time-sequential and therefore equivalent to a 
standard LAS file.   The second is through the use of a spatial index (sorted pulse data; SPD), 
which defines (and is referenced to) the order of the pulses within the list.   There are a 
number of methods for spatial indexing which could be used, such as quad-trees (Finkel and 
Bentley 1974).  However, in this case, a simple grid-based index was adopted, whereby all the 
pulses within a grid cell are written consecutively within the pulses list.   This method allows 
easy and rapid spatial access to the pulse data at the index resolution and the data can be 
mapped directly onto image pixels, the most commonly derived output.  Image-like processing 
methodologies for controlling memory usage can also be used.   The main disadvantage of this 
method is that the data file consequently has a native scale, defined by the index, while 
quad-tree and similar indexing approaches are scale independent.   However, if one of these 
indexing methods were used, the pulses could not be written to the file consecutively, which 
may require the reader to jump to a large number of locations within the input file when a region 
of data is selected.   This can be an expensive operation in terms of time and memory, 
particularly if compression is deployed.  
 
When indexing the file, two options for ordering the pulses within the list are provided (Figure 
3). 

a) Pulses are written in order from the top of the scene down in rows and across each row 
from left to right.  Whilst the data has to be written and, in some cases processed in 
this order, fast read performance is provided as all pulses within a row (or continuous 
part of a row) can be read in a single operation because they are consecutively ordered. 

b) Only the pulses within a cell are written consecutively within the pulses list. This 
increases the flexibility of the writing operation, as cells can be randomly written to the 
output file.   However, the reading performance is reduced as multiple read operations, 
potentially from different parts of the file, would be required to select pulses from a 
number of cells. 
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a) b) 

Figure 3. The spatial indexing structure of the SPD file, where the colours indicate the index cell the 
pulses are associated with and where the corresponding point reside in the pulses list. a) 
sequentially written and b) non-sequentially written. 

 
The SPD formats spatial indexing currently supports cartesian, spherical and polar coordinate 
systems and projection (Figure 4).   For airborne laser scanning data, the cartesian coordinate 
system is generally the most appropriate for indexing but for TLS data, the index representation 
is expected to be application dependent.   The option used for any specific file is defined 
within the SPD file header. 

 
Figure 4. Overview images for a a) Cartesian-indexed airborne LiDAR scene, b) polar-indexed terrestrial 
LiDAR scene and c) a spherically-indexed terrestrial LiDAR scene. 
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2.3.2 Compression 
 
Another advantage of defining this format within a HDF5 file is that is provides support for 
compression, using the zlib deflate algorithm (IETF 1996).   The pulse data, pulses, points and 
waveforms are each stored as separate lists and are compressed separately into blocks.   
Whereas a single list of pulses, points, and waveform values are defined in the file, on disk they 
are compressed in blocks that are by default, 250 objects in size, although this is customisable 
and defined in header.   If the block size is increased, the memory requirements of the 
application using the format will also increase but the resulting file size may become smaller. 
Decreasing the block size has the opposite effect.   In addition, if only small selections of data 
are retrieved from the file at any one time or from many different parts of the file, the large 
block sizes will result in a slower performance as the whole block needs to be decompressed for 
the data to be read.   Following experimentation, a value of 250 for the block sizes for all the 
lists was found to be most appropriate.  
 
3. Discussion 
 
3.1 Observations 
 
Versions of this file format have now been in active use for over two years and a number of 
observations have been made during this time.   First, the spatial indexing of the LiDAR data 
provides memory efficient processing allowing datasets larger than the memory available to be 
processed efficiently and in a timely manner.   Spatial indexing is a key component of 
containing the memory requirements of any given algorithm as only the specific parts of the 
dataset need to be read into memory at any one time, while avoiding the need to search the 
whole dataset.   Additionally, storing the index data structures within the same file as the data 
ensures all the information is kept together and file management is simplified.   Second, the 
pulse based storage format, as opposed to points, has created a significantly more flexible 
system.   This is particularly relevant for waveform data and any future sensor developments 
where the data structures used within the file structure directly map onto the process by which 
the data are acquired.   Furthermore, by explicitly connecting discrete returns associated with 
a single transmitted pulse, further information and assumptions can be made when attempting to 
classify the ground surface and assessing vegetation structures.   Finally, the use of the 
grid-based index significantly simplifies many data processing problems.   This is particularly 
the case when integrating LiDAR and other datasets (e.g., optical, radar or other LiDAR 
datasets) as the data can be indexed to the exact grid on which the other data has been acquired, 
thereby avoiding the need for resampling and losing information from one of the datasets. 
 
3.2 Limitations 
 
While the grid based indexing has been very successful and has a number of performance 
benefits in terms of reading the data from the file when processing it at the index resolution, 
there are a number of cases where being able to access the file at multiple resolution more easily 
would be useful.   Functionality for generating binned and interpolated products at resolutions 
that are a multiple of factor of the bin size are currently being tested.  Although, the grid-based 
index can be used to significantly reduce the search space when extracting regions of data that 
do not directly map onto the index resolution or grid, a quad-tree (or similar) index could be 
beneficial.   The addition of a quad-tree index is therefore being considered for inclusion into 
future versions of the file format, in addition to the existing grid based index. 
 
When using the sequentially written SPD file, which results in the best reading performance, the 
requirement to write the file in a specific order (i.e., top to bottom, left to right) can cause 
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problems for very wide datasets, as each row has to be completely written before the next one 
Although, this can be solved by using the non-sequentially binned SPD file structure, the read 
performance is penalised.  
 
Finally, when compared to other binary file formats (e.g., LAS), the SPD format results in a 
large relative file size owing to the increased data structure complexity and the inclusion of the 
spatial index within the file.   Unlike LAS, compression is used by default and the resulting 
SPD file size is approximately 5-10 % smaller for an SPD file when compared to an equivalent 
uncompressed LAS file.   If LASzip (Isenburg 2011) is used, the resulting compressed LAS 
file is up to 75 % smaller than the equivalent SPD file.   The variation depends on the 
structure of the data being stored.  If each pulse only has a single discrete return then the SPD 
file will be storing two pieces of information (i.e., a pulse and point) per return compared to the 
one (i.e. point) within the LAS file.   As the number of returns associated with the pulses 
increases, this difference correspondingly decreases.   However, it should be recognised that 
the SPD files are storing data that cannot be stored in or derived from data contained within a 
LAS 1.X file. 
 
3.3 Extensions for future data types 
 
The next development within LiDAR sensors is anticipated to be the use of multiple wavelength 
scanners.   These sensors will transmit pulses of different wavelengths (e.g., 1064 nm and 
1550 nm) and the corresponding waveform or returns recorded.   Such systems are expected to 
increase discrimination between foliage and woody materials within vegetated environments.   
Currently, the SPD format does not explicitly support these data types, other than as separate 
files per wavelength (a header parameter defines the laser wavelength).   In the future, a 
further field could be added to the pulse data type defining the wavelength of the pulse allowing 
these data to be stored within a single file. 
 
4. Conclusions 
 
This paper has presented a new file format for the storage and processing of LiDAR within a 
HDF5 file.   The format is specifically designed to support both traditional discrete return and 
waveform data, using a pulse (rather than point) based data model.   Additionally, the format 
explicitly supports the storage and manipulation of terrestrial, airborne and spaceborne datasets.   
Finally, the format also contains flexible spatial indexing allowing easy, image-like, random 
spatial access to the pulse data through a number of coordinate systems and projections and 
linking with other remote sensing datasets from imaging sensors.   It is expected that this 
format could replace or offer an alternative to existing methods of data storage for laser 
scanning data, particularly for full waveform datasets.  
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Abstract 
As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth 
scientists become more interested in detecting and delineating trees using LiDAR. The majority 
of conventional methods that detect and delineate trees convert point data into gridded surfaces. 
Unfortunately, this conversion process has the potential to introduce error. We improve a point-
based geometric model fitting strategy based on “RANdom Sample Consensus” (RANSAC), 
known as StarSac, and compare the method’s results against field data. The analysis 
demonstrates that StarSac produces similar results to field data, and is a strong alternative to 
conventional methods. 
 
Keywords: geometric, RANSAC, model fitting 

1.  Introduction 
As the capabilities of aerial Remote Sensing (RS) technologies such as Light Detection And 
Ranging (LiDAR) increase in precision, the potential to directly measure vegetation 
characteristics has increased as well. The majority of methods using LiDAR data for individual 
tree detection and delineation emphasize the conversion of point data into gridded surfaces, and 
the application of algorithmic tools widely used for terrain surface analysis to identify and 
delineate individual trees. While these methods have been shown to be effective under a range of 
circumstances, the interpolation of points to a gridded surface followed by watershed, valley-
following, or other such methods have the potential to introduce error from both steps. To 
reduce the impact of such errors, methods are often parameterized by field data (species, canopy 
height, etc.) and as a result can be quite accurate in tree detection and delineation. If extensive 
field data collection is required to parameterize the algorithm, the efficiency of the inventory 
effort is compromised.  

We have developed a “RANdom SAmple Consensus” (RANSAC)-based (Fischler and 
Bolles 1981) program, henceforth referred to as StarSac, which uses a geometric model fitting 
strategy to identify individual tree crowns directly from point data. Basal area is then calculated 
using a regression, relating Diameter at Breast Height (DBH, 1.37 m) to total height. We 
identify the location, and height of all trees within the scene without parameterization from field 
data using the point data directly and avoid the compounding error problem described above. 
Field data is used to parameterize the height-DBH regression for estimation of DBH. 

1.1 Study site 

The study site is the van Eck forest, consisting of 879 ha of mixed conifer forestland in 
Humboldt County, California. The van Eck forest contains a great deal of structural and 
successional diversity, including riparian areas, selectively logged second growth mixed conifer 
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stands, and stands which have not been harvested since initial clear cut in the early part of the 
century. The forest is divided in to four tracts, ranging from 130 ha to 315 ha (See Figure 1). It is 
a well-stocked second growth forest with an average timber volume of 170 m3ha-1.  

  
Figure 1: van Eck Study area location and management units. 

2.  Background 

2.1 Detection and delineation 

The majority individual tree identification methods using LiDAR data combine the creation of a 
Digital Surface Model (DSM) and Canopy Height Model (CHM) with Local Maxima (LM) 
filtering to identify tree locations (Jensen et al. 1987; Kaartinen et al. 2008; Lee et al. 2010; 
McCombs et al. June 2003; Tesfamichael et al. 2009, 2010). The efficacy of methods relying on 
LM filtering for tree detection depends on the determination of an analysis window size that 
reflects the crown area of the trees being identified. Popescu et al. (2002) tested an approach 
using a variable window defined by stand specific field data. However, this approach is 
dependent on field observation of crown radii to calibrate the LM window size.  

Several methods have been tested to estimate tree crown and bole parameters (radius, 
bole volume, etc) once tree location has been established. Region growing methods such as the 
watershed delineation adapted from terrain analysis are common (Hyyppä et al. 2001; Schardt 
et al. 2002; Ziegler et al. 2000). Geometric models of tree crown shapes have also been used to 
delineate individual trees in Airborne Laser Scanning (ALS) data. Abstract tree crown form was 
first described by Horn (1971). Shapes were further modified by Pollock (1996). Geometric 
shapes have been used by others to measure tree crowns from aerial photography and LiDAR 
(Gong et al. 2002; Holmgren et al. 2003; Pollock 1996; Sheng et al. 2001; Wolf and Heipke 
2007, Persson 2001, Persson et al 2002, Andersen et al. 2002, Popescu 2003,Wack et al. 2003, 
Falkowski et al. 2006, Wolf and Heipke 2007, Heurich 2008, Kaartinen et al. 2008).  

2.2 RANSAC, StarSac 

RANSAC (Fischler and Bolles 1981) is a paradigm for fitting experimental data to a 
mathematical model. RANSAC has notable advantages over other canopy-fitting approaches as 
it iteratively determines the best set of points fitting a model within the point cloud.  It has 
successfully been applied to the detection of objects from point clouds (Bretar and Roux 2005; 
Fontanelli et al. 2007; Forlani et al. 2003, 2006; Reitberger et al. 2007, 2009; Schnabel et al. 
2007; Tarsha-Kurdi et al. 2007). We have revised StarSac (Shafii et al. 2009), a program was 
developed using RANSAC and Oliver Kreylos’ Virtual Reality Toolkit (VRUI), and verified the 
results against those of a field survey. Unlike other projects, we used a modified version of 
RANSAC based on a preliminary maxima filter to find and measure tree canopies. 
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3.  Methods 

3.1 Field data collection 

The forest consists of four tracts, which were further divided into twenty-one stands ranging in 
size from four to forty ha. Stand inventory was taken for standing live trees greater than 15.24 
cm Diameter at Breast Height (1.37 m) (DBH). The primary objective of the inventory was to 
estimate total biomass and by extension total forest carbon. The variable plot method outlined in 
Dilworth and Bell (1963) was used. A Basal Area Factor (BAF) was selected for each stand 
prior to sampling to produce an average of six to eight “in” trees per plot. Plots were spaced 
across each tract on a 50m x 100m grid. A total of 660 measure plots were installed.  

3.2 Regression models 

A regression model of the allometric relationship between height and DBH derived from field 
data was used to predict DBH from LiDAR derived tree heights. A general non-linear regression 
model for all species was used to establish DBH from height using measured trees from plots 
within the same stand. The equation used for regression analysis takes the standard form of:  
 

bHaDBH ∗=                                                                        (1) 
 

Where H is total tree height; a and b are spatially variable regression coefficients.  

3.3  LiDAR data collection 

LiDAR data were collected for 1796 ha on March 17th, 2008, conducted with an Optech 3100 
sensor mounted in a Cessna Caravan 208B, with specifics shown in Table 1. Instrumentation 
was set to yield an average native pulse density of ≥ 6 pls/m2 over terrestrial surfaces. The 
TerraScan® software suite was used to classify ground and non-ground points (Soninen 2004). 
 

Table 1: Data Collection statistics. 
 

 
 
 
 
 

 

3.4 StarSac 

The current RANSAC algorithm is summarized in pseudo-code below, with references to 
sections that explain key parts of the algorithm in greater detail.  
1) For all locally maximal LiDAR points Maxi for i=1…n: (Section 3.4.1)  

a) Find set of points around Maxi to create a fixed-size window, one large enough to 
contain most canopies. 

b) For iterations j=1…T: (Section 3.4.2)  
i) Randomly select a subset of window points to create model Mj with Maxi as its 

peak, reject if shape is inappropriate. (Section 3.4.3)  
ii) Create consensus set Cj for Mj, determine radius. (Section 3.4.4)  

Sensor Optech 3100 
Survey Altitude (AGL) 900 m 
Pulse Rate > 71 kHz
Pulse Mode Single 
Mirror Scan Rate 52 Hz 
Field of View 28° (± from nadir) 
Overlap 100% (50% Side-lap)
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iii) If Mj has at most a (predefined) ratio of outliers to inliers, grade and compare it with 

the best model bestM . Otherwise, ignore it. Keep track of bestM . If no previous 
model was found then Mj is chosen as bestM  assuming that its ratio of outliers to 
inliers is appropriate. (Section 3.4.4)  

iv) If bestM  found, mark it.  

2) Visualize canopy-approximating models as shaded surfaces for delineation. (Figure 6) 
3) Calculate a height for each canopy-approximating model. (Section 3.4.5)  

3.4.1 Local Maxima 

Maximum points Maxi are first return points (classified as non-ground) identified during pre-
processing. Each maximum is selected based on the fact that it is higher than points inside of a 
1.5 m×1.5 m window centered on the maximum (see Figure 2). This small box is large enough to 
capture most peaks in our test data sets. 
 

  
Figure 2: An artificial sketch of a LiDAR point that has been identified as a maximum where each point is 
defined by the one-dimensional function f(x). The maximum is higher than the other points inside of the 

box indicated by the dashed lines. 

3.4.2 Number of Model Iterations 

We calculate the number of RANSAC iterations T according to Schnabel et al. (2007), based on 
the probability that an appropriate model is found. If a window consists of N points, k points are 
used to instantiate our model. A good consensus set (i.e., inliers) consists of at least c points. The 
probability of finding an appropriate model in a single pass is: 
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After picking s poor models, the probability of detecting an appropriate model is calculated by 
evaluating P(c,s): 

 
 scPscP ))(1(1),( −−=  (3) 
 
If we were to solve for s, we can calculate the number of candidates T required to detect shapes 
of size c with probability tpTcP ≥),( as: 
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The denominator of (44) can be approximated by the Taylor series 
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We use (55) to define our number of iterations per window. 

3.4.3 Model Creation 

Our algorithm is currently capable of fitting a “shape-shifter” to data points. Each shape has a 
parameter defining its central peak ),,( ccc zyx  (defined by iMax  used to create the current 
window) and one parameter α which interpolates between a cone and a paraboloid. If α is zero, 
the shape is similar to a cone; if it is one, it resembles a paraboloid (Figure 3).  

 
 f (x, y) = −α ∗ ((x − xc )2 + (y − yc )2 )+ (α −1.0)∗ ((x − xc )2 + (y − yc )2 ) + zc (8) 

 
 
 
 
 
 

 
 
             (a) Shape-shifter with α=-1.0.           (b) Shape-shifter with α=0.0.   (c) Shape-shifter with α=1.0. 
Figure 3: Renderings of the shape-shifter (88) using various values of α. The valid range for α is 0-1.0, as 

an α value of -1.0 creates an unusual shape as shown in Figure 3(a). 

3.4.4 Consensus Set and Model Grading 

Each model’s consensus set Cj is created by selecting inlier points within the window. We 
assemble Cj by computing the f(x, y) value for each window point and comparing that value with 
the point’s z coordinate. If the difference is smaller than a pre-defined error metric ε, the point is 
added to Cj. From Cj, one can then calculate the radius by calculating the two-dimensional, (x, y) 
distance between the model’s central peak and the inlier point furthest from the peak. In order to 
compare against other models, each model is graded based on the number of inliers. The model 
with the best grade (most inliers) is chosen. 

3.4.5 Tree height 

To calculate the height for each tree, we use Hardy’s (1971) multiquadric method to reconstruct 
the ground surface beneath the tree crown. We then subtract the elevation of the hardy surface at 
the (x, y) location of the crown apex from the height (z-coordinate) of the crown apex.  
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3.5  LiDAR inventory 

StarSac was run in a batch process over all LiDAR data in stands where field data was collected. 
The classified LAS files were subset into blocks containing ≈150,000 points. Each block was 
further subset into ground-only points and points classified as first return and vegetation. LiDAR 
data was processed using the LibLAS (Loskot 2008) command line tools and application 
programming interface (API). StarSac output was collected in a PostgreSQL (The PostgreSQL 
Global Development Group 2005) relational database with the PostGIS (Holl and Plum 2009) 
spatial object extensions.  

To test the accuracy of the tree identification method outlined above, “in” trees were 
identified from the LiDAR-derived trees based upon DBH, BAF, and distance to the nearest plot 
center used in the field inventory. Stand-specific, non-linear regression coefficients derived from 
field data were used to regress LiDAR-derived tree height to tree DBH. Once DBH was 
modeled, the status of all trees with regard to the BAF was assessed based upon the distance 
between the tree and the plot center.  

4.  Results 

4.1  Field inventory 

The BAF selected for each plot resulted in between 5 and 8 trees per plot. Basal area ranges 
between 36 m2ha-1 to 74 m2ha-1 and generally varies with DBHq though with greater magnitude.  

4.1.1  Regression models 

The LiDAR methods (StarSac) employed here do not differentiate between species, thus 
regression coefficients were developed using all trees within a given stand. Visual inspection of 
Figure 4 indicates similarity between species, justifying the application of StarSac. Figure 5 
represents the results of the regression of DBH and height for all field-measured trees. 

4.2  LiDAR analysis 

Individual tree identification using the RANSAC method was effective in most cases. Visual 
inspection of the consensus sets (Figure 6) identified was used extensively in testing the impact 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Average DBH within height bins. df,  
Douglas fir;gf, Grand; mp, big-leaf maple; ra, 
Red alder; rc, Western red cedar; rw, Coast 
redwood; ss, Sitka spruce; to, Tan oak; wh, 

Western hemlock. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: Height-DBH regression for all trees. 
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of changes to the approach.  

 

(a) Raw LiDAR points. b) Raw LiDAR points with consensus sets and 
maximum points.

 
(c) Raw LiDAR points with rendered graphs. 

Figure 6: An example of three-dimensional graphs that depict the models used to identify the canopies in 
StarSac. Each graph is created by using the model’s equation and radius. The raw LiDAR rendering is 

showing in Figure 6(a). In Figure 6(b), central peak points are rendered as thick, cyan points and 
consensus set points are colored red. The resulting graphs of the canopies are shown in Figure 6(c). 

4.3  LiDAR inventory 

The LiDAR inventory method was compared with field methods for the determination of basal 
area. Stand-aggregated basal area estimates were derived using the basal area calculated for each 
plot. Figures 7 and 8 show the basal area and tree count comparison between methods.  

  
Figure 7: Average plot basal area comparison 
between LiDAR and field methods with 95% 

confidence interval whiskers. 

 
 

Figure 8: Average plot tree count comparison 
between LiDAR and field methods with 95% 

confidence interval whiskers. 
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Figure 9 indicates that the LiDAR method results in greater basal area estimation in the 50 cm to 
125 cm DBH range while field methods estimate greater basal area in the 12 cm to 50 cm and 
150 cm to 350 cm ranges.   

 
Figure 9: Density plot of basal area by DBH histogram bins for LiDAR and field methods. 

 
The results show strong agreement in many stands while a few stands show some disparity. In 
general, field methods resulted in a higher tree count and greater basal area.  

Table 2 shows tree count/plot averaged across all plots. While there are significant 
differences in the count and basal area between the LiDAR and field methods for given stands, 
the combined statistics indicate that the results of field and LiDAR methods are within a RMSD 
of less than 3.5 m2ha-1 (see Table 3).  
 

Table 2: Average plot tree count and basal area for all plots. 
 

LiDAR count Field  count (average) LiDAR basal area, 
m2ha-1 

(average) Field basal area, 
m2ha-1 

6.64 7.17 57.07 60.33 
 

 
Table 3: Paired t test and RMSD for tree count and basal area for all plots. 

 
df Tree count t Tree count P BAa t BAa P Count RMSD BAa RMSD 

301 -1.807 0.072 -1.278 0.202 0.530 3.261 
a basal area 
 

Paired t test between LiDAR and field methods indicate that the means for all paired plots were 
not significantly different for tree counts (P=0.072) or basal area (P=0.202). 

4.4  Factors affecting agreement between LiDAR and field measures 

While overall differences between the methods are not significant, there is obviously some 
variation between the means for LiDAR and field methods for both tree count and basal area 
(Figures 7 and 8). As the van Eck forest stands were classified by canopy density and DBH 
classification, we can assess the impact of these generalized stand characteristics on the 
differences between the two measurement methods. This is accomplished using ANalysis Of 
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VAriance (ANOVA) for the regression of the stand characteristics (predictor) and the log-
transformed ratio of basal area estimates (response) from the two basal area estimation methods  

A two-way ANOVA reveals that neither the interaction of canopy cover and DBH, or DBH 
alone has significant effects, but that canopy cover alone has an impact upon the variation 
between measures (Table 4). A one-way ANOVA (Table 5) reveals that the variance in 
estimated basal area between methods is significant in stands classified in the 40-60% canopy 
coverage range. Levene’s test reveals that the variance is homogeneous between canopy cover 
levels (Table 6), validating the assumptions in the one-way test.  

 
Table 4: Two-way ANOVA test for the influence of canopy cover and DBH classification on variance 

between estimation methods. 
 

 Df Sum Sq Mean Sq F value Pr(>F) 
dbh class (dbh) 1 0.00 0.00 0.00 0.9972 
canopy density class (dens) 1 5.81 5.81 8.59 0.0036 
dbh:dens 1 0.95 0.95 1.41 0.2361 
Residuals 298 201.39 0.68   

 
Table 5: One-way ANOVA test for the influence of canopy cover on variance between estimation 

methods. 
 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) -0.1984 0.1390 -1.43 0.1547 
40-60% cover -0.7076 0.2949 -2.40 0.0170 
60-80% cover 0.0702 0.1482 0.47 0.6359 

 
Table 6: Levene’s test of one-way ANOVA residuals from the influence of canopy cover on differences 

between basal area measures. 
 

 Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.6413 0.0879 7.29 0.0000 
40-60% cover -0.0336 0.1865 -0.18 0.8571 
60-80% cover -0.0074 0.0937 -0.08 0.9375 

  
Figure 10 shows the effect of canopy density on tree count and basal area estimation by LiDAR 
and Field methods. Mid-density stands (40%-60%) show significant variation in basal area 
estimates. Diameter classes did not strongly influence differences in tree counts or basal area 
estimation by the two methods (Table 4). Figure 11 shows the variability between methods 
across the range of DBH classes and suggests that variation between basal area methods is 
greatest in the 0 cm to 20 cm DBH and 61 cm to 81 cm DBH classes.  

5.  Conclusions, Future Research 
This research gives insight into forest inventory from aerial LiDAR data across forest stands that 
are heterogeneous with regard to management history, species mix, and site characteristics. Tree 
detection and height estimation is accomplished without the use of regression models or gridded 
data. The replication of a variable plot method was used so that results of field and RANSAC-
based LiDAR methods are comparable. The comparisons in Section 4 indicate that the tree 
identification and delineation-based LiDAR inventory method, applied to dense, mixed-species 
stands on variable terrain, 
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yields similar tree count and basal area estimates to the field inventory method. The small 
difference between average basal area estimated by the two methods indicates that though some 
trees are not identified using the LiDAR method, they tend to be smaller trees and contribute 
less to the aggregate statistics.  

There exist multiple directions for future research. We intend on refining the RANSAC 
method such that LM filtering may be eliminated from the algorithm and the sub-canopy 
vegetation characteristics can be assessed as well. Additionally, we will investigate ways to 
incorporate methods identified in (Schnabel et al. 2007) for preliminary selection of model 
parameters using point normals. We hope to improve StarSac so that it may provide information 
about a range of structural measures relating to habitat, fire behavior, and forest health. 
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Abstract 
 
In this study we evaluated an accuracy of mobile terrestrial laser scanning (MLS) measurements 
in urban tree inventory. The MLS data were collected in August 2010 with the FGI Roamer 
mobile mapping system, consisting of a Faro LS 880 laser scanner and a NovAtel HG1700 
SPAN58 INS system mounted in a car. Study areas were divided to park and urban forest 
located in Seurasaari, Helsinki, Finland. Studied inventory characteristics were tree location and 
–diameter-at-breast-height (dbh). Reference measurements consisted altogether from 201 trees, 
which locations were measured using RTK GPS and static terrestrial laser scanning while tree 
dbhs were measured using steel callipers. Tree mapping and dbh measurements were done from 
the MLS point clouds manually. Tree location accuracy of MLS measurements were 0.72 m in 
park and 0.47 cm in forest conditions as root mean squared error in dbh were 7.0% and 12.5%, 
respectively. MLS can be used in urban tree inventory in targets with a good visibility and 
relatively dense network of roads or paths. 
 
Keywords: Urban forestry, mapping, diameter-at-breast height, monitoring 
 
 
1. Introduction 
 
The urban forests and parks are highly important for many reasons. Urban forest are used for 
recreation, they provide scenery values and maintain biodiversity. In the city of Helsinki, there 
are 902 ha of managed parks and 4020 ha of urban forests. The City of Helsinki Park and 
Garden Department (HPGD) maintains digital tree register (appr. 20 000 trees) including 
species, height, diameter-at-breast-height (dbh), location, and vitality status of the tree. Tree 
register data is used in town and environmental planning, locating hazardous (for citizens) old 
trees and biodiversity monitoring.  
 
Trees in the register are located, using tachymeter measurements or manually placing trees to 
the large-scale city planning map. Requirements for up-to-date map data also in city parks and 
forests are increasing and an important question is how to keep the digital databases up-to-date 
for the various applications. Traditional updating procedures such as visual interpretation of 
digital aerial images or field measurements using tachymeter are either inaccurate or very 
expensive.  
 
Recently, development of laser scanning technology has opened new possibilities for tree 
mapping. Small-footprint airborne laser scanning (ALS) is a method based on laser range 
measurements from an aircraft and the precise orientation of these measurements between a 
sensor (the position of which is known by using a differential-GPS technique) and a reflecting 
object, the position of which (x, y, z) is to be defined. The ALS gives the georeferenced point 
cloud. By analyzing the point cloud by using pattern recognition methods, it is possible to locate 
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2. Method  
 
2.1 Study area  
 
Seurasaari is a popular outdoor recreation area, located approximately 5 km from the Helsinki 
city center. It was made a public park in 1890 and quickly became a popular place for recreation 
activities. Seurasaari receives hundreds of thousands of visitors a year. Seurasaari is a wooded 
island with rocks, hills, wetlands and herb-rich forests covering about 46 hectares. Our study 
area in Seurasaari consists of: 1) an urban park (approximately 1.2 ha) (Fig. 2) with a mainly old 
oaks growing far apart and only grass as a understory vegetation, 2) urban forest area 
(approximately 0.8 ha) which can be classified as semi-natural old-growth forest. In the both 
areas there is a dense network of man-made outdoor paths that are driveable also with a vehicle.  
 

 
Figure 2.  Study areas in Seurasaari. 

 
2.2 GPS and tree diameter measurements 
 
The field measurements were carried out in July 2010. Altogether 201 trees, including nine 
different tree species were mapped in the field using direct GPS measurements. The GPS device 
used for measurements was GEOXT 2008 (Trimble Navigation Ltd., Sunnyvale, CA, USA). 
The dbh and tree species were determined for trees with a dbh larger than 50 mm with steel 
callipers. General statistics from field trees based on field measurements are presented in table 1 
and 2. GPS measurements were used to form a preliminary tree map.  
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Table 1. Dbh statistics from field measurements in park area.  
 

PARK 
Species  n  min  mean  max  stdev 
Acer platanoides  1  356  356.0  356  0.0 
Alnus sp.  1  357  357.0  357  0.0 
Betula sp.  2  491  495.5  500  4.5 
Picea abies  2  451  455.5  460  4.5 
Pinus sylvestris  6  434  478.2  500  30.9 
Quercus robur  23  138  408.9  500  100.1 
Sorbus aucuparia  4  67  157.0  250  68.5 
Tilia cordata  2  500  500.0  500  0.0 
Ulmus sp.  3  500  500.0  500  0.0 
Total  44  67  415.3  500  111.4 

 
 

Table 2. Dbh statistics from field measurements in forest area.  
 

FOREST 
Species  n  min  mean  max  stdev 
Acer platanoides  7  78  219  460  138.5 
Alnus sp.  17  84  247.7  415  87.8 
Betula sp.  12  56  229  500  131.5 
Picea abies  50  50  233  500  109.3 
Pinus sylvestris  26  51  299  500  159.2 
Populus tremula  13  50  241  347  90.9 
Salix caprea  2  363  373  382  13.4 
Sorbus aucuparia  30  58  104.5  317  55.1 
Total  157  50  231.0  500  128.8 

 
 
2.3 Terrestrial laser scanning 
 
TLS data was collected in September 2010, using a Leica HDS6000 terrestrial laser scanner. 
The scanner uses phase-shift measurements of continuous waves to measure the distances, with 
a data acquisition rate of 500 000 points per second. The point spacing is 6.3 mm at the distance 
of 10 m. For this study, several scannings were done from the area and point clouds were 
georeferenced. Tree detection was done manually, using TerraScan software. The scanner 
positions were measured with a RTK (real-time kinematic) GPS and reference locations for 
trees were determined using TLS. 
 
2.4 Mobile terrestrial laser scanning 
 
The MLS data were collected in August 2010 with the FGI Roamer mobile mapping system 
developed at the Finnish Geodetic Institute (Fig. 3). The Roamer consists of a Faro LS 880 laser 
scanner with a measurement frequency of 120 kHz and a NovAtel HG1700 SPAN58 INS 
system. With slightly modified hardware for the standard FARO LS, it provides so-called tunnel 
mode, or profile measurements, synchronized with external positioning and data logging 
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systems. This information is needed to derive the position and attitude information for each 3D 
point produced by the laser scanner. The mirror rotation frequency, or scan rate of the scanner 
on the Roamer can be set to 3-30 Hz, thus giving a vertical angular resolution of 0.0096-0.096 
degrees (0.17-1.7 mrad), respectively. Corresponding point spacing at a typical scanning range 
of 15 metres in road mapping is thus 2.5-25 mm in the scanning plane. Tree detection was done 
manually from the MLS point clouds using TerraScan software. 
 

 
Figure 3. MLS measurement unit, ROAMER 

 

2.5 Evaluation of tree location and dbh accuracy 
 
Tree location and dbh measurement accuracy for MLS was evaluated. Reference used for dbh 
was measured in the field using steel callipers. Traditionally the City of Helsinki Park and 
Garden Department produces tree maps using tachymeter measurements. Based on previous 
studies the location accuracy of the manual measurement from the static TLS data is comparable 
to tachymeter measurements (e.g. Mechelke et al. 2007). Therefore, manual measurements from 
TLS data were used as a reference for tree location accuracy. Statistical measures used were bias 
and root mean squared error (RMSE). Accuracies were studied in urban park and forest 
environment separately. 
 
 
3. Result  
 
3.1 Tree mapping accuracy 
 
Location of trees detected from the MLS data were compared to the TLS (+RTK) locations. In 
park environment 97.7% of the trees were detected with location accuracy of 0.72 m. The 
respective stats in urban forest area were 68.2% and 0.54 cm (Table 3).   
 

Table 3. Tree mapping accuracy.  
Area  Detection, % Location, m 
Park  97.7  0.72 
Forest  68.2  0.47 
Total  72.6  0.54 

 
 

Overall, dbh was measurable from 64.4% of the trees (Table 4). Shrubs, dense understory and 
branches disturbed the visibility to stem. Measurement accuracy for dbh was 7.0% and 12.5% in 
urban park and forest, respectively. In both environments dbh was underestimated. 
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Table 4. Measurement accuracy of dbh.  

 
Area  n  dbh detection, %  RMSE  RMSE%  BIAS  BIAS% 
Park  34  79.1  18.5  7.0  5.0  2.3 
Forest  60  58.3  23.8  12.5  14.7  3.9 
Total  94  64.4  26.0  10.1  8.6  2.8 

 
 
 
4. Discussion  
 
In this study mobile mapping and monitoring method was tested in urban forest environment. In 
urban park environment, the tested method produced tree detection accuracy over 97% (Table 3). 
In urban forest conditions, shrubs, dense understory and branches disturbed the visibility to stem 
and the tree detection accuracy retained low (68.2%). Location accuracy of the detected trees 
varied from 0.47 metres to 0.72 meters.  
 
Our dbh measurement accuracy results are somehow comparable to previous studies of camera 
and laser devises. The accuracy in measuring dbh have varied from 8 mm to 16 mm with the 
laser-relascope (Kalliovirta et al., 2005) and from 8.8 mm to 14.3 mm with laser-dendrometers 
(Skovgaard et al., 1998; Parker and Matney, 1999). With camera-based systems the accuracies 
obtained have varied from 7.0 mm to 9.9 mm (Ashley and Roger 1969; Bradshaw 1972; Varjo et 
al., 2006) The accuracies achieved in Vastaranta et al. (2009) were 8.3 mm with the TLS, 8.5 
mm with the laser-camera and 14.3 mm with the laser-relascope. Relative accuracy of the dbh 
has been around 5-10%. In this study, relative RMSE in the park was 7% and in urban forest 
12.5%. MLS is far more practical for rapid updating tasks than TLS or laser-camera.  
 
MLS provide means for monitoring trees growing near roads or paths. Tree mapping, change 
detection and tree health monitoring would be the main applications for MLS in urban parks and 
forests. TLS is suitable for areas where the positional accuracy of the needed tree maps is high 
priority and additional information from the trees is needed. Large TLS campaigns are 
justifiable when there is intensive data need for several applications. It is hard to justify TLS 
measurements only for tree mapping, although it is still more cost-efficient than traditional 
tachymeter measurements. Compared to TLS measurements, MLS provides faster data 
collection and almost as accurate positional accuracy (Holopainen et al. 2011). 
 
This study showed feasibility of the MLS measurements in urban tree inventory. MLS can be 
used in urban tree inventory in targets with a good visibility and relatively dense network of 
roads or paths. However, our results are preliminary, since the number of trees was rather low 
and measurements from point clouds were manual. We are going to expand our study area in 
city of Helsinki and focus on automatize of point cloud processing.  
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Abstract 
 
LiDAR tells the user where surfaces are, not what they are.  In this study we investigate the 
potential for waveform LiDAR to provide more information on the nature of the returns over 
forestry.  Waveform LiDAR was acquired for ten Pinus radiata plots in a New Zealand plantation, 
along with comprehensive leaf area sampling in 2m vertical bands.  The decay rate of each 
waveform peak was shown to be a useful tool for estimating foliage density, and has potential for 
identifying regions containing ground and understorey. 
 
Leaf Area Density (LAD) is an expression of foliage density per unit height, and a relationship 
between waveform decay rate and LAD was developed with an R2 of 56%. Incorporating the 
proportion of discrete LiDAR that fell in that band (which itself has an R2 of 50%) improves this 
model to explain 69% of the variation in LAD.  This is a good result, especially given the costs and 
difficulties in measuring leaf area directly.  As foliage density varies dramatically on a fine scale it 
was not possible to differentiate the nature of every single LiDAR return – but by averaging over a 
small area local variation in LAD could be easily mapped. 
 
Ground returns could be distinguished as having short decays, and broad leafed understorey 
typically had values between those of the canopy and ground, although surface roughness and slope 
make it impossible to robustly identify single returns.  This study produced a useful model for 
estimating LAD in Pinus radiata which could easily be extended to other coniferous species. 
 
Keywords 
 
Waveform LiDAR, foliage density, Leaf Area Density, waveform shape, deconvolution 
 
1. Introduction 
 
1.1 Foliage measurement 
 
Foliage is the engine that drives tree growth.  Foliage may be used as a good measure of tree 
growth and carbon sequestration, but also of tree form and fire risk.  Knowledge of the 3D 
distribution of foliage can be used for many applications, such as carbon accounting (Stephens 
2007), growth and yield forecasting (Naesset 1997), fire modelling (Morsdorf et al. 2004) and 
biodiversity estimation (Hofton et al. 2006). 
 
Direct measurement of foliage location for individual trees is time consuming, costly and not 
overly representative at a stand scale (Bongers 2001).  More spatially integrated measures of 
foliage distribution have emerged with simpler formulations which can be easily included in further 
analyses.  The most common of these are canopy cover, Leaf Area Index (LAI) and Leaf Area 
Density (LAD).  Canopy cover is the projected area of canopy – as viewed from above - per unit 
area of ground.  The maximum canopy cover value of 1 indicates that the canopy completely 
obscures the ground, or is ‘closed’.  Leaf Area Index goes further, and is the one-sided area of leaf 
tissue per unit of ground surface area (Watson 1947).  Leaf Area Density extends this once more, 
and is defined as the total leaf area per unit ground area per unit height.  Essentially, LAD is the 
vertical distribution of leaf area that in summation will equal the LAI.   



 

 
LAI and LAD can only be measured exactly through destructive sampling of single trees.  LAI can 
be estimated through litter collection and known tree-allometry, ground-based hemispherical 
photography and LiDAR, although none of these methods offer high levels of accuracy or have 
been used to resolve LAI into LAD (Forster and Nairn 2010).  Of these methods LiDAR appears to 
offer the greatest potential because it provides a three dimensional characterisation of canopy 
(Lefsky et al. 1999). 
 
1.2 LiDAR 
 
LiDAR – or Light Detection and Ranging - has long been used for mapping large, continuous 
surfaces such as ground and buildings.  Often aerial imagery is acquired at the same time to assist 
in surface identification.  Recently LiDAR has found a home in forestry, where returns from the 
canopy add valuable information on the vertical structure of the forest as well as the ground 
beneath.  For a thorough explanation of the function and application of LiDAR in forestry the 
reader is directed to Hyyppä et al. (2004), Lim et al. (2003) or Adams et al. (2011). 
 
LiDAR systems can be separated into two classes: discrete-return and full-waveform.  Discrete-
return systems use hardware-based subsystems (e.g., a constant fraction discriminator and time 
interval meter) to extract and record ranges and intensities in real time for a few individual returns 
per transmitted pulse (typically less than 5).  Full-waveform systems on the other hand, digitize the 
backscattered laser echo sampled over a set period (typically around 1ns), providing a complete 
record of received signal amplitude over time.  These digitized waveforms are stored for 
subsequent processing and analysis, thereby enabling additional information to be extracted.  This 
information can include not only additional ranges, but also metrics related to surface roughness, 
slope and other characteristics.  Figure 1 gives an example of a digitized waveform.  Note how the 
discrete returns occur slightly before the waveform peaks; this is due to the fact that the discrete-
return ranging is based on identifying a point on the leading edge at which the amplitude is a 
constant fraction of the peak (e.g. the 50% point).  In both discrete-return and full waveform 
systems, georeferenced point clouds can be produced using the extracted ranges, sensor position 
and orientation data, scan angle data, sensor model, and associated calibration parameters.  

  
 

Figure 1 – An example of waveform and discrete-return LiDAR data 
 
Canopy is not a flat impermeable surface like the ground, and it is this fact that allows us to collect 
information throughout its depth.  Unlike in urban environments, where each return results from a 
single large surface, the scale of foliage is much less than that of the beam width (~0.2m) and 
vertical sampling interval (0.15m).  Thus each return is due to the integrated reflections from a 
large cylinder of foliage.  If the waveform digitizer has a nanosecond sampling period, then the 



 

waveform at that point is due to the reflections from a biscuit tin sized volume of foliage of around 
0.005m3.  It should be noted that the return signal from each ‘biscuit tin’ depends not only on the 
foliage in that volume, but also on the attenuation of the beam by foliage above it.  Multiple 
scattering events have been shown to be of negligible importance (Blair and Hofton 1999). 
 
Some authors have attempted to investigate foliage density by considering the proportion of 
discrete returns per unit height.  Morsdorf (2006) found a correlation between LAI measured by 
hemispherical photography and the proportion of discrete returns that hit the ground with an R2 of 
69%.  This correlation was also found by Riaño (2004) on two sites in Spain.  However, these 
studies give no information on the vertical distribution of the foliage, or LAD.  Vertical canopy 
information from discrete LiDAR always suffers from the fact that the transmitted laser pulse width 
can be  greater than 10ns, and there is typically a ‘blind-spot’ between returns of 1.2 - 3m during 
which no other returns can be counted (Reitberger, Krzystek, and Stilla 2008).   
 
1.3 Full waveform LiDAR analysis 
 
Full-waveform LiDAR can greatly reduce this blind spot by post-processing the waveform data to 
identify proximal peaks which would otherwise be treated as one (Parrish et al. 2011).  Chauve et 
al. (2009) found 40-60% additional points in an Alpine coniferous forest.  The most common 
approach is to approximate the waveform as a series of Gaussians, fitted by a non-linear least-
squares approach (Hofton, Minster, and Blair 2000; Reitberger, Krzystek, and Stilla 2006), or 
expectation-maximisation (Persson et al. 2005).  Wagner et al. (2006) found that fitting Gaussian 
peaks to the data could account for 98% of waveform shapes, although this was over an urban 
environment and he notes that Gaussians may not always be appropriate over vegetation.  
 
Additional canopy points are not the only benefit of working with full-waveform data.  The signal 
shape itself may yield information on the nature of the target.  Whilst discrete LiDAR returns are 
given an intensity, the value is a function of transmitted power, range, atmospheric transmittance, 
system transmittance, receiver aperture, beam divergence, surface roughness, relative geometry 
between the sensor and target, and any attenuation due to foliage higher in the canopy.  Studies 
have corrected for range and scan angle to derive a back-scattering cross section (Wagner et al. 
2006), and for species identification between Lodgepole Pine and Sitka Spruce in Scotland 
(Donoghue et al. 2007).  Reitberger used peak width and integral as clustering parameters to 
segment individual trees and group them according to species.  The study achieved 80% accuracy 
in identifying deciduous and coniferous species (Reitberger, Krzystek, and Stilla 2006).  Lin and 
Mills (2010) found pulse width less noisy than intensity for identifying surface roughness and 
slope.  Like Wagner (2006), Chauve et. al. (2009) note that the waveform is often skewed, and that 
a Gaussian may not be appropriate in all cases.  Experimentation with a lognormal distribution 
provided a better fit for some pulses over a forest, although a standard Gaussian was found to 
provide the best fit in 99.3% of cases.  Generalised Gaussians were also used, which theoretically 
should provide a better fit than standard Gaussians, although this didn’t occur due to the extra 
degrees of freedom and limitations of the optimisation algorithm. 
 
Whilst other authors have noted this skewness of the waveform, in this study we use it to categorise 
returns.  If we assume that the needles and branches within a sampled volume are sufficiently small 
and randomly orientated, then - as a simple model - the canopy can be imagined as a volume of 
semi-transparent gas.  Whilst this is not a physical reality, it allows us to employ some modelling 
simplifications that allow a quantitative insight into the canopy’s average properties.  We can then 
assume that the canopy has – as a gas would – a reflectivity R, transmissivity T, and absorbance A.  
Thus transmission through the canopy can be modelled with the Beer-Lambert law 
 
             (1) 
 
Where IT is the transmitted intensity, I0 is the initial intensity, α is the absorption coefficient and x 
is the distance travelled through the gas.  Note that whilst transmissivity and reflectivity are both 



 

functions of wavelength, lasers are fundamentally limited to a single wavelength so we can ignore 
this and define our parameters at a wavelength of 1064nm.  For an interesting investigation into 
multi-spectral LiDAR the reader is directed to Morsdorf et al. (2009). 
 
At a depth x into the canopy, a constant proportion (R) of the incident light will be reflected.  We 
assume Lambertian reflectance, and that this is further attenuated by the foliage-gas as it leaves.  IR 
at the surface is then given by 
 
            (2) 
 
Thus we see that if the canopy is of a constant density and distribution, we can expect an 
exponential decay in intensity characterised by a decay constant of 2α.  For simplicity this decay 
constant will be called λ. 
 
IR as measured at the receiver is also a function of range as defined by the radar equation 
 
            (3) 
 
Where σ is the target scattering coefficient, F is the propagation factor which accounts for 
atmospheric loss, and ρ is the distance to the start of the foliage.  So we may also see a fall off in IR 
in the form of x-4.  However our study site was flown at a height of ρ~1000m, whereas x~2m, so 
x<<ρ and it is reasonable to ignore this effect. 
 
Jutzi and Stilla (2006) note that the return waveform y(t) is a convolution of the surface response 
v(x,y,z), the transmitted waveform o(t), the response of the measurement unit m(t) and the spatial 
beam distribution p(x,y).  If the pulse is timed and we know the plane position and scan angle in 
three dimensions (i.e. we can describe x,y and z as a function of t) then we can describe v(x,y,z) as 
v(t).  Furthermore, based on our simple isotropic gas model of the canopy locale, we can ignore 
p(x,y) but add in a background noise n(t) leaving 
 
          (4) 
 
Comparison of the outgoing waveform o(t) (sampled as standard with some waveform digitisers) 
with the return waveform y(t) for large flat surfaces (a pond on a windless day) shows that m(t) is 
negligible compared to o(t).  Thus we have 
 
           (5) 
 
The surface response v(t) is what we are interested in determining, and equation (5) may be solved 
by a Wiener deconvolution where we estimate g(t) to minimise the error in our estimation of v(t) so 
that 
 
            (6) 
 
The Weiner deconvolution filter can be used to find g(t), shown here in the frequency domain 
 
            (7) 
 
Where S(f) is the mean power spectral density of the outgoing signal o(t).   N(f) is the power 
spectral density of the noise n(t).  This may be solved to obtain , which will from hereon in be 
referred to as the deconvolved waveform.  
 
The skewness of waveform profiles over foliage has been noted by several authors (Wagner et al. 
2006; Chauve et al. 2009; Jutzi and Stilla 2006). In this study we define this skewness as an 



 

exponential decay, which will be more apparent in the deconvolved waveform than the original as 
the blurring function of the outgoing pulse has been removed.  In this study we test the hypothesis 
that the decay constant of the deconvolved waveform will correlate with the local foliage density, 
expressed as an LAD. 
 
2. Method 
 
2.1 Field data collection 
 
The field data collection for this project was shared with that of Beets et al. (2011).  Ten 0.16ha 
field plots of nine year-old Pinus radiata were selected for study.  Each plot was planted with the 
same stocking in 1997, and had received the same silviculture.  Five representative sample trees per 
plot were felled from 21st August - 8th September, 2006.  Tree crowns were weighed fresh in the 
field by 2m height zone, measured from the base of each tree. Fifty needle fascicles were sampled 
randomly from each height zone and stored in polythene bags with water. Sample branches from 
each 2m height zone were weighed fresh in the field, and partially dried to aid with separation of 
needles from branches. Needles were oven dried to constant weight at 65 degrees C and weighed. 
Leaf area of the 50 fascicles per 2m height zone was determined on an all-surfaces basis from 
fascicle length and volume, using methods described in Beets and Lane (1987), and then oven-
dried and weighed. LAD by 2m height zone was calculated for each zone by multiplying the 
fascicle dry weight by the specific leaf area of the 50 fascicles. The leaf area index per plot was 
obtained using the basal area ratio method, where the sum of zonal leaf areas of sample trees per 
plot is multiplied by the plot basal area divided by the sample tree basal area (Madgwick and 
Service 1981). 
 
2.2 LiDAR data collection 
 
The study site was flown by New Zealand Aerial Mapping on 9th June 2007, and measured with an 
Optech ALTM 3100EA LiDAR system and waveform digitiser with a sampling rate of 1ns.  Raw 
GPS data and discrete LiDAR information was processed with REALM software into a Corrected 
Sensor Data (CSD) file.  The waveform data was measured at 1ns intervals and provided as five 
swathes in Optech’s NDF binary format with an IDX index file.  Matlab code was adapted from 
Parrish (2007) to suit the updated NDF format and to georeference the waveforms according to 
New Zealand’s NZGD2000 coordinate system. 
 
2.3 Waveform analysis 
 
Much work has been done on identifying and resolving peaks in waveform data (Chauve et al. 
2009).  In this work we are investigating the decay of the waveform, so separating closely-spaced 
peaks is of no use.  For efficiency we use the discrete LiDAR dataset to identify peaks, and the 
waveform LiDAR to determine the decay rate.  This process is detailed below. 
 
Step 1 
 
Read and georeference LiDAR data.  Using adapted code from Parrish (2007) each sample in the 
waveform is assigned an xyz coordinate and compared with the field plot locations.  Waveforms – 
or sections of waveforms – that fall within the field plot are written to a new file with their 
respective locations.  In comparison with Parrish, the waveform is not deconvolved at this point, 
and all points within the sample areas are written to a text file.  In addition the CSD file is read and 
the discrete LiDAR point cloud is extracted for the whole of Puruki forest. 
 
Step 2 
 
Subtract ground surface from LiDAR data.  By subtracting the ground surface from the data we 
determine heights above ground instead of heights above sea-level, which is standard practice for 
determining information on canopy as opposed to terrain.  In this paper we refer to this process as 



 

‘degrounding’.  The discrete LiDAR data for the whole forest is used with FUSION’s 
GroundFilter.exe function (McGaughey 2010) to determine a ground surface on a 1m grid.  This 
gives a better result than using the clipped data for individual plots.  This grid is then used to 
linearly interpolate a ground height for every waveform sample saved in the text file produced in 
step 1, and every discrete return that falls within the plot areas.  For every plot a georeferenced 
degrounded waveform file is produced, along with a corresponding degrounded discrete point 
cloud. 
 
Step 3 
 
Deconvolve waveform.  Each degrounded waveform file is read, and each waveform line 
individually analysed.  A Wiener deconvolution (see introduction) is used, using the outgoing 
waveform as the deconvolution kernel.  Note that the deconvolution increases the amount of noise, 
particularly away from peaks. 
 

 
Figure 2.  Original waveform and deconvolved waveform. 

 
Step 4 
 
Separate peaks and fit exponential decay.  Peaks are identified as the nearest local maxima to each 
discrete return.  As the discrete return is determined on the leading edge of a pulse, the local 
maxima should always be just after this point.  In the instances where a waveform contains 
multiple peaks, the data between peaks is sampled from local maxima to local minima to find the 
exponential decay.  The decay is found using a weighted least squares approach, where samples are 
weighted by their height (to encourage curve fitting to match the peaks as opposed to the 
background noise).  Figure 3 shows a waveform with two returns and two fitted exponential 
decays.  Note that the x axis is measured in time, not in height.  If the decay were measured in 
height, waveforms travelling non-perpendicularly to the ground would appear compressed and 
hence have artificially increased decay constants (λ).  Once the decay constants are found they are 
added to a point cloud output that includes xyz coordinates, intensity and λ. 
 
 
 
 



 

 
Figure 3.  Example of multiple peak waveform with two exponential decays fitted. 

 
3. Results 
 
3.1 LAD vs. proportion of returns. 
 
Extending the work of Morsdorf et al. (2006), we initially use the degrounded discrete LiDAR data 
to compare LAD with the proportion of LiDAR returns that occurred within each height band.  
Figure 4 shows the results provide a reasonable model (R2 of 50%). This R2 is not as good as the 
69% found by Morsdorf et. al., although their model considered net LAI as opposed the LAD at 
different height bands.  Our model is also flawed in that it does not go through the origin – a LAD 
of 0 should lead to no returns. 
 

 
Figure 4 – Leaf Area Density vs. proportion of hits per height band 

 
3.2 LAD vs. average decay rate 
 
Within each height band there are many LiDAR returns.  If our approximation of foliage being an 
isotropic gas were true, then we would expect all of the returns to exhibit the same decay.  
However this is only a simple model, and some pulses will hit dense areas of vegetation whereas 
others will find a gap and only receive a glancing blow.  So each individual decay rate is not of 



 

much use, but the average over the whole height band should be informative.  Experiments with the 
mean and median showed that the mean is slightly more related to LAD, with an R2

 of 55.8% as 
opposed to 54.1% for the median.  The correlation for the mean is illustrated in figure 5. 
 

 
 

Figure 5 – Deconvolved waveform decay rate vs Leaf Area Density 
 
This is a good result and shows that waveform decay rates are representative of LAD.  It also yields 
the question whether this model could be improved by using the proportion of LiDAR returns as 
well as the mean decay constant.  Assuming a simple linear model 
 
             (8) 
 
Where L is LAD,   is mean decay constant, p is proportion of hits, c is a constant and β and γ are 
constants of proportionality.  Solving this for a least-squares solution, we obtain the model shown 
in Figure 6, with a R2 of 69%.  This is a great improvement in accuracy, although it is apparent that 
the relationship is not perfectly linear, leading to underestimation at lower LAI values. 
 
 

 
Figure 6 – Model for Leaf Area Density based on average decay constant and proportion of hits. 

 



 

4. Discussion 
 
The results show that modelling foliage as a semi-transparent gas and applying the Beer-Lambert 
law for transmittance enables reasonable estimates of the parameters of interest.  A good 
correlation between Leaf Area Density and average decay rate  was found, with an R2 of 56%.  
Unfortunately, this simple model does not work for individual pulses.  If it did, the decay rate could 
easily be used to differentiate returns from foliage to those from branches, the stem, understorey 
and the ground.  Unfortunately - just like intensity - decay constant is still a function of slope, 
roughness and size.  For each surface type there are so many variations and ways in which the light 
can hit it that only the mean of a large number of hits is useful.  For example, light hitting a 
particularly dense patch of foliage would yield a shorter decay than light hitting hard ground at an 
oblique angle.  The crucial difference between decay constant and intensity is that decay constant is 
not affected if the light beam has been attenuated prior to hitting the target.  Figure 7 shows an 
attempt to correlate LAD with mean intensity within a height band, and the R2 value of 2% shows 
that there is little or no correlation. 
 

 
Figure 7 – Discrete return intensity vs. leaf area density. 

 
When considering the average decay constant within a height band, there is a distinct change 
between foliage and ground.  Figure 8 shows how LAD inferred from  varies with height for plot 
10, in 1m height bands, along with the measured LAD.  Two trends are clear:  The LiDAR method 
underestimates LAD at the very top of the tree, and grossly overestimates it at the base.  The 
underestimation at the top of the tree is likely due to the fact that LiDAR does not sample 
everywhere, and the beam footprints are prone to missing the very tops of trees (Hyyppä et al. 
2004).  The overestimation at the base (where the measured LAD was 0) is due to the fact that 
understorey and ground returns also feature.  Due to the broad-leafed nature of the understorey 
(ferns, grasses, and broad-leafed shrubs), these are likely to attenuate incident light faster than 
dispersed needles, and have a higher decay rate.  The ground will attenuate light almost instantly, 
so can be expected to have an even higher decay rate.  Understorey was recorded for plot 10 as 
approximately 70% cover up to a height of 4m.  This result would be consistent with the increase in 

 from this height onwards. 
 
Unfortunately, as we have already mentioned, for each height band there exists a wide range of λ 
due to its dependence on surface roughness and slope.  We cannot expect to separate out individual 
returns from understorey as distinct from canopy foliage, but an increase in  can be used as an 
indicator of where understory begins.  Higher values of  could also be used to identify ground 
returns, but it is unlikely this method would be as effective as the well-researched surface fitting 
methods employed for digital terrain model extraction (see Hyyppä et al. (2004) for a history of 



 

methods).  Further research is necessary for applying this method in mixed species forests – it may 
for example be possible to gauge the species mix by the range in λ, particularly if it is a mix of 
coniferous and deciduous species. 
 
This study has determined that – like intensity – waveform decay is a useful addition to a discrete 
LiDAR point set.  Whilst each individual value does not determine the surface type for each 
individual return, when taken as a population over an area they can be useful – along with 
geometry and aerial photography – for identifying surface traits.  A model for foliage density from 
LiDAR will be of use for carbon accounting, growth and yield, and fire risk modelling. 
 

 
Figure 8 – Leaf Area Density (measured and inferred from mean decay model) vs. height in plot 10. 

 
5. Conclusion 
 
Foliage density is a useful characteristic for describing forests.  It can be used for measuring 
growth and yield, carbon sequestration, health, biodiversity and fire risk.  Directly measuring 
foliage density by destructively sampling trees is expensive and unrepresentative over large areas.  
Photographic methods – such as aerial and hemispherical photography – provide reasonable 
estimates of Leaf Area Index (LAI), but are generally unable to resolve these data into a vertical 
distribution. 
 
Aerial LiDAR gives a full 3D representation of the canopy and can provide this information for 
large areas in a short time.  Waveform and discrete LiDAR over a New Zealand radiata pine forest 
was obtained and compared with Leaf Area Density (LAD) measurements made in 2m height 
intervals across ten 0.16ha sample plots.  Returns in foliage were generally characterised by a 
skewed shape, and the hypothesis that this skew was related to foliage density was tested. 
 
By deconvolving the waveform with the outgoing pulse shape, an expression of the surface 
response can be found (Jutzi and Stilla 2006).  A simple model of the canopy as a semi-transparent 
gas was assumed, which dictates that reflectance would follow an exponential decay as per the 
Beer-Lambert law.  By fitting exponential decays to each deconvolved waveform peak, values for 
the decay constant λ were obtained.  In this study we tested the hypothesis that λ will characterise 
the density of the foliage at that location. 
 
λ is also a function of surface slope and roughness, as is the case for intensity.  λ is preferential to 
intensity for surface identification since it is not affected by beam attenuation higher in the canopy.  
Although λ cannot be used to identify each individual return, the mean value for λ shows a strong 
relationship to surface type when averaged over a volume.  Highest values were obtained for areas 
of predominately ground, medium values for understory and lower values for canopy.  Within the 



 

canopy, λ can be used to estimate LAD with an R2 of 56%.  The proportion of LiDAR returns to 
fall in each height band can describe LAD with an R2 of 50%, and a model utilising both decay rate 
and proportion of returns described 69% of the variation in LAD.  This model can be used for 
remotely sensing foliage density in Pinus radiata forests above the understorey, but could be 
calibrated for other species and potentially even mixed species forests. 
 
Acknowledgements 
 
The work in this paper was funded by the Scion Capability Fund and used data collected by the 
Ministry for the Environment.  Many thanks to Nigel Searles from MfE for use of the data, and to 
Andrew Dunningham, Jonathan Harrington and David Pont from Scion for their help and 
knowledge.  Particular thanks must also go to New Zealand Aerial Mapping, in particular Tim 
Farrier, for providing an excellent LiDAR service and for assistance with countless queries and 
demands. 
 
References 
 
Adams, T., Brack, C., Farrier, T., Pont, D., and Brownlie, R. (2011). So you want to use LiDAR? - 

A guide on how to use LiDAR in forestry. New Zealand Journal of Forestry, 55 (4): 19–
23. 

Beets, P., and Lane, P. (1987). Specific leaf area of Pinus radiata as influenced by stand age, leaf 
age, and thinning. New Zealand Journal of Forestry Science, 17 (2): 283-291. 

Beets, P.N., Reutebuch, S., Kimberley, M.O., Oliver, G.R., Pearce, S.H., and McGaughey, R.J. 
(2011). Leaf area index, biomass carbon and growth rate of radiata pine genetic types and 
relationships with LiDAR. Submitted to Forests. 

Blair, J.B., and Hofton, M.A. (1999). Modeling laser altimeter return waveforms over complex 
vegetation using high resolution elevation data. Geophysical Research Letters, 26 (16): 
2509-2512. 

Bongers, F. (2001). Methods to assess tropical rain forest canopy structure: an overview. Plant 
Ecology, 153 (1): 263-277. 

Chauve, A., Vega, C., Durrieu, S., Bretar, F., Allouis, T., Deseilligny, P., and Puech, W. (2009). 
Processing full-waveform lidar data in an alpine coniferous forest: assessing terrain and 
tree height quality. International journal of remote sensing, 30 (19): 27. 

Donoghue, D.N.M., Watt, P.J., Cox, N.J., and Wilson, J. (2007). Remote sensing of species 
mixtures in conifer plantations using LiDAR height and intensity data. Remote Sensing of 
Environment, 110 (4): 509-522. 

Forster, W.A., and Nairn, J. (2010). Literature Review of Methods for Describing Plant Canopies.  
Contract report written for FRST Contract No. LVLX0901: Protecting NZ’s environment 
from pesticide exposure.  

Hofton, M., Blair, J., Rabine, D., Dubayah, R., and Greim, H. (Eds.). (2006). Using Lidar-derived 
3-D Vegetation Structure Maps to Assist in the Search for the Ivory-billed Woodpecker. 

Hofton, M.A., Minster, J.B., and Blair, J.B. (2000). Decomposition of laser altimeter waveforms. 
Geoscience and Remote Sensing, IEEE Transactions on, 38 (4): 1989-1996. 

Hyyppä, J., Hyyppä, H., Litkey, P., Yu, X., Haggrén, H., Rönnholm, P., Pyysalo, U., Pitkänen, J., 
and Maltamo, M. (2004). Algorithms and methods of airborne laser-scanning for forest 
measurements. International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 36 (Part 8): 1682-1750. 

Jutzi, B., and Stilla, U. (2006). Characteristics of the measurement unit of a full-waveform laser 
system. Revue Française de Photogrammétrie et de Télédétection, 182 (2006-2): 17–22. 

Lefsky, M.A., Cohen, W., Acker, S., Parker, G.G., Spies, T., and Harding, D. (1999). Lidar remote 
sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock 
forests. Remote Sensing of Environment, 70 (3): 339-361. 

Lim, K., Treitz, P., Wulder, M., St-Onge, B., and Flood, M. (2003). LiDAR remote sensing of 
forest structure. Progress in Physical Geography, 27 (1): 88. 



 

Lin, Y.C., and Mills, J.P. (2010). Factors influencing pulse width of small footprint, full waveform 
airborne laser scanning data. Photogrammetric engineering and remote sensing, 76 (1): 49-
59. 

Madgwick, H., and Service, N.Z.F. (1981). Above-ground dry-matter content of a young close-
spaced Pinus radiata stand: New Zealand Forest Service. 

McGaughey, R. (2010) FUSION. US Forest Service, Pacific Northwest Research Station, 
http://www.fs.fed.us/eng/rsac/fusion/. 

Morsdorf, F., Kotz, B., Meier, E., Itten, K., and Allgower, B. (2006). Estimation of LAI and 
fractional cover from small footprint airborne laser scanning data based on gap fraction. 
Remote Sensing of Environment, 104 (1): 50-61. 

Morsdorf, F., Meier, E., Kotz, B., Itten, K.I., Dobbertin, M., and Allgower, B. (2004). LIDAR-
based geometric reconstruction of boreal type forest stands at single tree level for forest 
and wildland fire management. Remote Sensing of Environment, 92 (3): 353-362. 

Morsdorf, F., Nichol, C., Malthus, T., and Woodhouse, I.H. (2009). Assessing forest structural and 
physiological information content of multi-spectral LiDAR waveforms by radiative 
transfer modelling. Remote Sensing of Environment, 113 (10): 2152-2163. 

Naesset, E. (1997). Estimating timber volume of forest stands using airborne laser scanner data* 1. 
Remote Sensing of Environment, 61 (2): 246-253. 

Parrish, C.E. (2007). Vertical object extraction from full-waveform lidar data using a 3d wavelet-
based appraoch. PhD, Civil and Environmental Engineering, Wisconsin-Madison, 
Wisconsin. 

Parrish, C.E., Jeong, I., Nowak, R.D., and Smith, R. (2011). Empirical Comparison of Full-
Waveform Lidar Algorithms: Range Extraction and Discrimination Performance. 
Photogrammetric Engineering & Remote Sensing (in press). 

Persson, Å., Söderman, U., Töpel, J., and Ahlberg, S. (2005). Visualization and analysis of full-
waveform airborne laser scanner data. International Archives of Photogrammetry, Remote 
Sensing and Spatial Information Sciences, 36 (part 3): 103-108. 

Reitberger, J., Krzystek, P., and Stilla, U. (2006). Analysis of full waveform lidar data for tree 
species classification. International Archives of Photogrammetry, Remote Sensing and 
Spatial Information Sciences, 36 (Part 3): 228-233. 

Reitberger, J., Krzystek, P., and Stilla, U. (2008). Analysis of full waveform LIDAR data for the 
classification of deciduous and coniferous trees. International journal of remote sensing, 
29 (5): 1407-1431. 

Riaño, D., Valladares, F., Condés, S., and Chuvieco, E. (2004). Estimation of leaf area index and 
covered ground from airborne laser scanner (Lidar) in two contrasting forests. Agricultural 
and Forest Meteorology, 124 (3-4): 269-275. 

Stephens, P.R., Watt, P. J., Loubser, D., Haywood, A., and Kimberley, M.O.,(Ed.) (Eds.). (2007). 
Estimation of  carbon stocks in New Zealand planted forests using airborne scanning 
LiDAR.  Finland. 

Wagner, W., Ullrich, A., Ducic, V., Melzer, T., and Studnicka, N. (2006). Gaussian decomposition 
and calibration of a novel small-footprint full-waveform digitising airborne laser scanner. 
ISPRS Journal of Photogrammetry and Remote Sensing, 60 (2): 100-112. 

Watson, A. (1947). Saligia. Journal of the Warburg and Courtauld Institutes, 10: 148-150. 
 
 
 



The Sorted Pulse Data Software Library (SPDLib): Open source tools 
for processing LiDAR data. 

 
Pete Bunting1,2, John Armston3 Daniel Clewley1 & Richard Lucas 1 

 
1Institute of Geography and Earth Sciences, Aberystwyth University, UK. pete.bunting@aber.ac.uk 

2Landcare Research, Palmerston North, NZ 
3 Joint Remote Sensing Research Program, Centre for Spatial Environmental Research, School of 

Geography, Planning and Environmental Management, University of Queensland 
j.armston@uq.edu.au 

 
Abstract 

 
SPDLib is a new set of tools that allow processing and analysis of the full range of LiDAR data 
from terrestrial, airborne and spaceborne systems, including both discrete return and waveform 
datasets.   The software provides an implementation of the SPD file format that allows 
efficient and flexible storage of these datasets largely through the inclusion of spatial indexing 
and pulse (rather than point) based data structures.   A visualisation tool (SPD Points Viewer), 
which builds on top of SPDLib and the SPD file format, has also been developed.   The 
software and source code have recently been made freely available and can be accessed online 
through open source code repositories.   Future developments will focus on the development 
of new waveform processing functionality and optimizing performance. The software and 
documentation can be obtained from http://www.spdlib.org. 
 
Keywords: LiDAR, Software, Processing, Full Waveform, Discrete Return, Pulse 
 
1. Introduction 
 
As the availability and volume of Light Detection and Ranging (LiDAR) data have increased 
and its use expanded beyond traditional surveying, software needs to be made available to allow 
users to efficiently process and exploit these data across a wide range of applications.   Most 
of the LiDAR data available for users has been acquired by airborne systems, with the post 
spacing often > 50 cm and coverage often exceeding hundreds or even thousands of square 
kilometers.   However, terrestrial laser scanning (TLS) systems are also increasingly being 
used with these providing very high post spacing (1-10 cm) data over comparatively small areas 
(often < 1 ha).   LiDAR systems also have varying specifications, from single and multiple 
return discrete return recording sensors to sensors that digitize full transmitted and received 
waveforms (Mallet et al., 2009). 
 
From these datasets, a wide range of data products have been generated.   For example, within 
the vegetation community, common products derived from airborne LiDAR have included 
Digital Terrain Models (DTM), Digital Surface Models (DSM), Canopy Height Models (CHM) 
and structural measures such as gap fraction, canopy openness, leaf area index, height 
percentiles and apparent foliage profiles.   From these measures, studies have estimated a wide 
range of parameters, relating to carbon stocks (Lee and Lucas, 2007), timber volume (Næsset, 
2002), biodiversity (Hill and Thomson 2005) and forest health (Müller and Brandl, 2009).   
However, in each case, different software have been used and often developed in-house such 
that it is not available for wider use. 
 
The development of software for LiDAR process is not trivial, particularly when dealing with 
large datasets that cannot fit into the memory of many computers used for processing.   Whilst 
a number of commercial software products are available (e.g., Terrasolid’s Terra product line, 



PointTools and ESRI’s ArcGIS), these are limited to processing discrete return data and do not 
support the ingestion or analysis of waveform data.   Sensor manufactures do provide tools for 
processing the data from their systems, such as Riegl’s RiAnalyze, RiProcess and RiWorld or 
Leica’s Cyclone software, but these are mainly concerned with the pre-processing steps directly 
following acquisition, such as registration to world coordinates or translating waveform data 
into discrete returns for use within existing software packages.   A large body of software has 
also been generated through academic research, some of which has been released into the public 
domain under a range of licensing terms.   Such software includes OPALS (from the Vienna 
University of Technology), which supports a wide range of data processing tasks including the 
processing of waveform data.   BCAL LiDAR tools (Idaho State University) and RSC LAS 
Tools (University of Queensland) provide utilities that are built on top of IDL/ENVI, for 
processing and visualising point cloud LiDAR data.   LASTools (University of North 
Carolina) has functionality for processing very large discrete return LiDAR datasets, focusing 
particularly on filtering and producing elevation models.   More specialised tools include 
MCC-LiDAR (US Forest Service), which only provides an implementation of the ground return 
classification algorithm of Evans & Hudak (2007), and libLAS which provides a general 
purpose software library for reading and writing the ASPRS LAS file format data. 
 
The specific nature of most software means that many of the often disparate datasets used by 
research and natural resource management agencies cannot be ingested, analyzed and processed 
in a simple, standardized and integrated manner.   Presented with the difficulty of using 
discrete return and waveform LiDAR and TLS data acquired by different ground-based, 
airborne and/or spaceborne sensors over sites in Australia and Wales, UK, this study aimed to 
develop a new set of tools for the storage and processing of LiDAR data, specifically with 
support for terrestrial, airborne and spaceborne discrete return and full waveform data.   Key 
objectives were to provide commands for complete end-to-end processing of single wavelength 
LiDAR data following receipt of the data from the provider to products, support the analysis 
and interpretation of large datasets and to facilitate batch processing.   The software was also 
designed to provide a reference implementation of the sorted pulse data (SPD; Bunting et al., 
2011) file format, built on the HDF5 format.   The SPD file format supports the storage of 
waveform and discrete return data while providing spatial indexing of the data for efficient data 
processing, all of which the SPDLib software takes full advantage.   In parallel, the 
development of high quality visualisations of the LiDAR data for validation, implementation 
and testing purposes was envisaged.  
 
2. Method 
 
2.1 Sorted Pulse Data (SPD) Format 
 
The software library and tools presented in this paper are built on top of the SPD file format 
(Bunting et al., 2011) which has been designed specifically for the storage of LiDAR waveform 
and discrete return data acquired by terrestrial, airborne and spaceborne sensors.   The format 
uses a pulse based structure as opposed to a solely point based structure, where pulses contain 
all the information associated with a transmitted pulse from the sensor, including transmitted 
and received waveforms and the discrete returns, determined by Gaussian decomposition of 
digitised waveforms or by the sensor hardware using proprietary methods (Bunting et al., 2011).   
The SPD format also supports 2D spatial indexing of the pulses, where pulses can be referenced 
using cartesian, spherical or polar coordinate systems and projections.   These indexes can be 
used to significantly speed up data processing whilst allowing the data to be appropriately 
projected and are particularly useful when analysing and interpreting TLS data.   The format is 
defined within a HDF5 file, which provides a number of benefits including broad support across 
a wide range of platforms and architectures and support for file compression. 



 
2.2 The Sorted Pulse Data Software Library (SPDLib) 
 
SPDLib has been implemented within C++ and provides support for a wide range of platforms, 
although has predominately been tested on UNIX and Linux systems.   The software is written 
with an object-orientated modular design throughout, allowing for new functionality to be added 
using the C++ application programming interface (API) with relative ease   In addition, a 
more user-friendly Python binding interface to SPDLib has been provided allowing easy access 
to the raw pulse data and spatial index for new functionality to be developed more easily.   
Finally, a wide range of tools has been developed for common tasks (e.g., ground return 
classification, data management and the calculation of metrics) associated with LiDAR data 
processing.  
 
2.2.1 Tools and Workflow 
 
The recommend workflow for airborne LiDAR data is shown in Figure 1.   Where multiple 
input files for a study are available (i.e., associated with a number of flight lines), the first step 
is to create a single data file without a spatial index, referred to as an Unsorted Pulse Data 
(UPD) file.   If waveform data are the input, it is recommended that Gaussian decomposition 
is applied, generating a file with both waveforms and discrete returns that are linked to one 
another. 
 
Up until this point, the data are processed without a spatial index (as one is not required).   
However, the data need to be converted to the SPD format for the remainder of the processing 
chain using the commands provided.   Once the SPD file has been created, using an 
application specific index resolution and origin, then the ground returns are classified.   From 
the classified data DTM, DSM and CHM raster products can be generated and the above-ground 
height attributes within the SPD file (i.e., on pulses and points) can be defined.   The SPD 
format contains, within a single file, both a topographic elevation and above-ground height 
attribute for each pulse origin and discrete return.   After defining the above-ground height 
field, a range of metrics commonly applied to LiDAR data can be calculated.   However, 
rather than implementing each metric individually a set metric primitives and mathematical 
operations between metrics have been defined.   Therefore, all metrics can be calculated 
through any combination of these primitives and operations, an XML file is used to define these 
combinations.   The XML interface allows the above-ground height, sensor-target range, 
Gaussian amplitude (or intensity) and width fields to be used and combined, facilitating 
calculation of a large number of existing canopy, terrain and statistical metrics and the creation 
of new metrics as required. 
 
2.2.1.1 File format conversion 
 
A number of common LiDAR formats are supported for conversion to the SPD format and new 
formats are being progressively integrated.   These include a range of ASCII formats, although 
these tend to differ between data providers, and the LAS binary format, which provides a 
standard interpretable format for discrete return data.   It should be noted that some data 
providers and software packages do not always populate all the available data and header fields 
within the LAS file and this can limit the usefulness of some datasets.   For example, if the 
points are not associated with the correct return numbers, the pulses cannot be reconstructed 
when the SPD file is built.   Users are therefore recommended to consider the fields they 
require, ideally prior to acquisition of the data, to ensure they request all the data they might 
need. 
 



 
Figure 1. SPDLib airborne LiDAR processing chain. 

 
2.2.1.2 Decomposition of full waveform data 
 
The SPDLib software supports Gaussian decomposition (Wagner et al., 2006) of received 
waveforms ( iP ) to retrieve discrete returns, which are linked to the waveforms within the SPD 
file for each pulse by the time (ti).   The zero-crossings of the waveform first derivative above 
a nominal noise threshold are identified and used as the starting values for the N Gaussian 
amplitude ( iP̂ ) and time (ti) parameters (Equation 1).   Bounds are also placed on the pulse 
width parameter (sp).   The Levenberg-Marquardt method for non-linear least-squares is used 
(Equation 1) to solve for these parameters. 
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Decomposing the waveform allows existing algorithms for analysing discrete return data to be 
used (e.g., for ground return classification) while retaining the waveform for later processing 
steps.   This is achieved as the discrete returns and waveforms are linked through the pulse 
based architecture. 
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2.2.1.3 Ground return classification and interpolation 
 
Three ground return classifiers are available within SPDLib.   The first is a simple 
plane-fitting classifier that is best applied to scenes with relatively flat terrain and uses the 
lowest elevation returns within each grid cell (of the index) to identify ground returns.   The 
classification process applies an iterative plane fitting approach for each grid cell, using a 
window of cells around the central cell for context.   This process is iterative with a plane 
fitted at each step with returns above the plane progressively removed until either there are no 
points remaining in the central cell or all the remaining points fit onto the plane.   The second 
algorithm is an implementation of the progressive morphological filtering approach by Zhang et 
al. (2003), which can be applied to landscapes with variable terrain and supports the removal of 
a wide variety of features such as vegetation and buildings.   The third algorithm is the 
multiscale curvature classification algorithm of Evans and Hudak (2007), which is optimized for 
vegetated environments. 
 
To define the above-ground height field for each return and pulse, two options are available.   
A raster DTM can be used with the terrain elevation for each point defined using a nearest 
neighbor algorithm.   Alternatively, values can be directly interpolated from the classified 
ground returns.   The second approach is recommended, especially for datasets with large 
ground post spacing.   Several interpolation algorithms are available for identifying terrain 
height values from the classified ground returns.   The recommended (Bater and Coops 2009) 
and default option is the natural neighbor algorithm (Sibson 1981).   The same approach is 
used and recommended for generating DTM, DSM and CHM products.  
 
2.2.1.4 Calculation of LiDAR metrics 
 
A large body of literature (e.g., Hall et al., 2005, Coops et al., 2007) deals with the definition 
and formulation of metrics that can be calculated from 3D LiDAR data, particularly for 
vegetated environments.   These can be simple statistical moments, percentiles of the canopy 
height or return amplitude or count ratios (often linked to canopy cover).   More advanced 
metrics can include the parameters of probability density functions (e.g. Weibull; Coops et al., 
2007) or biophysical metrics such as foliage projective cover (Armston et al., 2009). 
 
To provide an interface to allow these metrics to be calculated with SPDLib, a list of metric 
primitives (Table 1) has been defined for above-ground height, topographic elevation, return 
amplitude, return width and range.   The returns classification (e.g., ground, vegetation etc.), 
minimum and maximum values for the attribute being calculated (e.g., above-ground height) 
and return number (e.g., first, last etc.) can be used to restrict the points and pulses used for the 
calculations.    

Table 1: List of the metric primitives available within SPDLib. 

Metric 

Number of Returns Absolute Deviation 
Sum Coefficient Of Variation 
Mean Percentiles 
Median Skewness 
Mode Person Mode 
Minimum Person Median 
Maximum Kurtosis 
Standard Deviation Count ratio 
Variance  



 
A list of mathematical operators (Table 2) which can be applied to either another mathematical 
operator or metric primitive are then available to allow a range of LiDAR metrics to be derived.   
The interface therefore provides a highly flexible tool for subsequent analysis of LiDAR data. 
 

Table 2: List of the metric operators available in SPDLib. 

Operator Inputs 

Add Two metrics 
Minus Two metrics 
Multiply Two metrics 
Divide Two metrics 
Power One metric 
Absolute One metric 
Square Root One metric 
Sine One metric 
Cosine One metric 
Tangent One metric 
Inverse Sine One metric 
Inverse Cosine One metric 
Inverse Tangent One metric 
Log (base 10) One metric 
Natural Log One metric 
Exponential One metric 
Percentage Two metrics 
Add constant One metric and one constant value 
Minus constant from metric One metric and one constant value 
Minus metric from constant One metric and one constant value 
Multiply by constant One metric and one constant value 
Divide metric by a constant One metric and one constant value 
Divide constant by metric One metric and one constant value 
Metric to the power of constant One metric and one constant value 
Constant to the power of metric One metric and one constant value 
Number of returns above metric value One metric 
Number of returns below metric value One metric 

 
To interface with this metrics command, an XML file is defined with a hierarchical list of 
metrics and operators.   These can either be applied to the LiDAR data to produce a raster 
output or to a polygon shapefile of polygons where the calculated values for each polygon are 
added to the shapefiles attribute table. 
 
2.2.2 Python Binding 
 
The SPDLib software also provides a Python binding to the C++ library to allow SPD (both 
indexed and unsorted non-indexed) files, including waveform data, to be read and written 
directly from python.  This allows new and more advanced features and functions to be 
implemented and gives access to the functionality Python/SciPy offers (e.g., MatPlotLib, 
plotting; Figure 2).   In addition, the Python binding can be used to convert unsupported 



external formats to SPD files more easily than through the use of C++, therefore allowing other 
SPDLib tools or the SPD Point Viewer to be used. 

 
Figure 2. A received waveform (blue line) and decomposed discrete-returns (red dots) plotted using 
MatPlotLib from a Python script using the SPDLib Python binding. The noise threshold is shown as the 
dashed line and the reconstructed waveform, from the fitted Gaussians, is shown in red. 
 
2.3 Visualisation  
 
Visualisation of the LiDAR point cloud and associated data (e.g., aerial photography, 
hyperspectral imagery) is important to many users.   For example, the results of an applied 
algorithm (e.g., a ground return classification) or a simple overview of the distribution of returns 
can provide new insights into the information content of the data.   For this reason, the SPD 
Points Viewer application has been created using C++ and QT4 to provide a cross platform 
visualisation tool built on top of the SPDLib software library.  
 
The viewer first provides a window displaying the SPD files overview (‘quicklook’) image 
(Figure 3a), which directly maps onto the SPD files spatial index and allows the user to select a 
region of interest.   A second view (Figure 3b) displays the selected region as 3D points.   
The 3D points can be coloured by a number of variables including return amplitude, width, 
classification, RGB values (e.g., from co-registered optical imagery), height and elevation, 
while the z component of the points can be either the topographic elevation or height field.   
The colouration of points by variables provides a high degree of flexibility in visualisation that 
allows data to be better understood and interpreted.  
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4. Summary and conclusions 
 
In many areas of research and application, terrestrial, airborne and spaceborne LiDAR have 
been acquired but their use has often been limited by the lack of capacity to store, visualise, 
interpret and process these data.   In many cases, the software available has not been sufficient 
to address all of the requirements of the users and many have had to develop their own in-house, 
which has often not been available to others.   SPDLib has been developed for these same 
reasons but the software has been made freely available, from http://www.spdlib.org, and is 
now open source.   Furthermore, the software is easy to use by those with very little prior 
knowledge of LiDAR and will provide new options and insights for those that are more 
experienced.   
 
The tools make use of the SPD file format, which provides fast data access through a spatial 
index and pulse based data structures, allowing large datasets to be efficiently processed.   The 
software provides good capability for storing and processing waveform and discrete return 
LiDAR data from a range of platforms.   The SPD Points Viewer also provides a unique 
opportunity to explore and understand discrete return and waveform data and allows integration 
with optical or even radar data.   Development is ongoing, largely to support more data types 
and applications, improve performance and integrate new algorithms.   However, the software 
provides basic and advanced processing and analysis capability that is robust and builds on 
knowledge and understanding from the scientific and user community.   As such, its use in 
investigating and exploiting the enormous amounts of information contained with the diverse 
range of LIDAR data is encouraged. 
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The point density in a single-scan terrestrial laser scanner (TLS) point cloud is very dense close 
to the scanner and gets sparser as the distance from the scanner increases. A full circular scan 
can contain tens of millions of points, which is impractical for most algorithms that work on 
point data. The number of points can be reduced by taking a sample of the original data. We 
have studied what influence different sampling methods have on the number of points that falls 
on tree stems. We propose that the number of points available on a far-away tree can be 
increased with a smart data reduction scheme. The data reduction favours far-away points over 
the densely located points close to the scanner. The main findings of this study are that 
removing ground points before sampling gives a great advantage in data reduction and that a 
point selection using only horizontal  distances (2D Cartesian, xy-plane) favours low points. 
 
Keywords: terrestrial laser scanner, data reduction, ground model 
 
1. Introduction  
 
Finding stems from a TLS point cloud of a forest plot is essential task for several applications: 
tree map generation, forest inventory, change detection and biomass estimation. Many studies 
have already presented methods for stem modelling (Thies et al. 2004), canopy structure (Fleck 
et al. 2007) and tree modelling (Gorte and Winterhalder 2004, Hosoi and Omasa 2006, Xu et al. 
2007). More automatic plot scale forest methods have also been presented for tree location 
(Liang et al. 2009), and volume estimation (Bienert et al. 2006). The problem of unequal point 
distribution in range has been mainly noted when only single scan data were used (Liang et al. 
2009). In multi-scan methods, the combined point clouds of the trees have more equal sizes than 
in single scan, and thus the distance dependent point distribution has not lowered the 
detectability of objects far away from the scanner. The automation chain, however, is broken in 
most approaches in the registration of the point clouds. Henning and Radtke (2008) introduced a 
registration method for multiple forest range-images using ground points and stem centres as tie 
points is presented.  According to their results the accuracy of the stem diameter estimates is 
generally dependent on the number of the surface points representing tree stems and this value 
varies between studies. We believe that a considerable gain in efficiency and performance can 
be achieved with a data reduction method that is designed for forest data. Both single- and 
multi-scan methods will benefit from smart data reduction, especially when the automatization 
level of TLS forest methods increases. 
 
Laser scanner point cloud data reduction has been studied more in the field of reverse 
engineering. Lee et al. (2001) present uniform and non-uniform grid methods for surface data 
reduction. In several of the methods presented in (Lee et al. 2001), either point locations or their 
depth values are medians of points that lie on a grid cell. Combined normals of a triangulation 
inside a grid cell were also used. This kind of approach assumes that the points lie on a smooth 
surface. Another area where the TLS point cloud data reduction has been studied are registration 
applications (Mandow et al. 2010). Many common registration methods are related to Iterative 
Closest Point ICP (Besl and McKay 1992) and suffer from dense point clouds. Mandow et al. 
(2010) classify data reduction into two types: range-dependent and range-independent. In the 
range-dependent methods, each scan is processed to find feature points with special 
characteristics. These can be representative points from sequences with similar ranges in the 
same 2D slice, points from salient geometrical regions, mesh vertices or octree cube centres. 
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The range-independent data reduction can be based on random or uniform selection strategies. 
Spherical selection strategy is introduced in (Mandow et al. 2010).  The data reduction problem, 
however, is different in forest than either in built environment or in reverse-engineering: the 
number and distribution of trees is arbitrary and there are no surfaces on which the points are 
ordered. 
 
In this study, different data reduction methods were tested on a single-scan point cloud 
measured in a forest plot. Data ranging up to 20 meters from the scanner were used. It was of 
interest to find such a method that would preserve the stem points as well as possible. We 
wanted to process the whole scan as one piece of data, since if the data were cut into pieces then 
the edges would have to be separately checked for stems that had been split between two pieces 
of data. Point distance from the scanner or single point location information was used to form as 
even distance-based point distribution as possible. The distance computation added to the total 
processing complexity. On the other hand, consecutive processing was simpler because the point 
distribution was more equal on objects that lie on different distances from the scanner. Data 
reduction by picking every nth point was used as a reference method. 
 
We tested the effect of different data reduction schemes with two different scenarios: 

1. Sampling was performed from all data points 
2. Ground points were removed before the sampling, the number of points that were 

selected was the same as in 1. 
  
The text is divided as follows: The data acquisition and original point cloud properties are 
described in chapter 2, the used data reduction strategies and ground detection method are 
described in chapter 3, results on point distance distribution and available points on tree stems 
are given in chapter 4 and discussion in chapter 5.  
 
2. Data 
 
The data was scanned in Evo, Finland (61.19°N, 25.11°E) using a Leica HDS6000 scanner 
(Leica Geosystem AG, Heerbrugg, Switzerland) in 2008. The scanner uses phase-shift 
measurements of continuous waves to measure the distances. The scanning rate was 500,000 
points per second and the angle increment in both directions was 0.036o, point spacing at 10m 
distance was 6.3 mm. The spot size at exit was 3 mm (based on Gaussian definition) and the 
beam divergence 0.22 mrad. The scanner angle space was 360o x 320o. The scanner 
automatically filters the raw point cloud of approximately 40.4 million points. The clear-sky 
noise points, points with low intensity and all points closer than 0.8m from the scanner were 
pre-filtered during the data transportation. The pre-filtered data consist of a single scan point 
cloud of 31.5 million points. The data are in local Cartesian xyz-space with the scanner set in 
the origo. The range distribution of the point cloud is illustrated in Figure 1.  
 
In Figure 1, the top left plot (a), illustrates the point distance distribution. The blue patch 
describes the ground points and the green one the vegetation points. The cyan and magenta part 
visualize the ring that is highlighted in the plot b. It can be seen that most of the points lie inside 
10m horizontal distance from the scanner. In more detail: 50% of the points lie within 2.5m, 
80% within 6m, 89% within 10m, 95% within 14m, and 98% within 20m from the scanner. The 
top right plot (b) of Figure 1 shows how the area of a one-meter wide ring increases at each 
distance. The locations of example trees are plotted with stars. The bottom left plot (c) shows 
the average point density in each distance ring in blue (curve with top on the left) and the area 
of the rings in green (ascending line). The cyan lines show the cyan ring of plot b. The point 
density is not monotonically decreasing with increasing distance, because vertical objects (trees) 
introduce local peaks in the point density and in the closest distances, pre-filtering has been 
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applied. The bottom right plot (d) shows the effect of beam divergence compared to the growing 
size of the resolution cell as the distance increases. It can be seen that in distances <7m the 
points illuminating a planar surface are overlapping. Thus, the data are redundant in close range 
surfaces further emphasizing the need for data reduction.  
 

 
Figure 1: Point distribution of the pre-filtered point cloud. a) Distribution of all points and the proportion 
of ground points in different distances. b) Visualization of the reference trees and sizes of one-meter rings 
at different distances from the scanner. c) blue - Point densities on the one meter rings and green - the ring 

area. d) The beam diameter and resolution cell diameter at different distances. 
  

2.1 Reference data 
 
Stem point clouds were manually delineated from the pre-filtered point cloud within the 
horizontal distance of 20m from the scanner. Tree specimens of similar size were selected as 
example cases from different distances from the scanner. The stems and their properties that 
were computed from the pre-filtered point cloud are listed in Table 1 and the respective full 
point clouds are visualized in Figure 4, top plot.  
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Table 1: reference stem data from full point cloud. 
 
Tree Id Distance (m) Number of points Stem height (m) DBH estimate

(cm) 
Average point density 

(1/m2) 

1 1.4 858907 7.6 27.6 431326.3 

2 3.7 115991 9.8 14.8 86325.5 

3 4.4 62080 9.1 18.8 37823.4 

4 7.8 49030 12 26.5 15924.4 

5 8.6 41410 9.7 23 19211.5 

6 11 19800 9.9 25 8236.7 

7 12.3 18707 11 36.5 4807.6 

8 16 6027 11.1 21.4 2618.5 

9 16.8 5176 9.7 22.6 3911.5 

10 19 4530 12.1 17.1 2978.3 
 
 
3. Sampling methods 
 
We made two basic assumptions about the collected point cloud. The assumptions were based 
on the spherical scanning geometry. The first assumption was that the point density of the cloud 
was expected to decrease as r-n in general, where r is the point distance from the scanner. The 
second assumption was that the angular distribution of the point cloud was considered to be 
equal in all directions. In a real scanning situation these assumptions do not strictly hold, as 
there will be returns from ground and surrounding objects. Also, the scanning angle was limited 
to the downward direction. However, the random point selection was used because it did not 
require any preceding knowledge of the scanned area. We used two different point selection 
approaches: distribution based and grid based selection. 
 
Random point selection, with every nth point picked was used as a reference. No distance 
information were used. This sampling preserved the form of the original point distance 
distribution. 
 
3.1 Distribution based point selection 
 
The total of six different sampling methods were tested: 
 
Weighted random bin sampling (WRBS) that was carried out in two steps. First, the points were 
divided into a distance histogram with a pre-set number of bins. Then, a random bin was 
selected. The selection was weighted with the number of points in the bin. The bin selection was 
controlled with a user-set threshold value. The threshold value was set so that the least 
populated distance bin was selected with 90% acceptance rate. This was done to equalize the 
point distribution.  The acceptance rate for other populated bins was normalized according to 
this value. After a bin was selected, a single point in it was picked randomly. This sampling was 
performed with two different variations: with the absolute point numbers in a bin and with the 
logarithm of the absolute point numbers in a bin. The logarithm made the final sampled point 
distribution more even, but it also gave additional sampling efficiency by lowering the rejection 
rate of the most populated bins during the first randomization. 
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The 'cumulative sum'-value sampling method resembled the Case 2, but with a difference that 
the cumulative sum value (CSV) of each bin was used as a selection parameter instead of the 
absolute point number. In the 'CSV' point sampling, all points were first binned into a distance 
histogram like in the Case 2. Then, the bins were arranged in a descending order according to 
their point number ratio. Next, a bin-wise cumulative sum of the point ratios was calculated. 
After this, the calculated bin-wise cumulative sum value was given to all individual points 
within the bins. After CSV assignment all points with a CSV higher than a user-defined 
threshold were added to the sampled point list. Finally, the remaining points were picked by 
randomly selecting one and then comparing its CSV value against another random number. A 
point was accepted, if its CSV was higher than the generated random number.  
 
In addition to the previous three selection methods the following three methods were also tested. 
Their point selection algorithm was the following: 
1. Calculate single point distances from the scanner with a selected distance metric (2D / 3D) 
2. Arrange a point list according to the distances in an ascending order 
3. Pick a random point from the list using a selected sampling method (Selections 1-3, below) 
4. Add the picked point into a reduced point list and mark it as used in the original list. 
5. Repeat steps 3 and 4 until a wanted number of points have been selected. 
 
Selection 1: Random square root point picking from two-dimensional point distance distribution 
(2D, r1/2 horizontal distances in the Cartesian scanner space, xy plane). The point sampling was 
carried out by using a square rooted random point distribution that emphasized the chance to 
pick a point located far-away from the scanner. Also, the square rooted random distribution 
produces an even point distribution in cases where the point density decreases as r-2. 
 
Selection 2: Random square root point picking from three-dimensional distances (3D, r1/2). The 
random point selection was carried out as in the Case 3, but in this case a 3D point distance 
distribution was used instead of the horizontal distance distribution. 
 
Selection 3: Random cubic root point picking from horizontal distances (3D, r1/3). The random 
point picking was carried out with a cubic rooted random point distribution. The cubic rooted 
random point distribution was used as it produces a uniform point density in a three-
dimensional spherical case. 
 
3.2 Grid based point selection 
 
The grid based point distribution was based on computing a horizontal grid and a grid cell 
membership for each point. The total number of points N (computed from the wanted 
percentage) that was selected from the cells cell was equally divided between all populated cells 
whose number was Npop. The number of points that was selected from each cell, Nc , was then 
Nc = round(N/Npop). There were cells with less points than Nc, the balance between Nc and cells, 
that were completely included was found iteratively. Points within the cells with more than Nc 
points were uniformly random sampled to form a cell-wise subset of  Nc  points. Extra points 
that were caused by rounding were cut off with random selection to set the number of selected 
points exactly to the wanted percentage. The grid based selection was computed with a square 
grid of one-meter cell size and with a polar grid with 2m horizontal distance steps and pi/20 
radian angular steps. In the polar grid, the cell size increased as the distance from the scanner 
grew. 
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3.3 Ground points 
 
Ground point removal from the data was performed by transforming first the whole point cloud 
into polar coordinates in Cartesian xy-plane. Then, the data were binned with a polar histogram. 
A polar histogram was used as it suited better for the hemispherical scanning geometry than the 
Cartesian one. The ground level was set by going through every bin in the polar histogram and 
computing a height histogram with the points within them. This was performed by comparing 
the absolute height of the lowest point in a single polar bin against the height of the most 
populated height bin in the same polar bin. The smaller height value in the comparison was then 
selected as the ground height. The polar histogram bins were connected to each other with 
Delaunay triangulation after their heights had been set.  
The number of ground points found with the described method was 13.9 M leaving 17.6M 
points to be sampled from (the whole data were 31.5M points). 
 
4. Result 
 
The sampling algorithms were studied in cases where the data has been reduced to 25% - 5% of 
the original points. Cases where the ground was removed were sampled so that the number of 
selected points was the same as in cases that included the ground. In the following results the 
5% level is shown, because the results were most visible in that level. Figure 2 illustrates the 
pre-filtered point cloud distribution and distributions from different data reduction schemes. 
 

 
Figure 2: Original point distribution and distribution after the point cloud was reduced to 5% using 

different methods, a) data reduction from all points, b) from points that are not ground  
 
Figure 2 shows that most of the distribution based sampling methods (linear WRBS, logarithmic 
WRBS, 2D square root, 3D square root and, 3D cubic root) have similar general form to the 
original point cloud, whereas the grid based data reduction schemes have their own shape. The 
logarithmic y-scale diminishes the differences between the distribution based sampling 
methods.  
 
To compensate size differences of the example trees, an estimated diameter at breast height 
(DBH) and stem point cloud height were used to compute average point densities for stems. The 
average point densities on tree stems with different data reduction schemes are listed in Table 2. 
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Table 2: Average point densities on reference stems after data reduction to 5% from original, ground 

included 
 Stem ID 

Method 1 2 3 4 5 6 7 8 9 10 

pre-filtered 431326 86326 37823 15924 19212 8237 4808 2619 3912 2978 

Every 20th 21594 4312 1895 791 961 418 232 135 195 147 

Lin WRBS 22013 5145 2309 1009 1247 549 315 167 252 209 

Log WRBS 19441 4390 2036 1070 1326 599 363 206 359 263 

CSV 3498 3039 1493 779 978 477 277 462 2347 2978 

2D, r1/2 11701 5576 2654 1333 1674 746 437 259 375 297 

3D, r1/2 5555 4886 2409 1257 1573 717 452 243 364 279 

3D, r1/3 3167 4178 2357 1496 1857 968 607 346 531 437 

Square grid 368 483 640 588 518 465 370 362 626 887 

Polar grid 2156 1020 669 452 539 392 266 288 692 1014 
 
The figures in Table 2 confirm the similarity of the distribution between both WRBS- and nth 

root methods. With the exception of 3D methods, they are not efficiently reducing points in the 
area closest to the scanner.   
 
In the square grid method, the number of points close to the scanner is low, because the of grid 
cells is small. In the case with ground points included, the number of points on the closest stem 
declines so that the original stem height is not preserved (Figure 4, bottom). In the polar grid, 
the number of grid cells is the same at all distances. 
 
It should be noted, that the figures of Table 2 are merely single realizations of random processes 
on single data and thus minor differences between the results cannot be used to rank the 
methods. Table 2 should instead be taken as directional tool to figure out which methods work 
and why.     
 
Six data reduction methods were selected for comparison on individual stem level based on 
these results. The selected methods were: every 20th (reference method), 2D square root 
selection (representative of all similar distributions), 3D cubic root selection, CSV selection and 
the square- and polar grid methods.  
 
Figure 3 illustrates that the ground point removal increased the number of the stem points on all 
distances. To illustrate the problem with too large point clouds we modelled the stems using 
modelling algorithm described in Litkey et al. (2008), it fitted circles to single stem height slot 
data. Due to ineffective data reduction in the closest range, the processing time in the every 20th 
and 2D sqrt schemes remained high. The ground removal made the processing even slower.  
 
The model extent measure visualized in the bottom row of Figure 3 was computed as the ratio 
between the number of rings fitted to the stem point cloud in the original and the reduced point 
clouds. If the effective height of the stem is reduced too much, it might not be found in the stem 
detection. Also, in Henning and Radtke (2008) tie points from different heights of the stems 
were used in referencing, so the number of possible tie points would be reduced if the stem 
shortened in data reduction. 
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Figure 3: Comparison of selected data reduction schemes on stem level. Left - all points, right - no ground 
points. Top – number of points on the reference stems by distance, middle – time required for stem 

modelling. Bottom – the number of modelled height slots divided by the number of modelled height slots 
in original point cloud. 

 
The stem point clouds at different horizontal distances from the scanner in original, every 20th 
and square grid samplings are plotted in Figure 4. The stem point clouds were shattered into 
pieces in the distance mainly because of branch shadows.  
 
Overall, in this data, in distances up to 10m, with all sampling levels, all stems presented in 
Table 1 remained detectable and their stem shapes were preserved. In the ranges where beam 
overlap exists (up to 7m, Figure 1d), data reduction is needed to cut the large stem point clouds 
for efficient processing. Further away, the visibility of the stems can be secured if as many 
points as possible are included. 
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Figure 4: Tree stem point clouds on different horizontal distances, ground points included. Top - original, 
middle - every 20th sampling, bottom - grid sampling with square grid. 

 
5. Discussion 
 
The results of this study show that stem data can be observed from increased range with reduced 
point cloud if the data reduction scheme is selected carefully. The role of the ground points is 
significant, since they represent almost half of the data on the close ranges (Figure 1, distances 
below 3m). The data reduction scheme is essential not only to increase the stem detection range, 
but also to decrease the size of unnecessarily dense stem point clouds in the close range. The 
ground removal alone is not sufficient, since in the close range the individual stem point 
densities increase if no other data reduction is used. 
Based on this study, we suggest the following roadmap for data reduction in a single-scan TLS 
point cloud:  

1. ground point removal.  
2. saving all the points in the furthest distance of interest (not reducing their number). 
3. selecting individual points in distance bins or grid cells or sampling so that the local 

point distribution is accounted for. 
 
The results of the study imply that the every nth sampling is not optimal for forest data. Also the 
use of 2D distance measure leads to selecting unnecessarily many ground points when they are 
included.  
 
The presented data reduction schemes can be readily used to reduce the point number in 
different applications where several TLS scans are merged to form large datasets. In Liang et al. 
(2010) the possibility to detect tree stems from several different scans and then georeferencing 
only the stem points instead of full point clouds has been studied. In another study (Lehtomäki 
et al. 2011, submitted) used stop-and-go collected laser scanner data as a reference for a mobile 
laser scanning application. The data reduction scheme proposed in this study would allow a 
significant reduction of point cloud size making several-scan studies more manageable while 
retaining their inherent accuracy. 
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Abstract 
 
Improving log inventory is a key area where the New Zealand forestry industry could 
significant improve its supply chain performance. Although the process of counting logs seems 
relatively simple; in reality it is a difficult and labour intensive job. This is particularly 
significant to the New Zealand log export industry which is required to count and barcode every 
log (excluding pulp) that is exported. The fluctuating nature of export markets means that 
automated methods of counting logs hold significant potential. This paper investigates the 
accuracy of log counts for logs in pile/stacks using 3-dimensional (3D) point cloud data 
obtained from a ground based LiDAR scanner. In the past there have been a number of attempts 
to develop an automatic log counting system, the majority of these have used 2-dimensional 
photographic images. It was hypothesised that using 3D point data would overcome some of the 
problems that these approaches have encountered in the past. The validation study carried out 
on the algorithm showed that logs can be accurately counted and log diameters can be measured. 
Further work would be required to develop the algorithm into a commercial product and to 
determine the most cost effective hardware required to collect the 3-dimensional data required 
by the algorithm.  
     
1. Introduction 
 
 
Exact log counts are required at marshalling points and at shipside.  Present systems rely on 
truck drivers and stevedores to accurately count the number of logs both on truck and in piles 
(bunks) on the ground at the wharf prior to loading. Incorrect log counts incur a cost through 
additional labour to correct mistakes identified at a later stage, or from shipping unticketed logs 
where errors are not identified. New approaches are being considered to improve on the current 
manual system.  
 
Automated log counting using standard photography and digital image processing has been 
trialed in the past however accuracy levels were not high enough for this combination to be 
considered practical. There is one example of stereo photography being used, sScale(TM) 
developed by Danish Company (Dralle Ltd, www.dralle.dk, Accessed on 3 July 2009) who have 
commercialised a system to both count and measure the volume of logs.  To overcome some of 
the problems of standard photography in this application, ground based LIDAR has been 
suggested. A Chilean company has developed Logmeter4000 (www.woodtechms.com, Accessed 
on 3 July 2009) that uses LiDAR (Light Detection and Range) to measure and scale volume of 
logs on a truck.  
 
Whether using standard, stereo photography, or LiDAR to capture the data, processing 
algorithm are required to automatically extract the information. LiDAR produces a dataset of 
3D points where the x,y and z coordinates are known for each point on the object that the laser 
strikes. This type of data has several potential advantages for counting objects in an image over 
standard photography. There are at least two general approaches that could be used in this 
application: 
 

• The point data is turned into an image which is then used in a traditional image 



SilviLaser 2011, Oct. 16-20, 2011 – Tasmania, Australia 

 2

processing algorithms (thresholding and watershed) to count the logs; 
• Use the raw point data and develop object recognition algorithm (subject of this report).  

 
 
The objective of this project was to develop and test a prototype log counting algorithm that 
uses the 3D point cloud dataset generated by a ground-based LiDAR scanner. This paper details 
the methodology behind the algorithm and two validation exercises that were design to establish 
proof of concept. 
 
2. Methodology 
 
2.1 Algorithm Development 
 
The LiDAR Log Counting algorithm is made up of three basic components: searching, filtering 
and stopping. This algorithm has been developed only to use the x, y, and z data from the 
ground based LiDAR scanner. The number of user inputs into the algorithm has been kept to a 
minimum. The users only have to estimate the allowable maximum and minimum diameters of 
the logs in the stack. This is as simple as entering the maximum LED (large end diameter) and 
minimum SED (small end diameter) for the log grade being counted. Figure 1 gives an 
overview of the algorithm. 
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Figure 1. A flow chart of the LiDAR Logging Counting (LLC) algorithm 
 
2.1.1 Searching Component  
 
The searching component of the algorithm uses a systematic grid of starting points to find good 
locations to start the localised search. A “GOOD” search start point is defined as having at least 
100 points within a search circle of 150 mm. Once a “GOOD” start point is found the search 
circle centre is moved so that it is centred on the mean x, y co-ordinates from the old circle’s 
location (Figure 2).     
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Figure 2. The demonstration of how the search circle is moved. 

 
The search circle centre is continually shifted until the distance that the search circle moves is 
less than 1 mm. Once this point is reached the radius of the search circle is increased is a linear 
fashion. The radius of the search circle grows at a constant 1 cm each iteration (Figure 3). 
 

 
Figure 3. The search pattern of the algorithm 

 
 
 
2.1.2 Filtering Component  
 
This algorithm is primarily looking for flat circular surfaces of points that have reflected off the 
log ends. However the raw LiDAR dataset contains points that not only have reflected off the 
log end but also off other objects and the sides of the logs. The algorithm uses an adaptive filter 
to eliminate as many points that have not reflected off the current log end that is being searched. 
The algorithm utilises multiple linear regression to develop a model of the log end surface. This 
relies on the following characteristics of the LiDAR dataset: 
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• The log ends are normally cut with a straight face and hence can be modelled using a 
linear regression; 

• Neighbouring logs are really on the same plane.   
    
The points within the search circle are used to develop a linear function relating the x and y 
values to the z values. This function is then applied to the whole LiDAR dataset any point with 
a residual value (|actual – predicted|) less than 0.0075 is removed from the dataset until the 
current log has been isolated.    
 
 
  

 
Figure 4. The effects of the regression filter. 

 
Figure 4 shows the impact of the filter in eliminating points within the dataset that do not represent 
part of the log surface.  
 
2.1.3 Stopping Component  
 
Each time the diameter increases the stopping criteria is calculated; the criteria simply looks at 
the number of gaps in the outer 20 mm of the search circle. The angle from a horizontal axis is 
calculated for each of the points in this outer circle. The points are then sorted according to this 
angle. For the stopping criteria to be met there has to be at least three valid gaps. The rules that 
are used to count the number of gaps are as follows: 
 

• Gaps in the direction that the search circle is moving are not counted; 
• If the angle (radians) is greater than 0.6 a gap is counted; 
• If there is only one point between two gaps then the two gaps are considered to be only 

one;  
• If the gap comprises an angle greater than 2 radians, then that is considered to be made 

up of 3 gaps. 
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Figure 5. An illustration of the stopping criterion. 
 
 
Once the stopping criterion is reached the search circle diameter (an approximation of the log 
diameter) is checked against the maximum and minimum allowable diameters for the log pile. If 
the target diameter is outside the allowable diameter range it is rejected as a log and not added 
to the count. If the log is inside the allowable diameter range it is added to the count and the 
points in the image that made up that log are removed.   
 
 
2.2 Data Collection 
 
The source data for this project was acquired by scanning the end of the log pile with a ground-based 
LiDAR scanner. The LiDAR scanner collects a 3 dimensional point dataset of the log faces. The 
scanner used in this trial was capable of 4000 points per second, with a maximum density of 1 per 
mm2. For this application, it seems that a scanning density of 1 per cm2 (measured at maximum 
range) seems most suitable. On average, a scan at this density took no more than 5 minutes to scan a 
bunk of logs. The LEICA Scan Station (www.leica-geosystems.com) used in this trial was also 
capable of collecting the intensity of the reflected laser beam as well as the RGB (red, green blue) 
value for each point. These were not used in the algorithm to assist in the counting as they are not 
collected by cheaper LiDAR scanners. 
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Figure 6 gives an example of data collected during the scanning of the end of a bunk of logs. This 
dataset can be filtered to remove unwanted data such as returns from the log bunk and other objects 
in the background.  
 
 

 
Figure 6. A view of the raw LiDAR data 

 
 
2.3 Validation 

  
 
A validation dataset was collected at the Port of Tauranga using the LIECA Scan Station. In total 16 
scans were collected. It would have been beneficial to take a more systematic approach to collecting 
this data to cover a wider range of different log piles, log diameters and scanning locations. However 
project financial constraints combined with the high cost of hiring the scanning equipment meant 
that these scans were largely taken in largely an advantageous matter. Of the 16 scans; 6 were log 
piles in bunks with the remainder being log piles on the ground. Figure 7. Three examples of the 
range of the log stacks included in the validation dataset. 
 
 

 
Figure 7. Three examples of the range of the log stacks included in the validation dataset. 

 
In this study the scanner location was largely left to the third party scan operator. In most cases the 
location was no less than 2 metres away and not greater than 10 metres way from the pile/stack. The 
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scanner was also placed directly in front of log pile and as close to the centre of the pile as possible.  
 
2.3.1 Log Count Validation 

 
 
The algorithm applied to each scan. For each scan the algorithm user input variables (minimum 
diameter/ maximum diameter) were changed to match the grade specification of the logs in the 
pile. The algorithm log counts were compared to human counts taken off the images. Human 
counts were repeated several times to verify that the manual counts were accurate.  
  
2.3.2 Log Diameter Validation 

 
When the original scans were taken there was insufficient time to measure diameters in the field. 
However given the 6 millimetre positional accuracy of the LiDAR scanner it was deemed that 
measuring the diameters manually from the images would give an equally accurate 
representation of the true log diameters as field measurement. A R script was written to allow a 
human to measure the log diameter from the LIDAR scans.  
 
Figure 10 shows how the R script allowed the manual measurement to be made from the 
LiDAR scans on a computer screen. Figure 10 was created from the LiDAR; the LIECA 
Scanning Station used to collect this data contained not only returns the x,y and z position but 
also the red, green and blue value and the laser return intensity.  
 
3. Results 
 
3.1 Log Count Validation Study 
 
Table 1 shows the actual (manual) log counts compared to the counts produced by the algorithm. In 
Scan O only an approximate count could be carried out due to poor image quality.   
 

Table 1. Manual vs Algorithm Log Count 
 
Scan  Actual Count Algorithm Count  Percentage Accuracy  
A (Bunk) 14 14 100 %
B (Bunk) 35 35 100 %
C (Pile) 31 30 96.6 %
D (Bunk) 64 64 100 %
E (Pile) 209 204 96 %
F (Bunk) 24 24 100 %
G (Bunk) 24 23 96 %
H (Pile) 14 14 100 %
I (Pile) 31 31 100 %
J (Pile) 44 45 97 %
K (Pile) 58 56 96.6 %
L (Pile) 75 75 100 %
M (Pile) 79 81 97.5%
N (Pile) ~ 101 101 100 %
O (Pile) 181 175 96.7%
 
 
The least accurate counts were all from log pile such as those in the centre and left images in Figure 
7. It seems that algorithm performs better when the edges of the log piles are well defined by the 
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sides of a bunk rather than those which formed part of a larger log stack.  
 
The LEICA Scan Station scanner used in this study uses a whisk broom scanner; a mirror scans 
across and reflects light into a single detector which collects one data point at a time. In this 
application the disadvantage of this type of scanner is that the laser only hits the log ends 
perpendicular to the exact centre of the scan. Logs further away from the location of the scanner get 
scanned at increasingly acute angle, this leads to increased chance of shadowing that can affect the 
accuracy of the counts. Other units use “push broom scanning” which may be more suitable for this 
application and could lead to more accurate counts even on log piles that are not in bunks as the laser 
beam hits the log perpendicular more often (Figure 8).  
 

 
  
 

Figure 8. Different scanning options and their impact on counting accuracy. 
 
 
 
3.1. Diameter Determination Validation Study 
 
 
It should be noted that this algorithm was not developed to measure the diameter of the log. As 
part of the methodological approach of the algorithm the diameter of each log is estimated. 
However the algorithm is not optimised to accurately measure the diameter of the logs in a pile. 
In total 397 log diameters (measured vs predicted) were compared. The diameters in the 
validation set ranged from 165 mm to 760 mm. 
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Figure 9. Distribution of the algorithm predicted diameters that are outside the measured diameter range. 

 
 
Figure 9 shows the distribution of the residuals of the algorithm predicted diameters and the 
measured diameters. This graph does not include the 124 algorithm predicted diameters that 
were inside the manually measured diameter range. This means that 69% of the algorithm 
diameters were outside the manually measured range. In the majority of the cases the algorithm 
slightly over predicts the diameter as compared to manually measured diameter.   
 
Paired t-tests were used to determine the measured and algorithm predicted diameters were 
significantly different. The tests showed that there was no statistical significant difference 
(p-value = 0.2258) between the algorithm predicted diameter and the maximum manually 
measured diameter (diameter 1). However there was a statistical significantly difference 
(p-value < 0.000) between the algorithm predicted diameter and the minimum manually 
measured diameter (diameter 2).       
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Figure 10. A typical image used to manually measure the diameters of the logs. The white and blue lines 

demonstrate how the diameters of log were measured from the image. 
 
 
Both the largest diameter (diameter 1) as well as the diameter (diameter 2) at right angles to that 
largest diameter was measured on each log. These diameter measurements were all carried out by a 
technician with practical scaling experience.  No scaling log diameter reductions were done to 
either the manual or algorithm measured diameters. 
 
The irregular shape of most log ends mean that the exact diameter measurement of a log is always 
somewhat subjective. This makes comparing the accuracy of diameter measurements made by 
different measurement techniques difficult.    
 
 
 
4. Discussion 
 
The original idea for the development of this algorithm came from the need to accurately count 
logs in pile/stacks particularly at the port before export. Past attempts have been made in New 
Zealand including one that was used commercially in the early 1990s. A Danish company 
(Dralle Ltd) currently markets a system called sScale(TM) used for both counting log in piles and 
measuring volume (www.dralle.dk). Dralle Ltd’s website claims that the accuracy of their 
system in measure volume is within 2% at a cost of €0.5 per cubic metre (~$(NZ) 1.04).  Using 
standard photography has some advantages in term of capital cost of equipment but is 
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disadvantageous in terms of lighting requirements.  
 
The goal of this project was to investigate and proof the concept that a 3d point cloud of x,y, and 
z co-ordinates could be used to count logs in a log stack. Ground-based LiDAR scans are being 
used in a number of industries, including mining and film making to collect 3d point clouds of 
objects. By using a 3d point cloud to count logs in pile/stack, issues around lighting are no 
longer problematic; in fact the images could be taken at night in complete darkness. The 
Logmeter developed in Chile uses LiDAR to scan a whole truck from a above to estimate 
diameter, length, volume and a range quality characteristics (http://www.woodtechms.com , 
Accessed on 3 July 2009).  
 
This report outlines the methodology used to proof the concept that the number of logs in a pile 
can be counted using a 3d point cloud representation of the end of the pile of logs. A small 
validation study showed that the algorithm can routinely produce counting accuracy of greater 
than 96%. The accuracy improves to 100% if the logs are contained in a log bunk such as the 
image on the far right of Figure 7. It is likely further work on the algorithm such as 
implementing improved segmentation techniques could improve the counting accuracy. The 
target has to be to obtain 100 % accuracy 100 % of the time for this algorithm to be a 
commercial success.  
 
The algorithm outlined in this study was not designed to measure the diameter of the logs that 
were being counted. However as part of the counting methodology an estimate of the diameter 
is obtained. Due to the irregular nature of the log diameter it is difficult to accurately qualify the 
accuracy of one diameter measurement against another measured using a different methodology. 
In this study 31 % of the algorithm measured logs were within manual measurement range (two 
manually measurement were made per log).    
 
In an operational situation performance (time to count a pile of logs) of the algorithm will be 
important. The original prototype was developed in the R statistical language, porting it across 
to C# showed that significant improvements in the processing performance can be achieved. 
Further performance improvements are likely to be available by both improving the design of 
the algorithm as well as utilising programming technologies such as multi-threading and parallel 
processing.      
 
The research covered in this report did not cover hardware. LiDAR scanners are expensive, the 
LIECA Scan Station costs approximately $(US) 150,000 however it has numerous features that 
are not utilised in this application. There are other cheaper LiDAR options such as those 
manufactured by SICK (a Swedish company) that cost around $(US) 10,000. 3D point cloud 
data of objects can be generated from stereo photography, which simply requires two high 
quality cameras such as used by Dralle Ltd in the sScale(TM) product. 
 
A report on the commercialisation of log counting technology was produced by Seltec Advisory 
Limited (Anderson 2009). They reported discussions with a number of potential customers in 
the market. This report found that simply carrying out log counts on piles/stacks would not be 
enough to create a commercially successful product. It seems that the original demand for 
automated log counting disappeared as export demand has shifted from smaller K grade to 
larger A grade products, meaning that fewer logs need to be counted per cubic metre of volume. 
Anderson (2009) indicated that if the concept could be extended to include automatic 
volumetric scaling to export and domestic scaling rules then there may be a market for such 
technologies. To turn the current algorithm into a commercially viable product would require 
additional development work and due to the qualitative nature of some scaling rules that 
development work would be non-trivial.     
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5. Conclusion 
 
 
This report outlines a proof of concept for a log counting algorithm using 3D point cloud data 
generated from a ground based LiDAR scan of the end of a log stack. The accuracy of log 
counts is upwards of 96% for the validation data sets. Although not originally designed to 
measure log diameter, a validation study carried as part of this project showed that the algorithm 
described in this report could be improved to accurately measure the diameter of all the logs in a 
pile/stack.  
 
To be fully commercialised this algorithm would need further work to improve its accuracy both 
of log counting and log diameter measurements. There are numerous image processing 
techniques as well as computer programming techniques that could be investigated to improve 
overall performance. Any additional work on this project should focus on developing automated 
methods for identifying defects that affect the scaled volume of logs. Additional research into 
the optimal hardware to capture the 3D point cloud would also need to be undertaken before a 
cost effective tool could be released.  
 
A business case carried out by Seltec Advisory Limited on the market size for log stack 
scanning and automated log counting concluded that the market is relatively small. The study 
did identify some niche markets that would benefit from the concept of log counting. This 
market would dramatically increase if the algorithm could automatically scale logs based on 
New Zealand’s scaling rules however from algorithm development point of way this is a 
non-trivial matter.  
 
From a research perspective, this project has highlighted the potential of using ground based 
LiDAR scanning technology and 3d point cloud data for determining log characteristics. The 
lessons learnt and techniques developed as part of this will hopefully be utilised in further 
research and development into this or other applications.     
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Abstract 

Obtaining forest structure data to compute leaf area index (LAI) can be a challenge in remote areas 
like the Canadian boreal forest. Light ranging and detection (LiDAR) data provides a 3-dimensional 
view of the forest that can be calibrated with minimal field data requirements relative to other 
remote sensing data. Our objective is to develop an automated method for combining a limited 
amount of field data with LiDAR to generate estimates of LAI. To accomplish this we used 
geographic information system (GIS) tools to expand upon a physically-based gap fraction model 
by incorporating a process for optimizing extinction coefficient by forest species. In this paper we 
demonstrate a simple, efficient method for optimizing remote sensing-based estimates of canopy 
attributes from limited field data. We were able to reduce the RMSE in modelled effective leaf area 
index by an average of 0.48 across all species. Combining such simple model optimisation 
approaches with other automated LiDAR-based canopy attribute extraction procedures shows 
promise as we move towards ever greater levels of LiDAR forestry operationalisation. 

Keywords: LiDAR, leaf area index, optimization, extinction coefficient, Boreal forest 

 

1. Introduction 

1.1 Rational 

Leaf area index (LAI), which is defined as half of the total leaf area per unit ground area (Chen et 
al., 2006), is an important input parameter used within biogeochemical, biomass, and ecological 
models. Accurate estimates of LAI are therefore important, as small deviations or biases in could 
result in sometimes compounded errors within these models. Several studies have used plot-based 
measurements of gap fraction (used to derive effective LAI (LAIe) and LAI) when scaling to lower 
resolution spectral imagery (e.g. Fernandez et al., 2003; Fernandez et al., 2004). However, plot 
measurements often do not represent the full range of vegetation characteristics found within 
ecosystems, and can be time consuming to acquire. Airborne Light Detection and Ranging (LiDAR) 
data offers an alternative method for continuously mapping LAI at high resolution. LiDAR provides 
a three dimensional representation of the canopy, understory, and ground surface topography 
measured using reflected laser pulses. The basic rationale for LiDAR-based LAI mapping is that the 
vertical distribution of laser pulse returns within the canopy is related to the foliage profile 
(Magnussen and Boudewyn, 1998) such that if only ground-level returns occur in a given area then 
the likelihood of overlaying leaf area is low. Conversely, a greater density of above ground (or 
canopy level) returns in a given area indicates a higher leaf area. From this basic understanding, 
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LAI can be estimated directly as a function of the canopy gaps thus observed (e.g. Solberg et al., 
2006). However, gap fraction-based estimates of LAIe (which must further take into account the 
canopy clumping, woody to total leaf area ratio, and needle to shoot area ratio in order to estimate 
true LAI) requires an estimate of extinction coefficient (k). The objective of this study is to 
investigate model parameter optimization of k to improve LAIe estimates within three boreal forest 
ecosystems: mature black spruce, a jack pine chronosequence of four sites, and a mature aspen 
stand. 

1.2 LiDAR-based LAI models 

A number of LiDAR-based LAIe models have been developed that employ range and echo data 
provided by discrete-return airborne systems. These include mean return elevation methods (e.g. 
Lim et al., 2003), fractional canopy return methods (e.g. Riaño et al., 2004; Solberg et al., 2006), 
and the examination of canopy volume (e.g. Lefsky et al., 1999).  Models were developed and 
tested for a specific forest type but often require calibration. The intensity-based gap fraction (or 
fractional cover) model of Hopkinson and Chasmer (2007), is one LiDAR-based model that has 
been shown to require minimal or no calibration. The model divides LiDAR returns into four echo 
classes (first, single, intermediate, last) and generates grids of intensity by summing returns within a 
cell. It then accounts for a two-way power transmission loss by intermediate and last return hits 
using a square root function. First and single hits at and below 1.3 m from the ground surface are 
subset to represent below-canopy (ground) hits. A ratio of total returns intensity to this below-
canopy subset is used to estimate gap fraction: 
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   (1) 

Subscripts indicate the echo class and subset of each return. This model has been tested on a variety 
of study locations across Canada resulting in estimates comparable to ground based (DHP) 
measures of gap fraction (or fractional cover) without requiring calibration (Hopkinson and 
Chasmer, 2009).  This study uses the intensity-based model of Hopkinson and Chasmer (2007) and 
an automated plot-based optimisation routine to create a more accurate model of LAIe that can be 
applied to a broad range of boreal forest types. 

 
2. Study Area 

The study area is located in the Boreal forest of Saskatchewan, Canada (Fig. 1) on a number of sites 
being monitored as part of Fluxnet-Canada (2002-2007) and the Canadian Carbon Program (2007-
2011) networks. A variety of stand types were sampled including a three stage chronosequence of 
jack pine (mature ~95 years old, harvested in 1975, harvested in 1994); a mature aspen stand and a 
mature black spruce stand (Table 1). The total number of plots examined within each stand type 
were randomly divided into training and testing categories for modeling and validation. 
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Figure. 1. Map showing location of study area within Canada 

 
Table 1.  Forest plot descriptions and stand type 

Stand Description LAIe/DHP  
Training Plots 

LAIe/DHP  
Testing Plots 

JP All Jack Pine Sites 75 56 
OJP Old Jack Pine 25 27 
HJP75 Jack Pine harvested in 1975 25 17 
HJP94 Jack Pine harvested in 1994 25 12 
OBS Old Black Spruce 20 8 
OA Old Aspen 20 11 

 

3. Methods 

3.1 DHP collection and analysis 

Ground-truth data were collected August 10-20, 2005 and July 29-August 3, 2008. Five digital 
hemispheric photos (DHP) were collected per geographically located plot (dGPS), one at the center 
and four located 11.3 m from the center in each cardinal direction (N, E, S, W) using a compass 
bearing and tape measure. All images were captured using a Nikon Coolpix 8.0 Megapixel camera 
positioned 1.3 m off the ground (at mature sites, 0.5 m at HJP94), facing north, fitted with a 180° 
fisheye lens with the exposure set one ‘f stop’ lower than normal exposure to improve contrast 
between foliage and sky. DHPs were processed using CAN_EYE software 
(http://www.avignon.inra.fr/can_eye/) which utilizes user enhanced automated image classification 
to calculate gap fraction and LAIe from two-tone images. 

3.2 LiDAR data collection and preparation 

LiDAR data were collected by the Applied Geomatics Research Group (AGRG) coincident with 
DHP collection on August 12, 2005 and August 2, 2008 using an ALTM 3100 laser scanner. The 
2005 LiDAR data collection was flown at a height of 950 m a.g.l, with a laser pulse repetition 
frequency (PRF) of 70 kHz, and a scan angle of ±19o (with 50% overlap of scan lines). The 2008 
LiDAR data collection was flown using the same sensor at a height of 700 m a.g.l., with a PRF of 
70 kHz and a scan angle of ±20o (with 50% overlap of scan lines).  The point data were classified 
using Terrascan (Terrasolid, Finland) into ground, canopy and echo code classes then gridded using 
Surfer 8 (Golden Software Inc., USA) by assigning summed intensity values to each cell based on 
points that fell within 2.5 m to generate 1 m resolution grids. Classification and gridding was also 
performed by the AGRG in preparation for modeling (Hopkinson and Chasmer, 2009).  
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3.3 Optimization process 

Gap fraction (P) grids were calculated using the intensity-based model published by Hopkinson and 
Chasmer (2007) described above. If the canopy is assumed to be a turbid medium with randomly 
distributed foliage then the Beer-Lambert Law can be applied: 

݁ܫܣܮ  ൌ  െlnሺܲሻ   ݇⁄       (2) 

where extinction coefficient (k) is a function of leaf angle distribution, radiation type and direction, 
and canopy structure and clumping (Bréda, 2003). Initially, a mid-value k of 0.5 is used in this 
study because it represents a spherical (random) projection coefficient for leaves of any shape, 
(Chen et al., 1997) and is an accepted alternative to species specific values (Richardson et al., 
2009). 

ோ݁ܫܣܮ  ൌ  െlnሺܲሻ   0.5⁄      (3) 

The k term in equation (3) is then optimized for each species by rearranging the general equation (2) 
using measurements of LAIe from captured DHPs (LAIeDHP), to train new estimates for k based on 
species (kNEW): 

 ݇ோௐ ൌ ோ݁ܫܣܮ  ሺ2 כ ⁄ுሻ݁ܫܣܮ     (4) 

LAIe raster layers were generated for the entire study area by equation (3) using an automated GIS-
based tool as a baseline for optimization. Mean LAIe values were extracted for 11.3 m radius plots 
at the geo-located photo positions and the training subset were compared to coincident LAIe 
measured using DHPs to generate kNEW for each species (4). LAIe raster layers were then 
regenerated using the P layers and substituting kNEW for 0.5 in equation (3). Model quality was 
determined using the testing subset of plots for each species (Table 1).  

 

4. Results 

LAIe estimated using a generic 0.5 extinction coefficient (equation 3) resulted in means that were 
significantly different from DHP LAIe (p < 0.05) across all species. The generic model 
underestimated LAIe for both conifer species while overestimating the broad-leaved aspen 
compared with measurements gathered in the field (Fig. 2). These results are comparable to those 
published by Bréda (2002) who indicated that coniferous stands trended towards extinction 
coefficients less than 0.5. The need for a more specific k for predicting LAIe from LiDAR is also 
highlighted by these results. 
 
Including kNEW improved LAIe model fit, reducing the RMSE by an average of 0.48 across all 
species (Fig. 2, Table 2). The greatest improvement was observed in the OBS model which 
translates to a shift in average LAIe values from 1.17 to 2.42. The lowest RMSE occurred across the 
JP stands at 0.35 after optimization. The average absolute shift in LAIe across all species is 0.79, 
which is greater than the difference observed between coniferous and deciduous species, signifying 
a change in canopy structure. 
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Figure. 2. LAIeLiDAR compared to LAIeDHP for all data (n=190). k=0.5 represents pre-optimization 

results (left) and optimized (right) represents estimates using kNEW . Dashed line is 1:1. 

LAIe for plots set aside for testing calculated using kNEW revealed no significant difference at the 
95% confidence level between LiDAR modelled and DHP measured LAIe for all species, indicating 
a significant improvement over the generic model.  

Table 2.  Pre and Post-optimization statistics 
Stand Pre-optimized 

mean  
LAIeLiDAR 

Post-optimized 
mean  

LAIeLiDAR 

kNEW RMSE 
pre-optimized 
Training plots 

 RMSE 
post-optimized 
Training plots 

RMSE 
post-optimized 
Testing plots 

JP 0.57 1.17 0.24  0.71  0.35  0.32 
OBS 1.17 2.42 0.24 1.34 0.49 0.56 
OA 2.17 1.71 0.63 0.67 0.44 0.42 

 

5. Conclusion 

An automated optimization model such as the one presented here creates opportunities to gain 
knowledge of forest structure over large areas using limited field data. The adjustment of k when 
modelling LAIe from LiDAR intensity data will improve results that will be reflected in 
environmental applications based on remote sensing data. Further investigation including more 
species and age classes would benefit from model optimization of this type including investigating 
optimal intensity gridding parameters (Morrison et al., 2011). This work is part of a larger effort to 
operationalize forest structure modelling routines through the generation of automated tools. 
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Abstract 
 
Accurate assessments of canopy fuels are needed by fire scientists to understand fire behavior 
and to predict future fire occurrence.  A key descriptor for canopy fuels is canopy bulk density 
(CBD).  CBD is closely linked to the structure of the canopy; therefore, lidar measurements are 
particularly well suited to assessments of CBD.  LANDFIRE scientists are exploring methods to 
integrate airborne and spaceborne lidar datasets into a national mapping effort.  In this study, 
airborne lidar, spaceborne lidar, and field data are used to map CBD in the Yukon Flats 
Ecoregion, with the airborne lidar serving as a bridge between the field data and the spaceborne 
observations.  The field-based CBD was positively correlated with airborne lidar observations 
(R2 = 0.78).  Mapped values of CBD using the airborne lidar dataset were significantly 
correlated with spaceborne lidar observations when analyzed by forest type (R2 = 0.62, 
evergreen and R2 = 0.71, mixed).  Though continued research is necessary to validate these 
results, they do support the feasibility of airborne and, most importantly, spaceborne lidar data 
for canopy fuels assessment. 
 
Keywords: GLAS, FlamMap, canopy bulk density, fuels mapping, fire behavior modeling 
 
1. Introduction 
 
Wildland fire can have a significant impact on ecosystems and human populations.  To better 
understand wildland fire occurrence and fire behavior, it is critical to have a thorough 
understanding of the distribution of fuels in the landscape.  Fire behavior models are driven by 
inputs that describe the three-dimensional distribution of fuels. Canopy fuels are defined as the 
live and dead biomass located within tree crowns (Keane et al. 2001) and are characterized in 
part by canopy bulk density (CBD), which is the mass of available canopy fuel per unit canopy 
volume.  The CBD parameter is used by fire modeling systems, such as FlamMap (Finney 
2006), and is a key determinant of whether fire will spread from crown to crown as an active 
canopy fire. 
 
The LANDFIRE project (Rollins 2009; http://www.landfire.gov) has mapped fire behavior 
model inputs, including CBD, for the entire United States using a set of field data, Landsat 
imagery, digital elevation models (DEMs) and derivatives, climate gradients, and other ancillary 
data. The first set of LANDFIRE products was completed in 2009.  LANDFIRE is developing a 
strategy to regularly provide improved and updated data.  The updating plan includes the 
exploration and integration of lidar data for characterizing canopy structure and fuels to address 
a demonstrated need for better estimates of LANDFIRE fuels products (Krasnow et al. 2009). 
 
Traditionally, fuel parameters are obtained through field observations of vegetation structure. 
More recently, lidar has also been used to quantify vegetation canopy structure (Dubayah and 
Drake 2000; Lefsky et al. 2002), which is particularly useful for mapping the fuels complex 



(Riaño et al. 2004; Morsdorf et al. 2004; Andersen et al. 2005; Peterson et al. 2007; Skowronski 
et al. 2007).  While previous studies using lidar to assess fuels have used airborne lidar data, 
recent work has shown the applicability of the spaceborne Geoscience Laser Altimeter System 
(GLAS) data for estimating forest canopy structure (Lefsky et al. 2007; Sun et al. 2008; Nelson 
et al. 2009).  Because canopy fuels are defined largely by canopy structure, we wish to explore 
the utility of GLAS data for estimating CBD, which would promote more accurate mapping of 
CBD, especially where field data are scarce.  The incorporation of GLAS data into a regional 
fuels mapping effort, while leveraging airborne data acquisitions, will provide detailed 
vegetation structure metrics over larger areas to inform fuels mapping. 
 
2. Objectives 
 
The objective of this study was to explore how integrating lidar data collected at different scales 
can contribute to a regional-to-national scale canopy fuels mapping effort.  This investigation 
was conducted in the Yukon Flats Ecoregion (YFE) of interior Alaska (Gallant et al. 1995).  We 
used two lidar data sets: an airborne, small-footprint, discrete-return dataset collected for a 
subset of the study area; and transects of GLAS data for the entire YFE.  Using these two 
datasets, along with field and ancillary data, we modeled and mapped CBD then used the 
different CBD products as inputs into FlamMap. 
 
3. Methods 
 
3.1 Study Area 
 
The YFE (Figure 1) is located in interior Alaska and encompasses approximately 33,400 km2.  
Much of the vegetation is short-statured boreal forest.  Common tree species are black spruce 
(Picea mariana), white spruce (Picea glauca), quaking aspen (Populus tremuloides), alder 
(Alnus sp.), and willow (Salix sp.).  Forest stands rarely exceed 20 m except in riparian areas 
and floodplains.  The terrain of the YFE is flat, with 95% of the area at ≤ 3º slope as indicated 
by the National Elevation Dataset (NED).  Access to the area is most practically achieved by 
float plane. 
 
3.2 Field data 
 
Vegetation sampling was conducted in 2010 in a 2-m-wide transect running north-south through 
the plot center.  Within this transect, we recorded diameter at breast height (DBH), tree height 
and height to the base of the live crown, and species. We sampled 24 plots at two lake sites. We 
then generated estimates of CBD for each plot using the tree list data and FuelCalc (Reinhardt et 
al. 2006).  FuelCalc does not calculate CBD for broadleaf species because canopy fire 
propagation is rare in those species.  Six of our plots were in pure willow, alder, or aspen stands, 
so CBD was not calculated for those sites. 
 
3.3 Airborne Lidar 
 
The airborne lidar data were collected in summer 2009 for a sub-area (2605 km2) of the YFE 
(Figure 1).  The data were collected by Aero-Metric, Inc. with an airborne Optec ALTM 
Gemini.  The dataset has a horizontal accuracy of 1.15 m, with a nominal point spacing of 2.3 m 
and a vertical positional accuracy of 0.10 m.  The raw data were processed and delivered as 2.5-
m resolution raster datasets that include the bare-Earth digital surface model (DSM) and first-
return DSM.  Height above ground (HAG) was derived by differencing the bare-Earth DSM and 
the first-return DSM. 



 
Figure 1: Map showing location of YFE study area, airborne lidar acquisition boundary, GLAS 

footprint locations, and field plot locations.  The NLCD land cover map is shown in the background. 
 
Various metrics were derived from the airborne lidar dataset to predict CBD.  The maximum, 
mean, and minimum HAG were calculated for each plot.  All other airborne lidar metrics were 
derived from a 10 × 10 m grid of the point cloud data using the vertical distribution of return 
elevations within the grid cell.  For each 10 × 10 m grid cell at six different height thresholds 
(>1 m, >2 m, >3 m, >4 m, >5 m, and >6 m), the ratio of canopy returns above the threshold to 
the total number of canopy returns was calculated.  The maximum, minimum, and mean of these 
ratios were calculated for each plot, which described the vertical distribution of canopy material 
between and the lower, middle, and upper portions of the canopy.   
 
We used a stepwise linear regression procedure in R (http://www.r-project.org/) to identify 
models for estimating CBD.  Our goal was to identify a parsimonious yet predictive regression 
model.  The final model was then applied to the entire set of airborne lidar data where the 
National Land Cover Database (NLCD; Selkowitz and Stehman 2011) indicated evergreen or 
mixed forest. Focal statistics (maximum, minimum, and mean) were generated from the HAG 
layer and 10 ×10 m ratio data.  The resulting map was gridded to 30 m to match the spatial 
resolution of LANDFIRE products.  Also in accordance with LANDFIRE methods, the CBD 
for hardwood forests was set to 0.01 kg m-3. For all other NLCD classes, the CBD was set to 0. 
 
3.4 GLAS 
 
We obtained GLA01 (waveform data) and GLA14 (land/canopy elevation data and footprint 
locations) GLAS products (http://nsidc.org/data/icesat/index.html) from the Laser L3F 
acquisition (release 31) for the entire YFE.  Included in the GLA14 product is a set of metrics 
describing Gaussian curves fit to the waveform, including number of peaks, elevation, width, 
and amplitude of each Gaussian (Harding and Carabajal 2005).  L3F acquisitions occurred 
during leaf-on conditions (May 24 through June 26, 2006). The GLAS footprints are nominally 
65 m in diameter and 172 m apart along-transect. 
 



The GLA01 and GLA14 products were processed to derive quartile and decile heights of 
waveform energy following Sun et al. (2008), as well as canopy depth, total waveform energy 
(Peterson et al. 2007), and canopy height, which is the difference between the ground elevation 
and the elevation of the signal beginning. We used these derived metrics plus the GLA14 
Gaussian metrics as independent variables in a regression analysis. 
 
We filtered the GLAS returns based on four criteria: we eliminated footprints 1)  which were 
located on slopes > 3° as indicated by NED; 2) where the NLCD land cover was not uniform; 3) 
which were cloud contaminated according to GLA14; and 4) with waveforms for which only a 
single Gaussian was identified assuming that no distinct canopy could be inferred.  This filtering 
resulted in 718 usable footprints for the YFE with 115 falling in the airborne lidar subset area. 
 
None of the GLAS footprints were coincident with the field plot locations.  Therefore, we used 
the CBD values from the airborne lidar-based map as our dependent variable in the regression. 
For each of the 115 GLAS footprints, we extracted the CBD value at the footprint center.  In R a 
stepwise linear regression procedure was used to identify a model for estimating CBD.  This 
model was applied to the GLAS footprints in the YFE to estimate CBD for those locations. 
 
Because the GLAS data are sampled at discrete locations, we used a regression-tree approach 
for mapping CBD from GLAS.  We used seven Landsat Thematic Mapper spectral bands and 
the DEM, slope, aspect, and NLCD land cover as independent variables.  These values were 
extracted at each footprint center.  We used Cubist (http://www.rulequest.com) to develop the 
regression tree and a spatial applier to map CBD for the YFE.  NLCD land cover was used to 
assign CBD values to hardwood forests and non-forested pixels. 
 
3.5 FlamMap Fire Behavior Modeling 
 
To assess the impact of mapping CBD using airborne lidar and GLAS data, the CBD maps were 
used to conduct fire behavior analyses.  Analyses were completed at two scales, the entire YFE 
and the sub-area covered by the airborne lidar data.  FlamMap was used with input layers from 
LANDFIRE and the lidar-derived CBD maps.  In the sub-area, a baseline model run was 
completed using the LANDFIRE CBD layer.  The airborne- and GLAS-derived CBD layers 
were each then substituted for the LANDFIRE CBD, and FlamMap was re-run keeping all other 
data and settings the same.  In the full YFE run, the baseline LANDFIRE data were again used 
as a baseline, and the CBD layer was then replaced with the GLAS-derived CBD layer, keeping 
all other data and settings constant.  Thus, a total of five FlamMap runs were made.   
 
Each FlamMap run produced flame length (FL), rate of spread (ROS), and crown fire activity 
(CFA) output layers.  FL and ROS are continuous outputs measured in meters and meters per 
minute, respectively.  The CFA layer separates the landscape into unburned (water, barren, etc.), 
surface fire only, passive crown fire (individual tree torching), and active crown fire (fire 
spreading from tree to tree) classes.  The CBD layer is used only for calculating crown fire 
properties so that the amount of unburned and surface fire areas are consistent between runs, 
only the amount of active versus passive crown fire varies in the CFA outputs.  The amount of 
active and passive crown fire for each run is summarized, as are descriptive statistics of the FL 
and ROS outputs for each model run. 
 
4. Results 
 
4.1 Airborne Lidar 
 
The final model identified through stepwise regression analysis for estimating CBD from the 
airborne lidar is shown in Equation 1. 



 
CBD = 0.11 + 0.05 * hagsd + 1.19* meanrat1 – 0.93 * meanrat2 – 0.26 * maxrat2 – 0.26 

*maxrat4 + 0.26 * maxrat5, (1) 
 
where hagsd is the standard deviation of the HAG; meanrat1 and meanrat2 are the mean 
ratios at 1 and 2 m above ground, respectively; and maxrat2, maxrat4, and maxrat5 are 
the maximum ratios at 2, 4, and 5 m, respectively.  This model had a coefficient of 
determination (R2) of 0.78, an adjusted R2 of 0.67, and a residual standard error (RSE) of 0.05 
kg m-3 and was used to generate the airborne lidar-derived map of CBD.   
 
4.2 GLAS 
 
The model generated using all 115 GLAS footprints in the YFE sub-area resulted in a weak 
relationship, with an R2 of 0.30.  To develop a model with more predictive power, we split the 
115 GLAS footprints into two sets by NLCD forest class: evergreen forest or mixed 
evergreen/deciduous forest.  We also eliminated footprints where the standard deviation of the 
mapped CBD value within a 60 m radius of a footprint center was > 0.05 kg m-3. 
 
The final regression model for estimating CBD from GLAS data for footprints falling within 
evergreen stands (N = 30) is shown in Equation 2. 
 
CBD = 0.156 – 0.003 * r90 – 0.079 * r40 + 0.063* r30 + 0.068 * r20 – 0.053 * r10 + 

0.00002 * tenergy – 0.298 * numpeak + 0.009 * height, (2) 
 
where r10, r20, r30, r40, and r90 are the decile heights at 10, 20, 30, 40, and 90% of waveform 
energy, respectively, tenergy is the total waveform energy, numpeak is the number of Gaussian 
peaks, and height is the canopy height.  This model had an R2 of 0.61, an adjusted R2 of 0.46 
and an RSE of 0.03 kg m-3 and was used to generate CBD values for the GLAS footprints in 
evergreen forest.   
 
The final regression model for estimating CBD from GLAS waveform data for footprints falling 
within mixed stands (N = 29) is shown in Equation 3. 
 
CBD = 0.161 – 0.012 * r90 – 0.028 * r70 + 0.051* r40 + -0.138 * r25 + 0.212 * r20 – 

0.091 * r10 + 0.023 * depth + 0.104 * numpeak, (3) 
 
where r25 and r70 are the 25th and 70th percentile heights of waveform energy, respectively, and 
depth is the canopy depth. This model had an R2 of 0.80, an adjusted R2 of 0.72, and an RSE of 
0.06 and was used to generate CBD values for the GLAS footprints in mixed forest stands.   
 
The Cubist regression-tree modeling initially resulted in a correlation coefficient (R) of 0.31.  
This was caused by an underrepresentation of the tails of the CBD distribution. To improve the 
predictive power of the model, we adjusted the sample to ensure an even distribution of CBD 
values.  This resulted in a stronger model with an R of 0.90, and predicted values that 
represented the entire range of CBD values in the training data. 
 
4.3 FlamMap 
 
In the study sub-area, there were three runs using LANDFIRE, airborne lidar-derived, and 
GLAS-derived CBD.  There were 61923 ha of surface fire and 77948 ha of crown fire.  Using 
the LANDFIRE CBD, 22% of the crown fire was active, whereas when using airborne lidar- 
and GLAS-derived CBD layers, 74% and 79% of the crown fire was active, respectively.  The 



ROS using the LANDFIRE CBD ranged from 1 to 47 m/min with a mean of 21 m/min.  When 
using both airborne lidar- and GLAS-derived CBD, the ROS ranged from 1 to 49 m/min with a 
mean of 23 m/min.  FL ranged from 1 to 26 m with a mean of 11 m using the LANDFIRE CBD.  
With the airborne lidar-derived CBD, the FL ranged from 1 to 46 m with a mean of 15 m.  The 
FL from the GLAS-derived CBD ranged from 1 to 38 m with a mean of 14 m.  Both the 
increased FL and ROS using the lidar-derived CBD reflect the increase in active crown fire 
modeled from these data. 
 
For the full YFE runs, there were 1,774,107 ha of surface fire and 1,321,264 ha of crown fire.  
Using the LANDFIRE CBD, 23% of the crown fire was active, whereas 64% of the crown fire 
was modeled as active using the GLAS-derived CBD layer (Figure 2).  The FL using the 
LANDFIRE CBD ranged from 1 to 21 m with a mean of 9 m, compared to a range of 1–34 m 
with a mean of 10 m using the GLAS-derived CBD.  The ROS using both CBD maps ranged 
from 1 to 39 m/min with a mean of 16 m/min. 

 
 

Figure 2: FlamMap Crown Fire Activity output maps using  
LANDFIRE CBD (left) and GLAS-derived CBD (right) 

 
5. Discussion 
 
The regression model derived from the airborne lidar and field-based CBD explains nearly 80% 
of the variability in the dataset.  This is somewhat lower than those reported by others, using 
more parsimonious models (Andersen et al. 2005; Riaño et al. 2004; Skowronski et al. 2007).   
Several factors likely affected these results: 1) the allometries that FuelCalc uses to derive CBD 
are not well developed for some boreal species and could produce invalid results, 2) our limited 
plot sample is not representative of the full range of CBD values present within the YFE, and 3) 
the landscape in the YFE is very heterogeneous and the vegetation type changes across 
relatively small scales (10s of meters).  The other studies conducted their work in more 
homogeneous landscapes of evergreen forest, which simplifies both the calculation of field-
based CBD and the derivation of lidar metrics. 
 
The results of the GLAS-based CBD prediction are comparable to previous work using airborne 
waveform data to derive CBD in the Sierra Nevada Mountains of California (Peterson et al. 
2007).  Once we split the GLAS footprints into forest classes, we were able to predict 61% 
(evergreen), and 72% (mixed) of the variability using GLAS metrics.  The splitting into forest 
types likely resulted in a stronger relationship because of the way CBD is assigned to hardwood 
species.  Two waveforms may be described by similar parameters, but one falling in an 
evergreen stand will have a much higher CBD associated with it than one falling into a mixed 
stand with a large percentage of hardwoods.  
 



Both of the lidar-derived maps indicate CBD values for the YFE that are higher than those 
produced by LANDFIRE.  Given the lack of field data, the LANDFIRE CBD layers for much of 
interior Alaska are based on expert opinion of expected fire behavior under historical weather 
conditions.  In contrast, the airborne lidar-derived CBD map is based on field measurements.  
Because this map is then used to train the GLAS-derived CBD map, it is also related to the field 
data.  By using field measurements, the resultant CBD maps capture more of the range of values 
and spatial variability of the landscape.  Higher CBD values are expected from the lidar-derived 
CBD maps because the CBD calculated from the field data was generally higher than the 
coincident LANDFIRE CBD values.  The LANDFIRE CBD values ranged from 0 to 0.15 kg m-

3 for the field plot locations, while the calculated values ranged from 0.02 to 0.29 km m-3.  The 
average CBD value was 0.05 kg m-3 higher when calculated from the YFE field data than the 
corresponding LANDFIRE CBD value. 
 
The FlamMap outputs confirmed the significance of the higher CBD values in the lidar-derived 
maps with the higher incidence of active crown fire and corresponding increases in FL and 
ROS.  This also confirms the sensitivity of fire behavior models to changes in CBD since there 
were significant changes in the FlamMap outputs and other fire behavior modeling systems such 
as FARSITE (Finney 1998) are based on the same underlying fire behavior models as FlamMap.  
The outputs of these models are used operationally for both strategic and tactical resource 
management decisions which have significant societal, ecological, and financial consequences.  
Therefore, the model inputs must be based on the best available source data and methods, which 
are constantly evolving, to ensure the most reasonable outputs. 
 
6. Conclusions 
 
This study highlights a multi-scale approach to regional canopy fuels mapping using airborne 
and spaceborne lidar data.  These methods can leverage all available lidar collections from 
across the United States, and their inherent ability to characterize vegetation structure, to map 
canopy fuel parameters.  While canopy fuels have been previously mapped with airborne lidar, 
we have demonstrated a novel approach to mapping canopy fuels with GLAS data.  There are 
some issues to consider prior to adapting this approach nationally.  For example, the flat terrain 
of the YFE allowed us to reasonably ignore the effects of terrain on the GLAS waveform.  For 
other regions with steeper slopes, this effect needs to be addressed (Lefsky et al. 2007).  
Additionally, while GLAS data are no longer being collected, spaceborne lidar data are 
scheduled to continue.  NASA is scheduled to launch the Advanced Topographic Laser 
Altimeter System (ATLAS) in 2016, which will provide additional global lidar observations. 
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Abstract. Light detection and ranging (LiDAR) has seen significant application across a range 
of forest structural assessment applications, ranging from forest volume and biomass assessment, 
to ecological applications such as leaf area and fuel load modelling. However, quantification of 
sub-canopy structure remains a challenge, especially when considering downed coarse woody 
debris (CWD) near the ground surface. This is true because the LiDAR signal attenuates 
through the canopy, LiDAR systems can be set to record the last of many returns, which is often 
the ground itself, and there is a system-specific vertical resolution that influences detection of 
structure in-between returns. We applied a LiDAR distributional approach to CWD modeling 
that included both above-ground and theoretical “below-ground” returns, with the latter being 
attributed to multiple scattering effects. This was done for oak dominant forests in central 
Appalachia, Kentucky, USA. Medium-fast (10h) and medium-slow (100h) CWD fuel loads 
exhibited the best results; e.g., an adjusted R2 = 0.99 and a root mean square error value of 0.111 
Mg/ha (4.7% of the mean) were achieved for 100h CWD fuel loads. Independent variables 
included a balanced set from both the above- and below-ground distributions. Results hint at the 
significant potential of extending distributional approaches to CWD estimation.     
 
Keywords: LiDAR, Coarse woody debris, fuel load, distributional analysis.     
 
1. Introduction  
 
The assessment of forest structure, e.g., volume, biomass, leaf area index (LAI), etc., remains a 
priority for forest managers and ecologists for reasons ranging from taking stock inventory, 
performing carbon assessment, and investment planning, to tracking invasive dynamics. One 
important motive for structural assessment, however, revolves around the need to better 
understand fire dynamics as a function of fuel load, among other things. For example: Forest  
managers increasingly are applying prescribed fire as a management tool in the central and 
southern Appalachian hardwood regions of the United States (Brose et al., 2001). This use of 
fire as a tool, instead of a reactive management response, is based on a better understanding of 
the historic (McEwan et al., 2007) roles of fire in this region. In fact, many management plans 
of national forests throughout the region already include fire as part of their toolkit, e.g., the 
USDA Forest Service at Daniel Boone National Forest, Kentucky. This increased use of 
prescribed fires necessitates the need for improved predictions of future burn behavior and 
improved assessment of the impacts on forest structure, especially at the landscape scale. This is 
only one of the reasons that light detection and ranging (LiDAR) extensively has been used to 
characterize forest structural attributes. Not only does such a remote sensing approach enable a 
synoptic assessment, but LiDAR has emerged as an accurate and precise tool for this purpose. 
 
LiDAR-based assessment of vegetation structure has focused primarily on the assessment of 
forest volume and biomass and has met with reasonable success (R2 values typically > 0.80), 
with studies dating back to the mid-1980s (e.g., Nelson et al., 1988). More recent LiDAR 
studies have mostly dealt with forest volume and biomass assessment at the plot- and 
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stand-level (e.g., Lefsky et al., 1999; Næsset, 2002; Popescu et al., 2004; van Aardt et al., 2006). 
Differentiation also is made between individual tree vs. per-unit-area height distributional 
approaches (Means et al., 2000; van Aardt et al., 2006). Distinct challenges to such approaches 
include the scalability of results due to huge data volumes, resource costs, as well as limited 
extension of work to sub-canopy structure and fuel load applications. Examples of the latter two 
topics include leaf area index estimation (e.g., Zheng and Moskal, 2009) and fire effects on 
forest structure (e.g., Hall et al., 2005). However, comprehensive fuel load studies, or detailed 
sub-canopy structural assessments, remain scarce. 
 
Riaño et al. (2003) demonstrated that LiDAR can be used to extract forest fuel distributions 
from LiDAR data in forests dominated by coniferous and deciduous tree species, but 
Skowronski et al. (2007) highlighted the breakdown of LiDAR-based fuel load assessment for 
larger areas. Mutlu et al. (2008) attempted to improve on LiDAR-only approaches by showing 
that fuel models can be calibrated using a remote sensing fusion approach that hedges on 
LiDAR and Quickbird imagery. Beneath the canopy, Seielstad and Queen (2003) have also used 
small footprint LiDAR data to measure fuel loads of coarse woody debris on the forest floor. 
This was done by performing "obstacle density" assessment within 2m of the forest floor. We 
want to expand on such methods by applying a LiDAR distributional approach, similar to those 
used by Means et al. (2000), van Aardt et al. (2006), and Pesonen et al. (2008). The first two 
studies focused on forest volume/biomass estimation, while Pesonen et al. 2008) highlighted the 
potential of a distributional approach for coarse woody debris assessment. We propose to 
improve forest floor fuel load assessment by expanding such distributional approaches to 
include negative digital elevation model (DEM) residual distributions.  
 
We hypothesize that (i) above-ground LiDAR height distributions are indicative of the downed 
coarse woody debris (CWD) structure, either through correlations with canopy level structure or 
via scattering of laser pulses close to the ground and (ii) that so-called negative height residuals, 
or LiDAR heights that are apparently negative after subtraction of the DEM, potentially contain 
signal that can be associated with multiple scattering effects. Our objectives therefore are to (i) 
determine if hypothesized multiple scattering effects and their inclusion in LiDAR distributional 
analysis can contribute to modeling CWD fuel loads at 1h, 10h, 100h, and 1000h fuel weights 
and (ii) to assess the relative impact of an increase in DEM spatial resolution, i.e., an increase in 
"below-ground" returns on the first objective’s outcomes. We believe that the multiple scattering 
effect, caused by a delayed return signal due to vegetation structural complexity (Wu et al., 
2009), can be linked to variation in forest floor CWD (Figure 1).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     

 

Figure 1: An example of hypothesized 
multiple scattering effects, i.e., a delayed 
LiDAR signal that exhibits as being 
below-ground. This example is from a 
savanna environment, using an Optech 
small-footprint waveform LiDAR (0.56 
mrad beam divergence). This multiple 
scattering (blue Gaussian) was attributed to 
scattering due to dense herbaceous biomass 
(Wu et al., 2009). 
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2. Methods  
 
2.1 Study area 
 
The study area is located in the Cumberland district, Daniel Boone National Forest, Kentucky, 
USA (Figure 2). This central Appalachian region is characterized by upland oak-dominated 
forests, e.g., scarlet oak (Quercus coccinea Muench.) and chestnut oak (Q. prinus L.), with some 
black oak (Q. velutina Lam.) and white oak (Q. alba L.), where fire-sensitive red maple (Acer 
rubrum L.) and eastern white pine (Pinus strobus L.) are gaining dominance.  
 
2.2 Plot establishment  
 
A total of ninety-three plots (10 x 40 m; Figure 3), part of two of the longest running prescribed 
fire studies on the Cumberland Plateau (Blankenship and Arthur, 2006), have been 
control-burned at various frequencies. These include a control set, 2003/2009 (infrequent), and 
2003/2004/2006/2008 (frequent) burn plots. Plots run 10m uphill and 40m perpendicular to the 
slope and include January-March, 2009 pre-burn measurements for overstory (trees >10cm 
diameter-at- breast-height; DBH), midstory includes trees (<10cm DBH in first quadrant), and 
CWD in terms of 1h, 10h, 100h, 1000h fuels at the fuel transects (pre-burn). The CWD values 
correspond to 0-0.635cm diameter (1h), 0.635-2.54cm diameter (10h), 2.54-7.62cm 
diameter (100h), and 7.62 cm diameter (1000h) (Brown et al., 1982). However, our 
analysis was constrained to 17 pre-burn, frequent burn treatment plots due to LiDAR coverage.  
 
 

 
 
 
 
 
 
 

 
 

Figure 2: The study area is located in the Cumberland District of the Daniel Boone National Forest.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Plot layout for assessment of various forest structural parameters, including a line transect for 
measurement of CWD. The inset shows an example of a 100h fuel load CWD plot. 

100km 

….Corner trees 
….Forest Floor Block 
….Fuel Transect 
….Recruitment Block (1x1m and expanded to 2x2m) 
….Oak Germ and Mineral Soil transect 
….Regeneration plot 
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2.2 LiDAR data description and analysis  
 
A Leica ALS50 (64KHz pulse rate; 43Hz scan rate; 4 returns/pulse; >5 hits/m2; 1.4m footprint; 
1,655m swath) was used to collect data for the study area during February 2009, prior to the 
burn treatment. LiDAR returns were classified into ground vs. non-ground returns by the vendor 
using the well-known Terrasolid slope-radius algorithm (van Aardt et al., 2006). The LiDAR 
returns subsequently were processed using the following workflow: 

1. DEM generation: Kriging and nearest neighbor interpolations (Surfer V. 9.0) were used 
to generate 1m and 10m DEMs of the area. Two interpolation algorithms and spatial 
resolutions were used to assess the impacts of a theoretically smoother vs. rougher 
DEM and to determine if resolution impacts derivation of height residuals, respectively. 
Stated differently, both the interpolation approach and the varying spatial resolutions 
allowed us to partition the above- and below-ground LiDAR distributions differently.     

2. Residual calculation: Residuals (height above DEMs) were calculated using Surfer (V. 
9.0) in the case of each interpolation algorithm and spatial resolution for the LiDAR 
point cloud for 25m radius plots, centered on the field plots. We maintained negative 
residuals, or theoretical below-ground LiDAR returns, which was hypothesized to be 
related to multiple scattering effects due to scattering by CWD. This is different from 
most previous approaches, e.g., van Aardt et al. (2006), where such returns are set to 
zero or discarded, since they are assumed to be due to either misclassified ground 
returns that negatively impact DEM derivation or sensor error.  

3. Modeling: We generated LiDAR height distribution statistics (see Means et al., 2000; 
van Aardt et al., 2006) for positive and negative residuals and their associated LiDAR 
intensities separately. Both sets of distribution statistics were used as inputs to stepwise 
linear regression (PROC STEPDISC in SAS V. 9.2), with α = 0.10 for variable entry to 
result in <= 10 variables for all CWD models; most models contained < 4 independent 
variables. CWD models were assessed based on their adjusted R2 and root mean square 
error (RMSE) values. These two metrics were considered robust, since they penalize 
models for overfitting and provide a precision estimate, respectively.   

 
3. Results  
 
Figure 4 shows an example of the below-ground LiDAR return distribution for all the plots 
based on Kriging at a 10m spatial resolution. While one could argue that such a seemingly 
normal distribution could be indicative of random system error, it remains striking that the 
distribution mimics a bell shape for limited multiple scattering close to the ground surface, i.e., 
fine matter, and a spread-out distribution tail that are theoretically due to fewer, but coarser 
woody debris objects. Table 1 shows the results of the analysis workflow described above. 
Results are given in terms of DEM spatial resolution, interpolation method, CWD level, the two 
model metrics, and the independent variables that were selected as significant to each model.  

 
Table 1: CWD modeling results for all spatial resolutions, interpolation approaches, and CWD fuel levels 
 

Cell Grid Fuel Adj. R2 *RMSE 
(Mg/ha) **Variables 

1m 
Kriging 

1h 0.22 0.102 Canopy02P 
10h 0.38 0.606 StdMeanRefN; StdMeanVegP 
100h 0.41 1.117 P_VegP_10 

1000h 0 N/A None 

Nearest 
Neigbor 

1h 0.51 0.081 MinVegN; P_VegN_90 
10h 0.46 0.566 P_VegN_90 
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Cell Grid Fuel Adj. R2 *RMSE 
(Mg/ha) **Variables 

100h 0.74 0.734 P_VegP_90; CVVegN; StdRefN; 
Canopy01P 

1000h 0 N/A None 

10m 

Kriging 

1h 0.75 0.058 
(16.7%) StdMeanVegP; MaxVegN; Canopy02P 

10h 0.98 0.11 (9.6%) 

MaxVegP; MinVegP; StdMeanVegP; 
P_VegP_10; MaxVegN; P_VegN_90; 
MaxRefN; RangeRefN; Canopy02P; 

Canopy08P 

100h 0.99 0.111 (4.7%) 

MeanVegP; CVVegP; SkewnessVegP; 
StdVegP; MedianVegP; P_VegP_70; 

CVRefP; P_VegN_75; KurtosisRefN; 
SkewnessRefN  

1000h 0.69 4.59 (47%) MinVegP; P_VegP_40; P_VegP_90; 
Canopy10P 

Nearest 
Neigbor 

1h 0.58 0.075 RangeVegN; Canopy04P 
10h 0.28 0.653 StdMeanRefN 
100h 0.31 1.21 RangeRefN 

1000h 0 N/A None 
*% indicate RMSE as percentage of average fuel weight 
**Veg = vegetation height return; Ref = intensity; P = positive & N = negative residual 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Below-ground return distribution for all plots (Kriging at 10m spatial resolution). 
 

Figures 5 and 6 show the observed vs. predicted model plots for Kriging at 10m spatial 
resolution and 1h and 10h fuels, respectively. Finally, Figure 7 shows an example of the LiDAR 
return distribution for the plot that exhibited the smallest RMSE (-0.0001 Mg/ha) for Kriging at 
10m and a 100h CWD fuel load. This CWD model included both positive (above-ground) and 
negative (below-ground) height and intensity residuals. For instance, it is interesting to note that 
the 75th negative percentile is included as an independent variable - this speaks to the delayed 
returns, due to hypothesized multiple scattering, that the "coarse" nature of 100h CWD 
structures would cause.    
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Figure 5: The observed vs. predicted plot for CWD modeling based on Kriging (10m) for 1h fuels.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: The observed vs. predicted plot for CWD modeling based on Kriging (10m) for 100h fuels. 
 
4. Discussion 
 
The best CWD model fits had high adjusted R2 values of between 0.77-0.99, although 
models exhibited a range of adjusted R2 and RMSE values. The models based on 
Kriging at 10m spatial resolution performed best, especially in the case of the 
intermediate CWD fuel loads (10h and 100h). Models with more independent variables 
performed better, as expected; however, these models also included a more balanced 
mix of negative residual (“below-ground”) and positive (above-ground) distributional 
variables when compared to models with fewer independent variables. These 
independent variable sets included specifically percentile, intensity, maximum, and 
range metrics, similar to findings by Means et al. (2000) and van Aardt et al. (2006). 
These two studies focused on above-ground forest volume and biomass estimation and 
it is interesting to note that the approach could potentially be extended to CWD 
modeling, as indicated by the results.  
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The selection of Kriging and a 10m spatial resolution as best performing models was 
attributed to the smoother, accurate interpolation due to Kriging (van Aardt et al., 2006) 
and the manner in which 10m DEM grid cells partition the LiDAR height distribution; 
this latter aspect needs to be explored more fully in future studies. The low RMSE 
values (<10% of the mean) for medium-slow and medium-fast burning fuels were 
encouraging, while the high RMSE in the case of 1000h CWD fuel weight (47% of the 
mean) was attributed to the small sample and number of independent variables. Finally, 
we concluded that, depending on the application, there is evidence that previously 
considered “erroneous” return values could be useful as indicators of fine-scale 
structure close to the ground surface. This especially was evidenced by inclusion of 
negative residual intensity and range values, which show that such delayed signals are 
useful for modeling structures close to the ground surface. However, this approach 
requires significant validation across regions, since industry experts (e.g., Joe Liadsky, 
Optech system engineer, personal communication) expressed doubts that multiple 
scattering could be detected at narrow beam divergence angles (0.56 mrad), even though 
he acknowledged that there is evidence of "structure" in the signal.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Below-ground and above-ground (inset) LiDAR return distributions for the plot that exhibited 

the smallest RMSE for CWD modeling based on Kriging (10m) for 100h fuels. 
 
4. Conclusions 
 
We have shown that consideration of close-to-ground multiple scattering in CWD fuel load 
modeling is justified. This was corroborated by the inclusion of negative LiDAR return DEM 
residuals as part of the independent variable set in most CWD models. Fusion of above-ground 
and scattered/delayed returns appeared to work best in the case of medium-fast (10h) and 
medium-slow (100h) burning fuels. This was attributed to lack of a distinct signal for fine 1h 
fuels and very coarse 1000h fuels, resulting in limited or dampened LiDAR responses, 
respectively. Future research will focus on validating the approach by increasing the sample size 
and the LiDAR point density, and testing across diverse regions. 
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1. Introduction 
 
The State of Victoria has established a methodology for providing river health data for regional 
planning. The index of stream condition (ISC) is a baseline dataset used in river investment and 
planning. The ISC evaluates the environmental conditions of the major rivers and tributaries 
across Victoria. The ISC integrates the results from five key components of river health; river 
hydrology, water quality, riparian vegetation, stream form and aquatic life. These components 
and their metrics are shown in Table 1. 
 

Table 1: Structure of the Index of Stream Condition (ISC) 
 

Hydrology Stream Form Riparian Vegetation Water Quality Aquatic Life 

Low flows Bank condition Vegetation width Total phosphorus AUSRIVAS 
High flows Artificial instream barriers Fragmentation Turbidity SIGNAL 
Zero flows Large instream wood Vegetation overhang Salinity (EC) EPT Index 
Seasonality  Large trees pH Number of 

Families Variability  Weeds (Willows)  
  Foliage cover   
  Structure   
 
Previous ISC assessments were successfully undertaken for all five components in 1999 and 
2004. In these assessments the in-stream components of hydrology, water quality and aquatic 
life were sampled at fixed sites within the streams. The field sites were usually at the 
downstream end of a river reach (a uniform section of river). This typically ensured that all 
processes which act upon the reach are accounted for in the measurement sample. However, the 
stream form and riparian vegetation components of the ISC used random field site selection for 
the assessment. The random sample data was collected within reaches and the results used to 
infer the condition of the whole reach. 
 
The random sampling for the stream form and riparian vegetation components of the ISC were 
frequently not at locations where there had been on-ground works programs to improve stream 
condition. Therefore the ISC could not be used to assess the impact of Government investment 
to improve stream condition. This has led DSE to investigate and develop the ability to assess 
these components of the ISC using remote sensing techniques. Thus avoiding the need for 
random site selection and to mobilise field crews to assess some 2500 sites across the State. 
Instead a census approach could be adopted that would collect data from 27,000km of stream 
length across the state. The results of the study have shown that LiDAR and aerial photography 
data can be used to accurately map various riparian vegetation and stream form metrics for the 
ISC. 
 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 2

The ISC assessment undertaken during 2009-2010 has included a significant investment in the 
use of LiDAR and aerial photography to assess the riparian vegetation and river form 
components of ISC stream network. Fugro Spatial Solutions (FSS) have been performing the 
surveying and metric production components of the project. 
 
The use of remote sensing will result in a more accurate and comprehensive assessment of 
riparian vegetation and stream form which will in turn provide significant benefits when 
prioritising and undertaking on-ground works to improve river condition. 
 
2. Measuring Riparian Vegetation and Stream Form Using Airborne Surveys 
 
The health of riparian vegetation and stream form is assessed by measuring a number of metrics. 
Each of the metrics can be measured by either or combination of LiDAR and/or aerial 
photography. As vegetation measurements are required for assessing riparian health the surveys 
have to be designed to provide enough measurements within the vegetation canopy. Preliminary 
investigations outlined the key specification requirements for producing riparian metrics as 
requiring: 
 

• Four point discrete echo LiDAR data 
• Along track average point spacing of 0.5m 
• Across track average point spacing of 0.5m 
• An evenly distributed average point density of 4 points/m2 
• A laser footprint size of 0.3m 
• A maximum scan angle of 30 degrees; no more than 15 degree half angle 
• An absolute vertical accuracy to AHD of ±20cm at 1σ for the ISC rivers 
• A horizontal accuracy of ±30cm at 1σ 
• A relative vertical accuracy of ±5cm at 2σ 
• Data covering at least 300m either side of the stream banks 

 
The aerial photography was collected at a 15cm resolution, and as near as possible to the time of 
the LiDAR data collection. Field data was also collected at 200 sites across the State for 
verification purposes within a similar timeframe. 
 
3. The 2009-10 Victorian ISC Survey 
 
The 2009-10 Victorian ISC Survey included 27,000km of major rivers and tributaries from 
across the state. The project management involved dividing the survey into the ten river 
catchments shown in Figure 2. This generally resulted in each catchment being surveyed over a 
one month period and the processing of data for each catchment occurring independently. 
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Figure 21: The major rivers and catchments within the Victorian Index of Stream Condition (ISC) 

 
The project produced four generic spatial product types that depict both stream form and 
riparian vegetation characteristics: aerial photography, standard LiDAR, non-standard LiDAR 
and ISC Metric products. 
 
The imagery captured during the project was 15cm RGBI (colour visible and infra red) aerial 
photography. The standard LiDAR products consisted of ground surface DEMs and classified 
LAS files, the production of which are typical and well understood. 
 
The non-standard LiDAR products are less typical, while the ISC metric products have 
specifically been developed for this project. These products are less well understood and 
warrant further description. The non-standard and ISC metric products delivered as part of the 
project include: 
 
Non-Standard LiDAR products used to derive the ISC metrics: 

• Canopy height model 
• Ground slope model 
• Fractional cover counts (a measure of the amount of vegetation present) 
• LiDAR intensity images  

 
ISC metric products used to assess river condition: 

• Stream form metrics: streambed width, bankfull width, river centrelines, water bodies, 
bare ground, bank condition, large in-stream wood and artificial instream barriers. 

• Riparian vegetation metrics: width of vegetation, foliage cover, structure, vegetation 
overhang, fragmentation, tree weeds (willows) and large trees. 

• River health sub-index: riparian sub-index and stream form sub-index 
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In addition, field products were used for calibration, validation and/or quality assurance of all 
the above products. 
 
The development of the non-standard LiDAR products and the ISC metrics used for the 
assessment of river health are outlined in this paper. 
 
4. Non-Standard LiDAR Products used as Input to ISC Metrics 
 
The non-Standard LiDAR products described in this paper are the fractional cover count, 
canopy height model and slope products. These products are used derive a number of the ISC 
metrics. For these products, automatic classification and operator visual checks and corrections 
have been undertaken at FSS to remove built structures and non-vegetation returns from the 
LAS point cloud before product development. 
 
4.1 Canopy Height Model (CHM) 
 
The canopy height is the vertical distance between the ground and top of vegetation as 
computed from the LAS point cloud. As shown in Figure 2, the canopy height model has been 
produced for each 2m cell up to a distance of 300m from the bank full width for each stream. 
This distance from the stream is generally the limit of riparian vegetation. 
 

 
Figure 2: The canopy height model (CHM) surrounding a stream in the ISC 

 
4.2 Fractional Cover Count (FCC) 
 
The fractional cover count measures the density of vegetation in a particular area. This is 
expressed as the number of LiDAR points classified as vegetation as a percentage of all LiDAR 
points for the particular area. Two types of FCC are calculated: height class FCC (used in 
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foliage cover and structure) and overall FCC (used in fragmentation, vegetation overhang and 
vegetation width). 
 
4.2 Ground Slope and LiDAR Intensity 
 
The ground slope is the rate of change in height of the ground. It is computed in degrees from 
the DEM as the change in height across a particular cell. See examples of the ground slope as a 
background in the examples shown for the streambed and bankfull widths. 
 
The LiDAR intensity image display the strength of the return LiDAR pulse. More reflective 
surfaces give a higher value than surfaces which absorb the LIDAR pulse. 
 
5. ISC Metrics Used to Measure Stream Condition 
 
Other than stream form and riparian vegetation the ISC metrics can also be divided into 
referenced and unreferenced metrics. Several metrics are scored based on their comparison to a 
reference condition. This can be thought of as relative scored ISC metrics, as opposed to an 
absolute score. 
 
The reference condition is determined from a presumed natural, or pristine, condition of a 
stream. The ISC compares the expected pristine condition against the observed current 
condition to infer the condition (ie little difference between expected and observed equals good 
condition, while a large change between expected and observed equals poor condition). The use 
of reference conditions allows comparison of different reaches across Victoria. Therefore, 
comparisons are not only restricted to streams in the same geographical zones, more general 
comparisons about improvement or deterioration of health can be made between catchments. 
This statewide comparison is an important feature of the ISC. For the riparian vegetation 
metrics the reference condition uses the Ecological Vegetation Class (EVC) benchmark. These 
have been mapped for the whole of Victoria. However, they needed to be remodelled, due to the 
level of accuracy required for comparison with the LiDAR products. The new EVC benchmarks 
have been used as the expected condition for the riparian vegetation metrics. For the stream 
form, the reference condition had to be specifically derived for this project. 
 
The descriptions of the ISC metrics are split into stream form and riparian vegetation metrics, 
within each of these sections they are scored as unreferenced or referenced metrics. 
 
5.1 Stream Form ISC Metrics 
 
The stream form is the study of the shape of the land and the processes that are maintaining or 
changing that shape today. In rivers, it describes and explains processes of erosion and 
deposition and their relationships with different substrates and flow patterns. The stream form 
metrics in the context of the ISC are the streambed width, bankfull width, river centrelines, 
water bodies, bare ground, bank condition, large in-stream wood and fish barriers. 
 
Only the last three stream form metrics are used in the ISC scoring for river health. The first 
five stream form metrics are used as inputs to the remaining stream form and riparian vegetation 
metrics. 
 
5.1.1 Streambed Width (SBW) 
 
Streambed width is the distance between the toes of the bank (where the bed of the stream meets 
the stream bank) on each side of the river. Where the toe of the bank is not visible due to water 
it is taken as the water level.  
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The pre-existing (but low accuracy) ISC river network supplied as part of the original 
specifications is used to guide the approximate location of the streambed. The majority of SBW 
is mapped from the non-standard LIDAR ground slope layer as shown in Figure 3. However, 
sections have been mapped from the aerial imagery where the LiDAR data coverage is not 
adequate. The slope layer (or occasionally the aerial imagery) is used to screen digitise the toe 
of the river bank for both sides of the river. The SBW is identified either by the wetted perimeter 
(water in the channel extending from bank to bank) or by a clear break towards the bottom of 
the slope (which is shown in white below). 
 

 
Figure 3: The streambed width (in blue) is delineated at the bottom of the slope 

 
An automated process was tried for mapping SBW (and bankfull width), however it did not 
produce a consistently accurate product across all rivers within Victoria. It was subsequently 
replaced with screen digitising. 
 
An automated process developed by FSS divides the SBW line work into reaches. The reaches 
are sections of streams that are typically 10 – 30km in length and fairly homogeneous in terms 
of hydrology, vegetation and geomorphology. The new river centre lines are created from the 
SBW; reach breaks are first introduced to the centrelines and then applied to SBW using a line 
which is generally perpendicular to the direction of the stream. 
 
5.1.2 Bankfull Width (BFW) 
 
Bankfull width represents the width between the top of the lowest bank and the corresponding 
height on the opposite bank as computed on both sides of the river. It sits outside the streambed 
and is effectively the width of the stream before it breaks its banks. The BFW is shown in 
Figure 4 over the top of the slope layer. 
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Figure 4: The bankfull width (in brown) is delineated at the top of the slope. 

 
Like the SBW, the pre-existing ISC river network is used to guide the approximate location of 
the BFW. The BFW uses the same inputs as the SBW, and is mapped at the same time using 
screen digitising to map the top of bank for both sides of the stream. An automated in-house 
process which was developed by FSS is then used to level both sides of the bank. At 5m 
intervals along the river a transect is created across the river near-to-perpendicular to the 
centreline. The lowest bank is then identified and a node is created on the opposite bank at the 
same height as the lowest bank on the same transect. Adjacent nodes for the left and right bank 
along the river are subsequently joined to create level BFW lines. 
 

 
Figure 5: The bankfull width (in brown) is shown with the streambed width (in blue) over aerial imagery. 
 
5.1.3 River Centrelines (RC) 
 
The river centrelines define the middle of the river and are located at the midpoint of the 
streambed width. The RC are mapped from streambed width layer. However, sections without a 
streambed width have been mapped from the aerial imagery to complete the river network.  
These unmapped areas relate to large bodies of water like lakes which did not have their banks 
mapped.  
 
An automated vector process is used to find the midpoint of the streambed width at every 1m 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 8

along the network. Part of this process relates the new river reaches to the old river reaches and 
aligns the reach breaks. This process also divides the river centreline network into 100m 
sections. It should be noted that the last section in a reach is between 50 to 150m long, so that 
the new reach begins with a new 100m section.   
 
Due to the large amounts of data produced for the ISC it is necessary to develop a geodatabase 
to store the data. The central element of the database is the river centrelines network which is 
divided into 100m segements, within the ISC stream reaches (approx 1200 reaches, which are 
typically 10 – 30km in length). It is important to note that the river centreline network is the 
core product within the geodatabase for spatially linking the ISC attributes, statistics, scoring 
and reference scores for all reach and 100m sections of river. 
 
5.1.4 Water Bodies (WB) 
 
Water bodies are defined as areas of the within the bankfull width which contain water at the 
time of survey. The water bodies are mapped from the aerial imagery using a water index to 
classify areas of water within the streambed. The water bodies are not used in the ISC scoring 
however will be used within ISC follow up work. 
 
5.1.5 Bare Ground (BG) 
 
The bare ground is defined as areas of no grass or vegetation on the bank face. The bare ground 
is mapped by selecting areas on the bank face which are not classed as either vegetation or 
water from the imagery. 
 
The bare ground is not scored within the ISC, however is used as an input into bank condition. 
 
5.1.6 Bank Condition (BC) 
 
The BC has been scored based on the proportion of bank face that has been classified as eroding 
above the expected rates. First of all, confined streams are identified in the ISC river network 
and removed from the BC calculation process. Confined segments are not able to move laterally 
and so are given the best condition score. 
 
Stream bank types (SBT) are then manually identified for each 100m section. This is because 
the sediment composition of the streambed and bank affect the stability of the stream. All 
streams are classified as one of eight SBTs which each have particular reference erosion 
thresholds.  
 
For the BC each cell on the bank face is classed as eroding or not eroding. This is based on the 
predefined threshold value for the slope and whether the cell is identified as bare ground. Each 
SBT has different slope thresholds. The erosion scores are aggregated into the 100m sections. 
For every 100m section, the % number of pixels classified as eroding is calculated. 
 
The mapped erosion percentages are compared to reference erosion thresholds for each 100m 
section. The reference is based on the SBT and the planform of the river (straight, curved, 
tortuous). The results are recorded for each 100m section as either being as expected for erosion 
or having too much erosion. 
 
The erosion scores for all 100m sections are aggregated and a percentage of eroding sections is 
calculated for each reach. The confined segments are added back in at this stage as non-eroding 
segments. The final % eroding sections is computed into a final score for the ISC. 
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5.1.7 Large In-Stream Wood and Artificial Instream Barriers 
 
The large in-stream wood and artificial in-stream barriers were manually assessed using the 
15cm aerial photography. Artificial in-stream barriers include such things as bridges, road 
crossings, and weirs. The in-stream large wood (ie. logs) is assessed based on their size and 
complexity. On the smaller streams where there is a dense canopy of overhanging vegetation, it 
is not possible to assess if any in-stream large wood is present. In these situations, the vegetation 
overhang component will be used and recorded as potential in-stream large wood. 
 
5.2 Riparian Vegetation ISC Metrics 
 
The riparian vegetation is the vegetation next to streams, also known as the riparian zone. The 
riparian width is defined by the vegetation itself, since plants requiring wet soil characteristics 
are usually different to those adjacent to the stream. Consequently, the riparian zone is any land 
that is next to, or is directly influenced by a stream. The riparian vegetation metrics in the 
context of the ISC are the vegetation width, fragmentation, vegetation overhang, large trees, 
foliage cover and structure. 
 
5.2.1 Vegetation Width (VW) 
 
Vegetation width is the measurement from the toe of the bank to where the overall vegetation 
cover is less than 20% FCC. VW is measured perpendicular to the stream direction. 
 
The overall FCC is filtered for values greater than 20% and within 200m of the SBW. A polygon 
feature class is created representing the vegetation beside the river. Transects perpendicular to 
the stream direction are created every 5m to compute the VW from the stream. 
 
The VW transects are stored as an ESRI line feature class within the ISC geodatabase. Using the 
transects to compute the VW width, the measurements and scores for each reach and 100m 
section of river are stored in the geodatabase. 
 
5.2.2 Fragmentation 
 
Fragmentation is a measure of how patchy the riparian vegetation is. Gaps in the riparian 
vegetation are defined by woody vegetation with less than 20% FCC and covering an area 
greater than 10x10m. The searches for gaps within the riparian vegetation are limited to within 
40m of the SBW. The percentage area of fragmentation within each reach is then used to 
calculate the fragmentation score within the ISC. 
 
5.2.3 Vegetation Overhang (VO) 
 
Vegetation overhang is the length of woody vegetation along the stream overhanging the 
streambed. The overall FCC is used to identify areas with greater than 20% vegetation cover 
and a polygon representing vegetation cover is used as an input for the computation of the VO. 
The vegetation polygons are intersected with the SBW lines to produce a VO line feature class 
representing VO over the streambed. The percentage overhang on both sides of the stream are 
then used to compute the VO ISC score for each reach. 
 
5.2.4 Large Trees (LT) 
 
The large trees are defined as vegetation canopies which exceed a predefined height, relating to 
the most common canopy tree species to occur in an EVC. The large trees use the EVCs to 
provide referential scoring for the ISC. The Victorian ecological vegetation class (EVC) spatial 
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layer is used to apply benchmark scores to each riparian area. The EVC reference scores are 
based on the average characteristics of a mature and apparently long-undisturbed stand of the 
same vegetation community. 
 
For the LT the EVC raster grid (within a 60m SBW buffer) is converted so that each cell 
represents the EVC LT canopy height obtained from a look-up table which lists the most 
common canopy tree species for each EVC. The canopy height model is then filtered for large 
trees within each of the EVCs. A “window” which matches the minimum crown size of the 
typical LT within the relevant EVC is used to group pixels in the CHM within each EVC. 
Groups of pixels which have 75% of their pixels larger than the reference EVC height are 
identified as large trees. An example of a large tree raster grid before the “window” filtering is 
shown in the figure below. 
 

 
Figure 6: The LT raster grid before filtering for crown size (same location as Figure 2) 

 
The scoring for LT is based on the percentage difference in area of LT between the expected and 
observed for each EVC within each reach. 
 
5.2.5 Foliage Cover 
 
The foliage cover is defined as the percentage vegetation cover by leaves, branches and tree 
trunks for three height categories: 

1. 0.3 – 1.5m (represents ground cover) 
2. 1.5 – 5m (represents shrubs) 
3. > 5m (represents trees) 

 
The foliage cover filters each of the height classes above for fractional cover counts with values 
greater than 20% cover. Each of the three height classes are then given a presence or absence of 
vegetation for each cell. The percentage area of cover for each of the height classes are 
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computed for each EVC. The expected percentage area cover for each of the three layers, which 
is determined from reference locations, is then computed against the observed percentage area 
cover for each of the three layers. Three ISC scores are then computed for each reach based on 
each of the three height classes. 
 
5.2.6 Structure 
 
The structure metric is a measurement of the presence or absence of vegetation within each of 
six fractional cover height intervals. For each of the height classes listed below fractional cover 
counts are tested for values greater than 20%. 
 

• 1.5 – 5m 
• 5 – 10m 
• 10 – 15m 
• 15 – 20m 
• 20 – 25m 
• >25m 

 
Each of the six height classes are given a presence or absence of vegetation for each cell. Cells 
assigned the value of 1 have vegetation present in the particular height class and cells assigned 0 
have no vegetation present. The presence and absence values are added together to give the total 
number of height classes present for each cell.  
 
The next step involves referencing the observed structure against the expected structure based 
on the EVCs. The difference between the observed mean value and the expected number of 
height classes are recorded for all pixels within each EVC. Scores are then aggregated for each 
reach and input into the ISC. 
 
5.3 ISC Metric Sub-Indices 
 
The ISC metric sub-indices amalgamate the reach scores for the riparian vegetation and stream 
form metrics into a single score for each sub-index. The sub-indexes will be combined with the 
other sub-indices shown in Table 1 to provide an assessment of health for each river reach in 
Victoria.  
 
6. Conclusions 
 
Compared to the results from prior research, the preliminary results have shown that riparian 
vegetation and stream form metrics can be measured to varying degrees of success for the 
Victorian ISC. Although, it should be noted that the results are a significant increase in detail, 
coverage and accuracy from the previously available information and the products are still being 
tested and validated in various catchments across the state.  
 
More significantly, the final results will provide a much needed input into the Victorian Strategy 
for River, Estuaries and Wetlands and more specifically will help to set management targets. 
The datasets will provide a key source of information for the regional priority setting process 
which identifies sites where on-ground works should be undertaken to either protect river values 
or to mitigate against risks to their values. 
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1 Introduction 
 
The Murray-Darling Basin covers 1,000,000 square kilometres; 13% of the Australian continent 
and produces 39% of Australia’s total agricultural output. However, thirteen of the Basin’s 23 
valleys are categorised as being in ‘very poor’ health and a further seven are in ‘poor’ health 
(Davies et al 2008). The Murray-Darling Basin Authority (MDBA) is responsible for reporting 
the health of the Basin’s rivers and for this purpose the Sustainable Rivers Audit (SRA) was 
established to collect and analyse data to determine the environmental condition of the rivers by 
objective and repeatable methods.  
 
The first SRA assessed river health under three indicator themes; 1) Fish, 2) Macroinvertebrates 
and 3) Hydrology. Two additional themes were included in the second SRA; Physical Form (of 
the river channels) and Vegetation. This project describes how these two additional themes were 
measured using full-waveform LiDAR. Highly automated workflows developed in the 
TNTmips™ Spatial Modelling Language were used to extract information from the LiDAR for 
statistical analysis. A semi-automated tool was developed to measure a range of river channel 
and foliage attributes by objective and repeatable means. More than 50 measurements are 
generated for each of 1610 sites stratified across the Basin’s 23 river valleys. Extensive field 
survey was used to verify the accuracy of the data.  
 
Full waveform LiDAR represents an extremely rich source of environmental information. This 
was exploited by the Sustainable Rivers Audit (SRA) program as a means of taking diverse 
mesurements of environmental attributes. The project methodology was highly innovative and 
required the development of new algorithms and processes to extract the required information 
from LiDAR point clouds. 
 
The data processing produced five successive levels of data, each more refined than the 
previous. These levels are: 

1. Raw waveform LiDAR instrument data, airborne GPS/IMU and field GPS 
2. Processed LiDAR point cloud; classified LiDAR tiles. 
3. Derived data: terrain surfaces, vegetation surfaces, foliage density rasters, contours 
4. Channel features; top and bottom banks, centrelines, riparian zones 
5. Measurements; Data matrices containing channel and vegetation measurements such as 

channel depth, width, bank angles, stream power and foliage density by strata. 
 
Levels 1 to 3 are common to most full wave LiDAR projects, except that the foliage density 
rasters are not standard outputs from a LiDAR project. The generation of Level 4 datasets was 
the most innovative aspect of this project and involved the development of algorithms and 
software tools, with significant input from geomorphologists and ecologists. Having produced 
the Level 4 data, the data matrices (Level 5) were relatively straightforward to generate, but the 
matrices include a significant number of measured variables that normally would not be 
available for environmental assessments. 
 
2 Method 
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2.1 Data Collection 
 
A stratified sampling design was employed, 70 sites were randomly generated on the river 
networks within each of the 23 valleys in the Basin, giving a total of 1610 sites. Within each 
valley the sites were stratified against elevation zone and broad vegetation type. An additional 
109 check sites were also selected to measure the spatial accuracies achieved in different types 
of vegetation and topography. 
 
Each sampling site was a 2000 metre by 700 metre rectangle aligned to the primary river 
channel. Within the rectangular site, a one kilometre stretch of river channel and adjacent 
riparian zone were analysed.  
 

 
 

Figure 1. Each 2000 m x 700 m site is covered by two 577 m wide LiDAR swathes with 35% 
overlap. A 1km section of river within each site is analysed.  

The aerial surveys were constrained to ensure that data was not captured when water was 
overflowing the river channels and the LiDAR and Vexcel imagery were captured within two 
weeks of each other. These constraints and the need to survey field check points ahead of the 
aerial survey introduced some logistical complexities that were exacerbated by extensive 
flooding that occurred early in the project (December 2009 through March 2010). 

 
Figure 2. Channel sites (red) and field check sites (yellow triangles) overlaid on the 23 major 

river valleys that make up the Murray-Darling Basin.  

2km x 700m Site Rectangle  

1km river section 577m LiDAR Swaths 577m LiDAR Swaths 
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The LiDAR was recorded using a Trimble Harrier 56 and 68 LiDAR instruments. Both systems 
were operated with the following parameters: 

• Flying Height  500 m above ground. 
• Flying Speed:  205 km/hr 
• Scanning Angle  60 degrees 
• Overlap:   35% 
• Swath Width:  577 metres 
• Scan Rate:   76 Hz 
• Pulse Rate:   200 kHz 
• Point Spacing: 

o Along Track  0.5 m  
o Across Track  0.5 m 

• Ratio:   1 : 1 (along track : across track) 
• Capture Point Density:   4.05 per square metre within swath 
• Average Point Density:  6.89 per square metre 
• Spot Footprint:   0.25 m 

 
2.2 Primary Processing 
 
Standard LiDAR processing techniques were employed to generate  point clouds from the 
instrument data, combine the LiDAR strips for each site, adjust to control and classify the 
LiDAR points into the classes: 1) Ground / Water, 2) Vegetation and 3) Built Structures. 
 
An automated batch process was developed in the object oriented TNTmips Spatial Modelling 
Language (SML) to produce the primary datasets (rasters and contours) from the classified 
LIDAR points. TNTmips is well suited to this task due to its ability to integrate LiDAR LAS 
files with GIS data (ESRI shape & Grid) and image formats (GeoTIFF, JP2000). A single tool 
developed in TNTmips automatically sorts batches of LAS files associating each file spatially 
with a site and assigns a name based on the Valley, Site and capture date. The same tool then 
generates all the raster surfaces, foliage density layers, contours and other primary datasets, then 
outputs these to a variety of formats and re-imports them for validation. The TNTmips job 
queue manager proved highly effective in managing and optimising the computationally 
intensive processing across multiple networked computers to produce the large number of 
output files for all 1610 sites. The single batch process produced the following primary datasets 
from the classified LAS files: 
 

Table 1. The primary data sets. 
No. Name Description format 
1a Raw LiDAR One file per swath, named according to 

Valley, Site ID, capture date, sortie, and 
UTM zone 

LAS 

1b Classified LiDAR One file per site, trimmed to site polygon, 
named according to Valley, site, zone. 

LAS 

2 Ground Points Ground points without built structures ascii text 
3 Ground + Building Points Ground points with built structures ascii text 
4 Vegetation Points Vegetation Points ascii text 
5 DEM Raster terrain surface without built 

structures – 1 metre grid spacing 
Arc Grid 

5 DTM Raster terrain surface with built structures – 
1 metre grid spacing 

Arc Grid 
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7 CEM Vegetation height above ground  – 1 metre 
grid spacing 

Arc Grid 

8 PLR The percentage of LiDAR returns within 17 
height ranges above the ground: 

• 0.0 – 0.1 m 
• 0.1 – 0.5 m 
• 0.5 – 1.0 m 
• 1 – 2 m 
• 2 – 5 m 
• 5 – 10 m 
• 5 – 12 m 
• 10 – 20 m 
• 20 – 35 m 
• > 2 m 
• > 3 m 
• > 5 m 
• >10 m 
• > 12 m 
• > 20 m 
• > 35 m 

Arc Grid 

9 Contour 0.25 m interval contour ESRI 
Shape 

10 AOI Site rectangle polygon extracted from GIS 
layer of all site rectangles 

ESRI 
Shape 

 
The TNTmips SML script also generated ANZLIC compliant metadata, obtaining information, 
such as capture date and extent of coverage, from the input data and other GIS layers.  
 
2.3 Secondary Processing 
 
The primary datasets were used as the inputs to secondary processes that extracted river channel 
features. Two steps were involved: 1) mapping of water surfaces in the river channel, and 2) 
extraction of channel features and site zones. 
 
A ‘Variable Extraction Toolkit’ was developed, again using the TNTmips object oriented 
Spatial Modelling Language, to map channel and riparian features (secondary datasets) and also 
measure channel and riparian vegetation attributes (measurement datasets). The Variable 
Extraction Toolkit has a graphical user interface, and contains a number of interactive and 
automated feature extraction tools organised into a simple workflow. 

 
The first step of the feature extraction process is to map the channel centreline. The approximate 
path of the river channel is traced quickly over the relief shaded DEM. The variable extraction 
tool then maps the channel centreline as a line of best fit through the lowest part of the channel. 
Where the channel contains water, the centreline passes equidistantly though the centre of each 
water body. The channel centre line is automatically trimmed to a length of one kilometre. 
 
Flow direction is determined visually by inspection of the longitudinal profile of the channel 
centreline and if necessary by reference to a basin-wide drainage network. The channel must be 
oriented correctly in order to assign the left and right banks relative to the flow direction.  
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Nineteen transects are semi-randomly generated at right angles to the channel centreline. On 
each transect, points representing the left and right top banks and left and right bottom banks are 
generated. The top bank points are initially located at the first Riley Bench Index maxima. The 
Riley Bench Index is calculated as the change in channel width over the change in channel 
slope. Maxima in the Riley Index occur on the inside edge of horizontal surfaces (Pickup, 
1976). 
 

 
 

Figure 3. Transects and top-bank bottom-bank points generated in the Variable Extraction Tool. 
 

 
 

Figure 4. Riley Index plotted with bank profile. 
 

The aim is to find the top and bottom of the active channel, which must be distinguished from 
minor channels within the active channel and wider incised channels. It was necessary to 
provide sufficient flexibility to enable the operator to guide the program to choose the correct 
channel, while minimising the subjectivity of the process. This was achieved by allowing only 
three discretionary inputs: 1) choosing either the Riley Bench Index maxima or the mean bank 
height for the site, 2) specifying a minimum bank height for all the transects on a site and 3) 
discarding transects that are unsuitable for the analysis (e.g. transects on confluences).  
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Operators can view the channel in 3D using anaglyph glasses, switch between two different 
visualisations of the DEM surface and the false colour and natural colour Vexcel images of the 
site. Thus information, such as the presence of exposed sediments and vegetation, is taken into 
account when assessing the bank lines. Outliers are evident when bank lines are viewed in 
profile with the channel centre line and the mean height of the top bank above the channel 
centreline. As the operator adjusts the settings for each transect, the top bank profile generally 
converges with the mean bank height. 
 

 
 

Figure 5. Longitudinal profile of a channel site, showing the Riley Index (yellow), The mean 
bank height (green) and the channel centreline (red). 

 
After the bottom bank and top bank points have been generated for each of the 19 transects, top 
and bottom bank lines are interpolated between the points using a path following algorithm that 
applies, in order of priority, the following criteria: 

1. Minimise change of slope along the bank line 
2. Minimise the length of the bank line 
3. Follow the zone of maximum terrain surface inflexion. 

 
The accuracy of the bank lines is less critical for the purposes of this project, than the accurate 
placement of bank points on transects. This is because the physical form measurements apply 
directly to the transects, while the bank lines are used only for segmenting the site into channel, 
banks and floodplains for the purpose of measuring vegetation structure in these ‘Site Zones’. 
Therefore no interactive control was provided for the mapping of bank lines. 
 
After generating the bank lines, the site is segmented into the Site Zones listed in Table 2 and 
illustrated in Figure 6.  
 

Table 2. Site zone polygons for vegetation measurements 
Zone Description 
Left bed Between channel centreline and left bottom bank 
Right bed Between channel centreline and right bottom bank 
Left bank Between left bottom bank and left top bank 
Right bank Between right bottom bank and right top bank 
25LB / 25LB 25 metre buffer from left / right top bank 
50LB / RB 50 metre buffer from top bank to 25 metre buffer from top bank 
50LP / RP From 50 metre buffer to site boundary 
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Figure 6. Site polygons segmenting channel and adjacent riparian zone. 
 
The secondary data sets produced by these methods are listed in Table 3. Each data set includes 
ANZLIC compliant metadata. 
 

Table 3. Site zone polygons for vegetation measurements 
 

No. Name Description Format 
1 ChannelCL Computed channel centreline -lowest path 

or mid path through water. 
Shape + TNTmips 

2 Transects Maximum 19 transects for a site Shape + TNTmips 
3 BankPts Left and right top and bottom points for all 

transects on a site 
Shape + TNTmips 

4 BankLines Interpolated left and right, top and bottom 
bank lines for a site. 

Shape + TNTmips 

5 BankPolygons Polygons generated from bank lines and 
perpendicular end line. 

Shape + TNTmips 

6 SiteZones Site zone polygons described in table 2. Shape + TNTmips 
 
2.4 Data Measurement  
 
The final data generated for the project consist of two data matrices: 1) a Vegetation 
measurement matrix, and 2) a Physical Form measurement matrix. These matrices provided the 
basis for statistical analyses and modelling that were performed in subsequent phases of the 
project. 
 
The spatial units for the vegetation measurements were generated by intersecting the Site Zone 
polygons with vegetation polygons a pre-1750 vegetation map that had been compiled for the 
MDBA for this purpose. For each resulting polygon, representing the intersection of a site zone 
polygon with a vegetation polygon, the mean of the Percentage LiDAR Returns for each of the 
17 strata listed in Table 1 are calculated as polygon attributes. These data represent the vertical 
distribution and density of foliage by vegetation type across the zones associated with each river 
channel.  
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Intersecting the vegetation polygons with the Site Zone polygons, calculating the mean PLR for 
each stratum as polygon attributes and writing the results to a data matrix in CSV format is 
performed as a single process within the Variable Extraction Tool. 
 
Similarly, a range of Physical Form measurements is generated from the transect profiles, bank 
points and channel centreline. These attributes, listed in Table 4, are calculated as attributes of 
the GIS line features and are exported to a data matrix for each site as an automated process. 
 

Table 4. Physical Form Measurements 
 

Input Variable Description 
ChnlCent Channel centreline; length in metres  
ValCent Valley centre; length in metres  
MaxElev Maximum elevation of channel centreline 
MinElev Minimum elevation of channel centreline 
ElevDiff Elevation Range of the channel centreline  
TranMin Minimum elevation of transect 
TBnkAng(L&R) Left and right bank top angles 
TBnkHt(L&R) Left and right bank top height 
BBnkHt(L&R) Left and right bank bottom height 
TBnkArea Cross sectional area below top bank level 
AngLn(L&R) Length of profile from bottom bank to top bank – left and right 
SAngLnR Length of profile from spill height to bottom bank 
Convex(L&R) Cross sectional area of the bank profile above the bank angle line. 
Concave(L&R) Cross sectional area of the bank profile below bank angle line. 
Inflect(L&R) Number of times bank lines crosses bank angle line 
Length(L&R) Length of bank lines for the site – left and right banks 
WetBed Does transect intersect water? Yes or No 
WetWdth Width of water at transect from wetted area layer 
BedWdth Distance between left and right bottom banks 
ChnlWdth Distance between left and right top banks 
ChnlDpth Channel Depth; height of spill level above bottom bank 
AreaChan Channel area – between left and right top banks 
AreaBnk(L&R) Area between top and bottom banks for the site – left and right  
StrmPow Stream Power; (max elev minus min elev) / valley centreline length 
ManMade Evidence of manmade channel or features, or water control  

 
3 Discussion  
 
Full waveform LiDAR was found to be a very effective source of data for taking detailed and 
precise measurements of the river channels and riparian vegetation. The minimum density of 
four outgoing laser pulses per square metre produced a ground point density of more than one 
point per square metre, even in complex vegetation, generating extremely accurate and detailed 
ground surface models. The high pulse density, full waveform LiDAR, returned up to 20 points 
per square metre in areas of complex vegetation enabling the distribution of foliage to be 
mapped in three dimensions with a high level of detail.  
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The TNTmips software is an extremely effective geospatial modelling environment for 
establishing automated workflows to produce consistent and repeatable GIS output data from 
the classified LiDAR LAS files. The TNTmips system includes a Job Queue Manager which 
greatly facilitated management of the data processing by optimising the use of networked 
multiple core computers. It also provided detailed information on the status of the various tasks 
that had to be performed in sequence for more than 1610 individual sites. TNTmips also proved 
to be a highly effective geospatial modelling environment for the development of the Variable 
Extraction Tool, due to its ability to integrate a wide range of data types and formats, including 
LiDAR LAS files, and its advanced geospatial analysis functions. 
 
The data from this project were generated for statistical analysis in what is intended to be a long 
term program for monitoring the health of the MDB rivers. Consequently there is a requirement 
for methodologies that minimise subjectivity and bias by eliminating user interaction as much as 
practical. Variable extraction was performed entirely by GIS operators with no training or 
experience in geomorphology. Throughout development and implementation of the variable 
extraction methodology, expert geomorphologists assessed the quality of the data and provided 
advice on opportunities for improvement of the algorithms and work flows. Protocols were 
established for obtaining advice from professional geomorphologists where decisions could not 
be made with confidence by the GIS operators. The primary skill the GIS operators needed to 
learn in order to perform the variable extraction was the ability to distinguish alluvial systems 
from other types of river sections that do not apply to this project. Similarly, confluences and 
built structures such as bridges and dam walls can make transects or entire sites unsuitable and 
the operators were trained to recognise these and flag them for discarding or checking. 
 
The methodology and algorithms are designed for alluvial systems and do not operate 
effectively on river systems that are flat, topographically constrained or contain large boulders. 
Such river sections are difficult sites from which to extract useful information for both 
geomorphologists and automated methods.  For this reason, the project was designed with 
significant sampling redundancy; of the 70 sites surveyed in each valley, only 50 are required 
for the subsequent analysis based on a biostatistical power analysis.  
 
An independent assessment of the data by professional geomorphologists reported that on less 
than 10 percent of sites, bank lines were not correctly assigned to the active channel and 
between 16 and 35 percent of sites have minor errors in the alignment of bank lines which will 
not adversely affect the site measurements. As discussed above, the interpolation of bank lines 
is less critical than the correct assignment of bank points on a profile. The results suggest that 
between 58 and 75 percent of sites were mapped as would be expected from an experienced 
geomorphologist. It was noted that the manual identification of active channels and delineation 
of bank lines is a subjective process and that different geomorphologists would be likely to 
produce different results. Regardless of the extent to which the bank lines mapped by the 
methods described here are consistent with the definitions generally accepted by 
geomorphologists, the fact that they are generated though a repeatable and objective process 
lends this data to statistical analysis.  
 
The Percentage LiDAR Returns (PLR) was calculated as a surrogate measure of relative foliage 
density. PLR was defined as the percentage of total LiDAR points from an area, reflected from 
within each specified stratum. It was found that this is not the optimal method for calculating 
relative foliage density as explained below.  

1. The number of LiDAR points returned from within a vegetation stratum for a specified 
area will be determined by the number of LiDAR pulses emitted into the specified area. 
The number of points recorded from all stratum is proportional to the emitted pulse 
density, so this will not affect the PLR for any stratum. 



 10

2. The density of foliage intercepting and reflecting laser pulses from within that stratum 
across the specified area. Increased foliage density will tend to increase the reflected 
signal and hence the number points recorded and the PLR. 

3. Attenuation of the laser signal energy through foliage above the specified strata. This 
attenuation reduces the number of points detected from lower strata and hence the 
calculated PLR of lower strata is reduced by the foliage of higher strata. This causes 
compounding between the PLR of different strata and therefore there is not a simple 
relationship between PLR and foliage density. Further work is required to disentangle 
the interactions between strata. 

4. Compounding this effect, an increase in foliage density within vegetation above and 
below the stratum being measured, will increase the total number of points returned 
from the subject area. This has the effect of reducing the percentage of LiDAR points 
from that stratum and hence the calculated PLR. This effect is more easily overcome 
than the previous, simply by calculating PLR as a percentage of the total emitted laser 
pulses falling on an area rather than as a percentage of the total reflected points. Total 
Emitted Pulses is independent of foliage and is closely approximated by the number of 
1st echo points recorded. Subsequent investigation suggests that this is a more robust 
measure of foliage density. 

 
This project has shown that full waveform LIDAR is intensely information rich and provides a 
basis for measuring the Physical Form of the Basin river channels and associated vegetation 
with a higher degree of rigour and repeatability that has previously been possible. Future 
monitoring and evaluation of the Murray-Darling Basin would most likely combine remotely 
sensed data with field calibration and coincident collection of field data, such as channel pebble 
size, channel depth where water is present, and also vegetation recruitment. 
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Abstract 

Information on forest properties have grown over time and will continue crucially in the future. The focus 

on timber for commercial trade in early 1960’s in Malaysia has been changed towards multi function 

forestry, supported by multi resources survey. Starting with high demand of the latest data and accurate 

information, and cost effective monitoring system, application of various technology of sensing system is 

applied into forestry. The introduction of precision forestry concept is not new but in Malaysia is still at 

infancy stage. It deals with advanced sensing technologies and analytical tools to support site-specific 

economic, environmental, and sustainable decision making for the forest management and development. 

The key discipline is highly relying on accurate, timely and detailed forest inventory characterization and 

structural information. This is possible by utilization of accurate measurement forestry data and 

information to improve operations and processes. Despite of the current use of high resolution satellite 

and airborne sensing, LiDAR is a promising alternative tool to be used in forestry sector. LiDAR can be 

used in forest engineering for terrain mapping and road planning, and tree/stand measurement for tropical 

forest. This paper gives a synopsis of LiDAR sensing technology application and its potential to 

Malaysian forestry.  

 

Key words: precision forestry, LiDAR, forest management. 
 
1. Introduction 

 

The adoption of precision forestry concept is not new but in Malaysia is still at infancy stage. It deals with 

advanced sensing technologies and analytical tools to support site-specific economic, environmental, and 

sustainable decision making for forest management and development (Mohd Hasmadi et al., 2007). 

Precision forest management is a business of geoinformatics technology. The use of geoinformatics for 

precision forest management has become popular in developing country but at different stages. Precision 
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forestry leverages advanced technology and tools to support sustainable decision making, where it is 

highly reliant on accurate, timely, repeatable, detailed and spatially explicit forest inventory 

characterizations and structural information (Jason et al., 2002). Forest applications that are based solely, 

mainly or partly on remote sensing technology are structured by data type. Beginning with basic to in-

depth description of the user requirements lead to an increased demand for up to date, reliable and 

applicable on forest information for effective monitoring system. Forest measurement through traditional 

surveying has gained the development of new measurement tools. The rapid development of the image 

processing has made possible to combine digital data so that the aerial or even satellite imagery can be 

used to find the tops of the trees, estimate tree lengths, dbh sizes and thus volumes. The s of height 

measurement and vertical structure of forest structure opens a wide application in the forest ecosystem 

especially in combination with other optical data. In addition images does not necessarily be taken from 

the spaceborne or airborne. The different tree species , their location, characteristic , etc can be identifird 

and analysed by using radar scanning tecnology such as LiDAR. 

 

LiDAR is an innovative technology that assists the assessment of forest conditions as well as establishing 

a viable approach to long-term monitoring to support the management of natural forests. The LiDAR 

ability is rapidly collect highly accurate three-dimensional information of the forest and it ecosystem and 

make a significant impact in overcoming the challenges faced by government agencies and non-

governmental and organizations (NGOs) to solve new challenge in reducing emissions from deforestation 

and degradation initiatives. Meanwhile image processing software and techniques supports the advance 

data, providing greater analytical capabilities, thus improved knowledge, than was previously possible. 

LiDAR have been effectively demonstrated and reported  in precision forestry applications, including 

forest height inventory assessment (Andersen et al., 2006), multiple resource inventory (Reutebuch et al. 

2005), ecosystem studies (Lefsky et al., 2002) and stand value estimates (Murphy 2008). The ability of 

LiDAR is expanding for the assessment of ecosystem services (Richardson et al., 2009) and biomass 

estimation (Popescue et al., 2004). This paper gives a synopsis of LiDAR sensing technology application 

and its potential to Malaysian forestry. The current state of application and challenges toward possible 

direction of forest resources management also highlighted. This demonstrates the use and need of future 

precision forestry application of LiDAR technologies. Thus we believe that LiDAR technology integrated 

with geoinformatic procedures and efficient field sampling technique could provide a fundamental data 

for ecologically, socially and economically sustainable forest management in the future. 
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2. Information needs in precision forestry 

 

Forest information requirements are increased over time and will continue in the future. Information is 

changing where the data in not just as before most of the focus is on the timber resources for commercial 

use. In modern forest management the society has move from an economic focus toward multi-purpose or 

multi-functional forestry. In order to support the spirit of multi-functional forest multi-resources, an 

inventory is essential. Precision data reflects more attention by the society and policy for understanding 

the forest as a complex ecosystem that supporting country’s development and human life. Precision 

forestry uses high technology sensing and analytical tools or software to support site specific assessment. 

Adequate quality information derived from precise data helps in maximizing economic return for good 

decision making. Any information gained from surveying processes should provide sufficient data to 

support biodiversity assessment and other environmental resources including maintaining the quality of 

the environment. Precision forestry is also refers to site specific management. Site specific forest 

management may be refers to precise information of the tree stand such as measured tree volume from 

ground measurement and correlates with remote sensing data and GIS technique and/or and may be soil 

information of the specific forest land. The combination of field checking, aerial photo 

interpretation/remotely sensed data and data interpretation will refine details for the planning process.  

 

In precision forestry the quality of information is depend to the quality of data acquisition. Nohr (2001) 

stated that information quality can be defined as the sum of all requirements expected from information 

(data) in order to fulfil specific information needs. Olson (2003) defined data quality as two consentient 

aspects: first, the dependence of perceived quality on the user’s needs; second, the so-called “fitness for 

use”, which is the ability to satisfy the requirements of intended use in a specific situation. Among the 

most important criteria obout the quality of information are: 

Accuracy: Accurate information describes properties or the state of relevant objects according to the 

reality. If the entity can be described with measurable variables the degree of accuracy can be described 

easily. 

Reliability: The user of information should be convinced that any information available is correct in the 

widest sense. Even if a high accuracy is given for any variable it might be less reliable because of the 

measurement procedure used. 

Relevancy and process orientation: Information of high quality should meet objectively given 

information needs. Although this criterion seems to be quite understandable, it is one of the more difficult 
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ones. In particular in forest management decision making is often based on individual approaches of 

information use. 

Timeliness: Information that is not available in time is useless and therefore of very low quality. 

Completeness: Incomplete information which misses several and crucial parts may be misleading. 

Normally decisions are based on complex sets of information which add up to a comprehensive picture of 

the situation to be considered. 

Presentation: This criterion deals with the fact that information needs to be presented in a suitable 

manner. As information needs to be interpreted in order to prepare decisions appropriate presentation is 

an important quality issue. Although the criteria mentioned above are not listed according to a hierarchy, 

they will be of different importance in different enterprises.  

 

The types of tools applied in precision forestry are varies. For measurement and monitoring tools; 

LiDAR, remotely sensed data can be used to develop highly forest canopy characteristic, digital elevation 

model (DEM) and digital surface model (DSM) which are useful to determine stream lines and 

topography under canopy. In electronic mapping the global positioning system (GPS) and inertial 

navigation system (INS) were used for navigation under forest canopy. Then GIS is common software 

which uses for data management and recently web based data management also play a role in huge data 

storage and management. Next the decision support system (DSS) takes place by optimization of spatial 

data and simulates the scenario. The capability of ICT based operation research techniques in supporting 

DSS were proven by the simulation and network analysis (to name a few). The multi criteria decision 

analysis (MCDA) is widely used and recognized as a solution for the DSS in decision making process. 

 

3. LiDAR at a glance 

 

LiDAR stands for Light Detection and Ranging and is very similar to the radar. LiDAR is a better choice 

than radar because it has a greater ability to reflect images, making more objects visible. The principle of 

LiDAR system is a laser ranging. According to Young (1986) a high directional optical light could be 

created with laser process, thus yielding the high collimation and high optical power required for ranging. 

The advantages of laser was it demonstreted the high eneggy pulse that can be realized in short intervals 

and short wavelenght light which it can be highly collimated using small aperture. Laser light has a much 

shorter wavelenght that make it possible to accurately measure much smaller object such as cloud particle 

and creates wave form. The ability of laser sensing the points over the path or swath define by the 
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instruments scan angle and altitute  of the platform. Equiped with receiver and scanning system the 

distribution of points clound using previous profiling system were scanned to the along track path of the 

aircraft or vehicles. The use of GPS with LiDAR is only deployed in the 1980s to allow precise 

positioning of aircraft. LiDAR is categorised as an “active” remote sensing because the sensor both emits 

and records the radiation signal in the form of frequent, short-duration laser which is not record radiation 

reflected by the surface from a source external (such as sun) to the sensor. In general LiDAR technoogy 

has application in geomatics, archaeology, geography, geology, geomorphology, seismology, forestry, 

remote sensing and atmospheric physics (Cracknell and Hayes, 2006).  

 

As comparison LiDAR uses waves ten to one hundred thousand times shorter than radar waves. This is 

why LiDAR are able to collect much more information. The elapsed time from when a laser is emitted 

from a sensor and intercepts an object can be measured using either pulsed ranging or continuous wave. 

Pulsed ranging is where the travel time of a laser pulse from a sensor to a target object is recorded, 

meanwhile continuous wave is where the phase change in a transmitted sinusoidal signal produced by a 

continuously emitting laser is converted into travel time (Wehr and Lohr, 1999). The development of 

LiDAR technology is parallel through appplications of GPS and inertia navigation system (INS) also 

referred to as inertial measurement units (IMU). LiDAR technology for terrestrial applications differ in 

(1) whether they record the range to the first return, last return, multiple returns, or fully digitize the 

return signal,  (2) footprint size (from a few centimeters to tens of meters), and (3) sampling rate/scanning 

pattern. 

 

LiDAR has some advantages. The advnantages of LiDAR are able to carry out direct sampling for 

measuring vertical and horizontal of forest structure, flrxibilty in operation (day and night capturere), fast 

delivery times. High resolution and accuracy (tree height measurement and superior DEM generation), 

ease of GIS integration, cost effective for large scale project and provide wall-to-wall coverage. Other 

advantages are ability to defines terrain under vegetation, typicak data vertical accuracy of 0.15m rms, 

typical point spacing of 1m, and acquiring over 500 million data points per hour. Most commercial 

airborne LiDAR systems are low-flying, small-footprint (5–30 cm diameter), high pulse rate systems 

(1000–10,000 Hz). In addition, most commercial LiDAR systems record the range to the highest, and/or 

lowest, reflecting surface within the footprint, and are not fully imaging, using instead many laser returns 

in close proximity to each other to recreate a surface. 
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5. Overview of LiDAR applications in Malaysia 

 

Malaysia is aware the emerging of LiDAR in market to be applied in various sector that can benefit users 

in managing natural resources. In MAPMalaysia conference on April 2011 in Sabah the LiDAR session 

Emerging Trends, LiDAR and 3D was attracted by many attendances from delegates. Successful 

implementation of precision forestry depends on numerous factors, including the extent to which 

conditions within a field are known and manage, the adequacy of input recommendation and the degree of 

application. The enabling technologies of precision forestry can be integration of five major components: 

remote sensing, GIS, global positioning system (GPS), computers and application. 

 

Malaysia is developing country where any development of the forestland for other purposes is subject to 

environmental impact assessment report and guidelines by the government. The use of LiDAR for 

surveying and monitoring residential development project was tested in Bukit Tinggi area in Pahang, 

Malaysia. The project was carried out by the RS & GIS Consultancy Sdn. Bhd. The aim of the project 

beside to develop the area for low density residential, it also maintain the greenness of the area by 

minimizing the environmental impact. The big trees were conserved and very minimum slope cutting was 

done. The rationale is to maintain the ecosystem of the area. Figure 1 showing LiDAR “point clouds” of 

residential home at nearby Bukit Tinggi, Pahang, Malaysia surrounded by natural forest. Apart from the 

LiDAR terrain survey, this company also offers advanced geospatial support services to develop the 

necessary information layers to meet the landscape design and planning initiatives in the area of interest. 

Besides generating high-resolution Digital Terrain Models (DTM), they also offer to develop detailed 

contour and slope classification layers, support vital analysis of drainage, road, and culvert design, and 

analyze layouts and view-sheds of various development options to be explored. These are important to 

meets the goal in biodiversity conservation, enhancement and sustainable development.  
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Figure 1: LiDAR “point clouds” of residential home at Bukit Tinggi, Pahang, Malaysia surrounded by natural forest. 

 
In Kuala Lumpur city an 88-storeys PETRONAS Twin Towers (PTT) was completed in 1998. The PTT is 

an integral part of the Kuala Lumpur City Centre (KLCC) project. The PTT became the tallest buildings 

in the world on the date of completion (Sebestyen, 1998). Although PTT is surpassed by the Taipei 101 in 

2004, but it still remain as the tallest “Twin building’ in the world (Palmer, 2008). It rises to 451.9 m in 

height and surrounded by public park namely KLCC park which spanned about 10 ha. below the building. 

Figure 2 shows the KLCC with twin tower by using LiDAR data. The color coded data is capable to 

portray the scenes with amenities available such as jogging and walking paths, a fountain with 

incorporated light show, wading pools, and a children's playground.  
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Figure 2: LIDAR color coded point cloud of the KLCC showing world’s tallest twin building in  
Kuala Lumpur (451.9 m). 

 

Other experience was a collaboration study between Universiti Putra Malaysia (Faculty of Engineering 

and Faculty of Forestry with Limitless Company in Dubai). The aim of the study was to monitor and 

locating tree in city of Dubai along the overhead transmission cables and cut them whenever trees are 

overcrossing the cables. A Limitless Dynamic Laser Scanning System owned by Limitless LCC, a Dubai 

World Company was used for data acquisition (Figure 3). The system structure is basically equipped with 

laser scanner mounted on top of land cruiser and connected to GPS for positional floating navigation and 

IMU (Inertial Measurement Unit) to track the system orientation movements. The integration of GPS and 

IMU unit are the bases in developing dynamic laser scanning in providing an accurate location and 

orientation of the scanned features (Mahmoud et al., 2010). 
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Figure 3: Dubai World, Limitless Dynamic Laser Scanning System equipped with IMU and GPS. 

 

Two dynamic laser scanning missions were conducted in two locations (Figure 4). The first mission 

conducted in Dubai, Limitless LLC, Zone one, where the positional extent of the study area within 

Latitude 58° 24' 44''N to 58° 24' 41''N and Longitude 55° 05' 34''E to 55° 05' 36''E. The vehicle speed was 

set between 10 to 15 km/h. This range is adequate to collect the the intensity of the point cloud that could 

reflects the shape and location of the trees, although slowing down the vehicle speed would slightly 

enhance the data.The data were procesed to positioning the accurate location, filtration process to remove 

unwanted point clouds. The ground observation was conducte and subjected to post processing . The 

surveyed laser scanning data, post processing and LAS file generation were conducted using the Applanix 

equipments and the related POSPac software, where the color coded 3D surface generation was 

conducted using Quick Terrain software. 
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Figure 4. Location of study area (Limitless LLC, Zone One) 
 

The ouput of the study area is shown in Figure 5. Laser scanning system is capable in monitoring the 

overall city features including the city trees. The color reflecting the features elevations where cyan is 

reflecting the ground surface then green, yellow, orange and red. The black objects are either invisible 

features or it is non-reflective surface such water or asphalt pavement. This scene also show the 

importance of the accessibility of the concerned city trees in order to avoid any dark areas and to reflect 

the physical conditions. The high brightness along the road is generated due to the high reflectivity of the 

features which also reflects the shape resolution of the features. Results showed that the laser scanning 

was capable to recognize the trees height and shape/extension. The schematic map in Figure 6 imposed on 

the color coded image showing the selected tree height, where this case the tree height was 6.5 m and it 

extension was 18 m. The results are showing the feasibility of conducting the dynamic laser scanning as 

part of the regular overhead transmission lines maintenance. Meanwhile Figure 7 shows the tree shape 

and extent from second LiDAR mission of the study area. 
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Figure 5: Dynamic LiDAR scanning outcomes of the study area 

 

 
Figure 6: Calculating the trees height and shape/extension from LiDAR data 
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Figure 7: A color coded extracted trees locations and shapes from the second LiDAR Mission 
 

The dynamic laser scanning is very effective in reflecting city trees location and acceptable outcome in 

terms of trees shapes. The positional accuracy is very encouraging in both vertical and horizontal 

directions. The horizontal coordinates are re-projected to the local datum in UAE-Dubai (DLTM), where 

the vertical coordinates are ellipsoidal heights. The dynamic laser scanning is well performed in 

maintaining the overhead cables from any damages caused by the trees due to the ability of calculating 

the trees height in sufficient accuracy (up to 10 cm). The outcomes are comparable with aerial LiDAR 

outcomes where the coverage is less but the accuracy is more and the operational cost is less. 
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6. Conclusion 

 

There are huge potential of using LiDAR technology for precision forestry in many developing countries 

including Malaysia. The adoption of LiDAR technology in precision forestry also depends on product 

reliability, the support provides by manufacturers and the ability to show the benefits. The potential of 

LiDAR in forestry application in Malaysia is wide and require knowledge and techniques to process 

LiDAR data. However it is clear that LiDAR applications in forestry will continue to increase. We believe 

the theoretical understanding of the relationships that exist between forest structure and LIDAR response 

is still incomplete. In general, the most important where the LiDAR can play a signifcant role is in some 

of the research area such as canopy and tree height estimation, LiDAR for forest structure and biomass 

and volume. Other aspect of a LiDAR need to be emphasized is how much the intensity component of the 

laser return signal is adequate  as a source information to forestry application. On the other hand, data 

fusion between LiDAR and other remote sensing images is becoming a topic in itself. LiDAR technology 

will become integrated with digital cameras and also by effective fusion techniques  with photogrammetry 

and multispectral information. Finally, by integrating LiDAR systems with imaging sensors, more 

advance techniques will emerge, thereby satisfying the wide range of data requirements for forestry 

application at local and regional scales.  
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1. Introduction 
 
For more than one decade LIDAR technology is widely used to acquire 3D mass data in a 
variety of applications. The devices used are frequently addressed as laser scanners and the 
acquisition of 3D data by employing this kind of LIDAR technology is known as laser scanning. 
Three distinctive fields of applications are usually categorized: 
 

• terrestrial laser scanning (TLS) makes use of so-called 3D laser scanners, often 
mounted on tripods, performing measurements in three dimensions (ranging and two 
angular measurements) and are based on the time-of-flight measurement principle with 
either pulsed laser radiation or continuous-wave modulated laser radiation, 

• airborne laser scanning (ALS), where the laser scanning device is mounted aboard any 
kind of airborne vehicle, e.g., fixed-wing aircrafts or rotary aircrafts, 

• mobile laser scanning (MLS), where the laser scanning devices are mounted on 
ground-based vehicles, e.g., cars or boats. 

 
Usually, so-called 2D laser scanners are used in ALS and MLS, where the laser beam is 
deflected by a scanning mechanism performing a line scan and just one scan angle per laser 
measurement is acquired. The line scan may produce a nearly straight line on the target's surface, 
but may also describe a circular line scan pattern or any other 1-dimensional curve. In order to 
gain again 3D data, both the ALS and MLS system have to be complemented by an integrated 
IMU/GNSS system (inertial measurement unit / global navigation satellite system) providing 
precise information on the position and orientation of the laser scanner device over time in order 
to transform the laser scanner data in post-processing into a geo-referenced coordinate system. 
 
The mere point cloud, usually a huge number of points in 3D representing the accessible 
surfaces of the objects surveyed, is the primary data product of any scanning LIDAR in TLS, 
ALS or MLS applications. However, additional attributes to every point of the point cloud 
provide essential and valuable information on the surveyed objects, like the estimated 
reflectance of the target's surface at the laser wavelength.  
 
Airborne laser scanning systems employing echo digitization and full waveform analysis (FWA) 
became commercially available with the RIEGL LMS-Q560 in 2004 (Hug et al. 2004; Wagner 
et al. 2004; Mallet and Bretar 2009). These systems do not instantaneously provide 3D data 
with high precision and accuracy, as they store the digitized echo signals and scan parameters on 
a data recorder and the precise laser ranging is done by the so-called full waveform analysis 
(FWA) in post-processing off-line. Such instruments have been classified as so-called 
small-footprint full-waveform ALS systems in contrast to echo-digitizing systems operated from 
space with large diameter laser footprints on the earth's surface. A typical laser footprint of the 
above-mentioned system is usually less than 0.4 meters from typical operating heights of about 
1000 m above ground. 
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Since its first introduction there has been a continuous improvement in laser scanner hardware 
and thus data acquisition with respect to measurement rate and measurement range, but also in 
data processing with respect to classification, surface model extraction, and radiometric 
measurements (Ullrich et al. 2007; Wagner 2010). Numerous publications on full waveform 
analysis are based on data from the RIEGL LMS-Q560 laser scanner and its successor, the 
RIEGL LMS-Q680i (RIEGL 2011).  
 
Beside research and academic investigation, these laser scanners are widely used for real-life 
large-scale data production, covering applications in corridor mapping, large-scale area mapping, 
data acquisition in mountainous regions, and even on glaciers. The instruments are regarded as 
highly-reliable long-time stable workhorses for ALS in general. Together with the laser scanner  
hardware, RIEGL also offers a comprehensive software suite for managing, processing, 
analyzing, and visualizing data acquired with ALS systems or MLS systems in large-scale 
commercial projects. Within the software suite, RiANALYZE (RIEGL 2011) performs the FWA 
according to selectable algorithms. 
 
In addition to FWA based on digitized and stored echo signals in off-line processing, RIEGL 
LMS has introduced series of commercial scanning systems, the V-Line, in 2008, (Pfennigbauer 
and Ullrich 2010), offering also echo digitization but on-line waveform processing, yielding 
similar results compared to full waveform analysis with even higher accuracy and precision, but 
with limitations with respect to multi-target resolution as explained below. V-Line laser scanners 
are offered as 3D laser scanners for TLS, but also as 2D laser scanners for ALS (e.g. the RIEGL 
VQ-580) and MLS (e.g. the RIEGL VQ-250). Figure 1 shows images of the RIEGL LMS-Q680i 
and the RIEGL VQ-250. 
 

 

Figure 1: Commercial airborne laser scanners employing waveform digitization, the  
RIEGL LMS-Q680i for FWA in ALS (left) and the  

RIEGL VQ-250 with online waveform processing for MLS systems (right).  
 
 
Subsequently we will discuss the challenges in LIDAR technology related to multiple-pulse 
processing. As there might be some confusion about the term “full waveform data” or plain 
“waveform data” we will propose a classification of waveform data associated to laser scanning 
systems. We will briefly address different approaches on full-waveform analysis. The benefits of 
FWA with respect to mere analog signal processing will be discussed and we will provide an 
outlook on future developments. 
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2. Multi-target challenges in LIDAR technology 
 
The technique of choice for long-distance ranging is time-of-flight measurement based on short 
laser pulses. Although the principle is simple and straight forward – emitting a short laser pulse 
in a collimated beam, receiving the echo pulses originating from backscattering of the emitted 
laser pulse on targets, and measuring the time between emitting and receiving, i.e., the time of 
flight – there are challenges in designing, manufacturing, and operating such instruments, at 
least when pushing the capabilities of the technology to its limits. Laser scanners are 
characterized by numerous features ranging from laser wavelength (Pfennigbauer and Ullrich 
2011), maximum target distance, measurement speed, scanning range and speed, scan pattern, 
measurement accuracy and precision, to physical size, power supply requirements, and laser 
safety class, to name only a few. Additionally, compactness, reliability, short- and long-term 
stability of the internal and external calibration parameters are crucial to the use of such 
LIDAR-based systems. Multi-target resolution, as addressed in detail below, is especially 
important in applying LIDAR technology in, e.g., forestry, as the user of the final data may not 
only be interested in the uppermost parts of the canopy and the terrain itself, but also of all the 
layers of vegetation in between. 
 
As the laser beam, although usually collimated to a divergence of less than 1 mrad, may hit not 
just a single target object, it is beneficial from a user's point of view, to get all the ranges to the 
targets the laser pulse has interacted with in a way, that the respective echo signal exceeds the 
detection threshold of the receiver. Providing more than just one target range per laser pulse is 
usually addressed as multi-target capability. Laser range finders based on the pulsed 
time-of-flight principle are capable of providing multiple targets per laser pulse, whereas 
phase-based cw (continuous wave) measurement schemes widely used in TLS for near range 3D 
data acquisitions are not on principle. However, there are fundamental limits to the multi-target 
capability: the laser pulse width and the system bandwidth limit the power to resolve echo 
pulses from nearby targets, as the finite pulse width of the laser pulse will lead to merging of the 
target echoes if the temporal difference is less than the pulse width. The capability to resolve 
two nearby targets is described by the multi-target resolution (MTR), stating the minimum 
target distance that can be resolved. In order to improve MTR, laser pulse width has to be 
reduced and system bandwidth has to be increased. There are limits imposed by the current 
state-of-the-art in laser technology, receiver technology and also system bandwidth, and these 
system parameters have also be traded-off against other system parameters like maximum range 
and laser safety.  
 
Figure 2 below shows example waveforms illustrating multi-target situations. In (a) the multiple 
targets are separated in time, so that no influence of the early target to the late target return is to 
be expected. In (b) the signals already merged significantly, but still can be identified as 
superimposed targets as local maxima can be seen. In (c) the targets lie so close that by merging 
no individual local maxima can be found while the shape of the echo signal differs significantly 
from that of a single target situation. 
 
Usually, accuracy and precision of a LIDAR system are stated for single-target test conditions. 
However, a first echo signal in the receiver may have some impact on the subsequent targets of 
the same laser pulse due to effects in the receiver electronics and the impact will increase the 
nearer the targets are. Echo digitization with waveform processing provides a significantly 
improved accuracy and precision in multi-target environments compared to LIDARs relying on 
mere analog signal detection and processing, addressed frequently as direct detection LIDARs, 
as it is possible to decompose, i.e. reconstruct, the superimposed signals to determine the 
individual ranges and amplitudes. 
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Figure 2: Waveforms for different target situations: targets sufficiently apart to deliver separate echo 
pulses (a), nearby targets with merging echo pulses (b), and targets so close that merged echo pulses have 

no separate maxima. Note that the green curves connecting the actual sampling values are obtained by 
employing a cubic spline just for improved visualization. Waveform data have been acquired with RIEGL 

VZ-400 with an optional waveform output. 
 
 
3. Echo signal digitization with digital signal processing  
 
In any LIDAR system a photodetector converts the optical echo signals into electrical signals. 
Within this paper we restrict the discussion to photodetectors operated in so-called linear mode, 
in which the amplitude of the electrical signal of the detector output is proportional to the 
optical signal power over a wide dynamic range and we do not discuss Geiger-mode receivers, 
which do not provide any radiometric information on the targets. In all practical LIDAR 
systems used for the applications mentioned above, the process of conversion is described as 
direct detection as in contrast to homodyne or heterodyne detection, a scheme widely used in the 
longer wavelength range of the electro-magnetic spectrum and in communications technology. 
Common to both, echo digitizing systems and discrete return systems is that the electrical 
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signals are amplified before further processing. 
 
In echo-digitizing systems, the signals are sampled at a sufficiently high sampling rate and 
converted to a digital representation before target detection. This conversion is done by 
so-called analog-to-digital converters (ADCs). All further processing is then done in the digital 
regime, either on-line or off-line, after storing the sample data to and retrieving from a data 
recorder for off-line full waveform analysis.  
 
Tasks to be carried out in digital signal processing are target detection, i.e., the discrimination of 
echo signals against noise, and parameter estimation for each detected target, with parameters 
usually including the temporal position of the target yielding finally the range to the target, the 
amplitude of the target signal yielding an estimate for the target's laser cross-section, and 
parameters allowing to estimate the backscatter profile of the target along the beam axis, like e.g. 
the pulse width. 
 
In contrast to an echo-digitizing system, an analog discrete return system has to accomplish 
target detection and time-of-arrival estimation in real time by means of analog electronics. A 
separate analog amplitude estimator may guess the signal amplitude of the analog electrical 
target pulse, usually with a lot of shortcomings. Time-of-arrival estimation may be based on 
schemes like constant-fraction detection, analog differentiation with zero-crossing detection, or 
similar, all originating decades in the past in RADAR technology and all showing the effect of 
trigger walk, i.e., the estimated time-of-arrival depending on the amplitude of the electrical 
target signal. Especially in target constellations leading to signals as sketched in Figure 2 (b), 
the analog estimators usually yield significant ranging errors for the second and further targets 
and for signal as sketched in Figure 2 (c) analog means completely fail to retrieve further 
targets.  
 
Echo digitization and waveform analysis is most beneficial in critical target situations, as 
sketched in Figure 3. In case the laser beam (sketched with an exaggerated high beam 
divergence) hits just a single plane target perpendicular to the laser beam axis, also the discrete 
return system may give accurate results. However, with slanted targets (as the roof of the 
building) and especially with complex multi-target situations when measuring into vegetation 
the echo-digitization / waveform analysis systems will provide clearly more precise and more 
detailed point cloud data. 
 
4. Classifying Waveform Data Types 
 
Echo signal digitization is the prerequisite to perform waveform analysis. The RIEGL 
LMS-Q560, introduced in 2004, was the first commercial laser scanner for ALS with all derived 
data products relying on the digitized echo signals only. Other products appeared on the market, 
offering echo digitization as an option, but with ranging still relying on analog ranging as in 
discrete return systems. In 2008, RIEGL introduced the V-Line, instruments for all three 
categories TLS, ALS and MLS, also based on echo-digitization but on on-line waveform 
processing. Subsequently, we attempt to classify waveform data the user can find on the market 
into different categories (cf. Table 1 for an overview). 
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Figure 3: Illustration of the interaction of the laser pulse with different targets, the digitization process, 

and target extraction by FWA. 
 
 
Full waveform data: These classical waveform data include the digitized echo signals and also 
data on a replica of the emitted pulse. All data products can be derived from the waveform data 
by means of a full-waveform analysis (FWA). In case the system pulse shape is nearly Gaussian, 
the Gaussian decomposition yields excellent results with high precision and accuracy. The 
waveform data also contain additional information for each laser shot with respect to time 
stamping to an external time regime like UTC and scan angle. With an appropriate sensor model, 
the ranges and attributes obtained by FWA are subsequently converted into a point cloud in the 
scanner's coordinate system with point attributes like amplitude, pulse width, and time stamp. In 
order to measure beyond the unambiguity range according to the pulse repetition rate of the 
laser, a precise time stamp related to each laser pulse has to be available, as e.g., in the RIEGL 
LMS-Q680i. 
 
Echo waveform data: these data contain digitized echo signals on the target echoes only and 
no waveform data on the emitted pulse. Therefore, additional information on the precise 
emission time for each laser pulse has to be present to perform ranging in waveform analysis. 
Again the data set is complemented by external time stamping and scan angle. 
 
Tightly-coupled echo waveforms: these data are optionally provided by LIDAR instruments 
with ranging based on echo digitization and online waveform processing. The waveforms are 
exactly the same data employed by the on-line waveform processing. The term tightly coupled 
refers to the fact that there is no additional ADC for just deriving some waveform data. An 
example is the RIEGL VZ-400 with its waveform option. Whether or not waveform data is 
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provided for a laser shot can be determined by the user via thresholds. For example, if all the 
target return received for a laser shot show the expected system response, there is no need to 
pass the waveforms for post-processing. On the other hand, in case of merging echo pulses, the 
waveforms are provided and computational expensive algorithms may derive more 
comprehensive and more accurate results in off-line waveform analysis. 
 
Loosely-coupled signal samples: these data are delivered optionally by discrete return LIDARs 
with ranging based on analog electronics. The collection of waveform data by a separate 
digitizer is not related to the derived point cloud as different signal chains are used, therefore the 
term loosely coupled. These waveforms have merely an illustrative character to the points of the 
point cloud and the waveform's usability for improving the data quality of the discrete return 
system is very limited. The concept of the loosely-coupled waveforms is the one the LAS 1.3 
format is propagating. The limited use of such data may be the reason for the very limited 
spread of the waveform option in the LAS 1.3 format. 
 

Table 1: Comparison of the different waveform data types 
 
 
 

data content range derivable 
from waveform 

ADC coupling user selectability 
of content 

full waveform 
data 

emitted pulse, all 
echo waveforms 

yes identity no 

echo waveform 
data 

all echo 
waveforms 

yes identity no 

tightly-coupled 
echo waveforms 

echo waveforms 
only 

yes tight yes 

loosely-coupled 
signal samples 

fixed number of 
samples per laser 

shot 

no loose no 

 
Storing the waveform data of a replica of the transmitted pulse, which makes the difference 
between the first two categories, would be of significant advantage, in case the stability of the 
laser power and/or the laser pulse shape is questionable. In a well-designed system stability of 
the laser is sufficiently high and the waveforms on the transmitter pulse do not provide 
additional information compared to the precise emission time for each laser pulse. If one is 
especially interested in the system pulse shape for a special FWA algorithm, it is always 
recommended to derive that from real echo signals from single-point-targets or flat 
perpendicular targets, which are almost always found in each data set. 
 
 
5. Challenges in full-waveform analysis 
 
In multi-target environments a laser pulse interacts with numerous targets along the laser beam 
axis. As long as the targets have geometrical cross-sections smaller than the laser footprint at the 
target, there is a chance, that a fraction of the laser beam not obscured by early targets, may hit 
other targets. At each target, the laser pulse is partly absorbed and partly reflected. If the 
reflected or backscattered part of the pulse is received at the LIDAR's receiver with an 
amplitude exceeding the detection threshold, the range to this target can finally be determined 
by the LIDAR. For all but the first target, the responses of the targets are not only given by the 
respective laser radar cross section but also by the attenuation of the laser pulse by the preceding 
targets. It is worth noting, that attenuation by a target cannot be retrieved from the amount of 
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backscattering. Thus, only the laser radar cross section of the first target can be estimated 
accurately. 
 
For the further discussion on FWA, it is advantageous to describe the interaction of the laser 
beam with the targets along the axis the laser pulse is travelling on as a one dimensional 
backscatter profile. 
 
Assuming the backscatter profile is known, the optical signal over time at the receiver's aperture 
can be derived as the convolution of the laser pulse with the backscatter profile. If we further 
assume, that the LIDAR's receiver is linear, which is usually the case for small electrical signals, 
the electrical signal over time prior to AD conversion is given as the convolution of the system 
pulse response, as introduced earlier, with the backscatter profile with some noise added by the 
optical signal itself and receiver electronics. And, if we further assume that the sampling is done 
at a sufficiently high sampling rate, the digitized signal is an exact replica of the electrical 
receiver signal with some digitization noise added. However, it should be noted, that for larger 
signals outside the linear regime of the receiver, superposition takes place in a more complicated 
form as summation, signal compression, and bandwidth limitation take place in an intermingled 
form. 
 
Generally speaking, the aim of FWA is to reverse the convolution of the system response with 
the backscatter profile and to find the backscattering identities along the laser beam axis with 
their respective parameters. 
 
Numerous different approaches have been proposed to actually extract the backscattering 
properties of the targets from the digitized echo signals. Two different classes of analysis 
approaches can be seen: rigorous approaches aiming at the deconvolution (e.g. Roncat et al. 
2011) and approaches based on modeling the digitized echo waveforms by means of basis 
functions (e.g. Wagner et al. 2006, Roncat et al. 2008) .Deconvolution is prone to noise in the 
waveform, and there will always be noise in a well-designed LIDAR system. This noise will 
lead to backscatter artifacts and thus a “noisy” final point cloud, if no further precautions are 
implemented. 
 
The most popular and widely used approach for FWA is the Gaussian decomposition. The 
underlying assumption is that the system response is at least nearly Gaussian, the backscattering 
contributions are also nearly Gaussian, the Dirac delta function can be well approximated by a 
very narrow Gaussian pulse, and, as the convolution of two Gaussian pulses is again a Gaussian 
pulse, also the digitized echo signal is the sum of Gaussian pulses – again assuming that 
superposition and linearity applies. Actual implementations of Gaussian decomposition rely on 
the following steps: find target candidates, i.e., Gaussian pulses in the waveforms, usually local 
maxima above a certain threshold, determine three parameters for each target candidate, i.e., 
position on the time axis, amplitude, and Gaussian pulse width, in order to fit the actual 
waveform in a least square sense. The pulse width of the target's backscatter is then the 
difference of the actual pulse width of the model pulse in the electrical regime and the pulse 
width of the system response. 
 
This modeling approach can further be improved by not just using an approximate model for the 
system response such as a Gaussian pulse, but the actual system response of the system, as 
applied in RIEGL's online waveform processing in the V-Line. This approach gives the utmost 
accuracy and precision which can be achieved in an echo-digitizing LIDAR system and also 
perfectly accounts for effects imposed by non-linear signal compression. However, online 
waveform processing has its limitations when superposition of signals from nearby targets is 
present. Due to the lack of computational power in real-time processing the rigorous approach 
of LSQ-Fitting of numerous superposing responses cannot be applied. However, in this case, 



SilviLaser 2011, Oct. 16-20, 2011 – Hobart, Australia 

 9

online waveform processing at least informs the user about the merging of target responses by 
providing information on the deviation of the actual target's pulse shape from the expected pulse 
shape (Pfennigbauer and Ullrich 2010). 
 
6. Benefits gained from Full Waveform Analysis 
 
Sampling, digitizing, and storing the electrical receiver signals in a LIDAR system, the 
waveforms, provide the solid basis for a thorough insight into the interaction of the laser pulse 
with the targets hit by the laser beam. The waveforms contain all the available information 
“gained” by the laser pulse in an accessible way. The information is accessed by means of 
algorithms in the full waveform analysis and the standard parameters are retrieved such as range 
and amplitude, but also additional parameters like pulse width in case of Gaussian 
decomposition or pulse shape deviation in case the decomposition makes use of the actual 
system pulse response. In contrast, the discrete return LIDAR just provides ranges and maybe 
amplitudes for each target and all the information contained in, e.g., the shape of the echo pulses 
is lost and can never be recovered by post-processing. 
 
The additional parameters from FWA are especially beneficial to the task of point cloud 
classification, i.e., assigning every point to a specific class like terrain/ground, vegetation, 
man-made objects, and similar. It has been demonstrated that the accuracy of classification of 
low vegetation can be significantly improved by making use of the estimated pulse width 
(Ullrich et. al. 2007). 
 
Multi-target resolution and multi-target accuracy are limited by the system bandwidth. It is 
straight forward in FWA by, e.g., Gaussian decomposition, to identify all target echoes which 
are separated in a way that each echo leads to a local maximum in the waveform. However, it 
has been demonstrated that it is possible to even discriminate targets that are closer with the 
presumption that the waveform does not originate from a volume backscatterer or a slanted 
target (Roncat 2008). 
 
Pulse width or pulse shape deviation can be used to clean up point clouds in a straightforward 
way before applying ICP (iterative closest point) algorithms for point cloud registration. 
Cleaning up is done by deleting all points with questionable reliability, i.e., measurements into 
vegetation or measurements on the edges of objects before a nearby background object. The 
iterative registration process will significantly converge more reliable and faster with “clean” 
point clouds. Especially small steps in depth below the multi-target resolution can be detected 
and false points can be deleted, as at least the pulse width and the pulse shape deviation give 
hints on such critical target constellations (Pfennigbauer et al. 2009; Pfennigbauer and Ullrich 
2010). 
 
Algorithms for FWA are numerous and the selection of the algorithm and tuning of it can be 
optimized for certain applications in TLS, ALS and MLS. The user of full waveform data can 
trade off for example detection threshold against false alarm rate by tuning the detection 
threshold in the echo detection process in FWA, or the user can tackle flaws in the analog signal 
processing chain resulting, e.g., in ringing after large echo signals. 
 
Full waveform data is ideal for radiometric calibration of ALS data as demonstrated in detail in 
(Wagner 2010). Echo-digitization with online waveform processing as implemented in the 
RIEGL V-Line instruments forms the basis for the calibrated reflectance reading for each 
measurement (Pfennigbauer and Ullrich 2010). 
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7. Summary and Outlook 
 
Echo signal digitization with subsequent online waveform processing or off-line full waveform 
analysis has established itself as the measurement technique of choice in state-of-the-art laser 
scanning devices for TLS, ALS and MLS applications, as it delivers accurate, low-noise, 
rich-in-detail point clouds with additional attributes to improve post-processing and the 
potential to straightforward radiometric calibration. These laser scanners have found widespread 
use and the interest in waveform analysis is not restricted to research and academic institutions, 
but is nowadays frequently found as the “ranging engine under the hood” of laser scanners in 
everyday commercial use in mass data production. 
 
With the availability of new laser sources, more powerful electronics in the field of signal 
conversion, with the steady increase in on-board computational power, it can be expected, that 
multi-target resolution will further increase by utilizing shorter laser pulses and higher sampling 
rates with higher digitization depths. The improvements in data storage devices and the increase 
in data transmission speed enable even higher measurement rates, even at higher sampling rates. 
Online waveform processing of the future may reach the power of off-line from today, so that 
powerful online multi-target processing would provide the point clouds as rich in details and 
attributes as those of today but in real time. 
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Abstract 
The objective of this paper is to present and evaluate a new geometrically unambiguously 
defined approach to calculate forest canopy cover, also known as crown coverage (CC) from 
airborne laser scanning (ALS) data based on national forest inventory (NFI) data. The CC is 
defined as the proportion of the forest floor covered by the vertical projection of the tree 
crowns. Most forest definitions lack in precise geometrical definitions for the calculation of CC 
and therefore, the results of common calculation methods differ and tend to be incomparable. To 
demonstrate the effect of such an unclear defined, common CC calculation method, CC maps, 
generated from moving window algorithms using different kernel shapes and sizes, are 
calculated and analyzed for three study areas in Tyrol, Austria. The new unambiguously 
approach, the tree triples method, is based on defining CC as a relation between the sum of the 
crown areas of three neighbouring trees at a time and the area of their convex hull. The 
approach is applied for the same study areas and is compared with forest masks that are 
generated from moving window algorithms using different kernel shapes and sizes. 

Keywords: forest definition, canopy cover, forest border delineation, vegetation mapping, LiDAR 
 
1. Introduction 
The delineation as well as the classification of forests has a long tradition in remote sensing. 
Considering different forest definitions (e.g. Austrian forest law, FAO) forested land can for 
example be composed of tree crowns, forest gaps, forest streets or harvested areas. It is often 
difficult to derive this complex land use class “forest” from remotely sensed data in a reliable 
and comprehensible way. In different forest definitions the criterion of crown coverage (CC) is a 
fundamental and obligatory parameter for classifying forested areas. For example the 
international forest definition of the United Nations Food and Agricultural Organization (FAO) 
defines a forest as land of at least 0.5 ha with a potential tree height of at least five meters and a 
CC greater than 10% (FAO/FRA, 2000). CC, also known as canopy coverage or forest canopy 
cover, is defined as the proportion of the forest floor covered by the vertical projection of the 
tree crowns (Jennings et al., 1999). In (Korhonen et al., 2011) vertically measured crown cover 
is referred as vertical canopy cover (VCC). The current paper considers VCC. An unclear 
defined detail is the treatment of gaps within the projected tree crowns itself. The traditional 
definition of canopy cover includes an “outer edge” or “envelope” of a crown, inside of which 
the cover is thought to be continuous, but in practice the “outer edge” is sometimes very 
difficult to observe (Korhonen et al., 2006). For the current paper those crown gaps are not 
considered.  

To evaluate the amount of CC for an area, in-situ measurements or remote sensing techniques 
can be used. In-situ measurements are time consuming and are mainly operated for sample plots 
while remote sensing techniques overcome the limitation of plot-wise sampling and provide the 
possibility to analyze large areas. As terrestrial measurements deliver the ground truth for most 
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of the remote sensing techniques, in-situ samples are a fundamental input for cross validations. 
A comparison of common terrestrial measuring techniques can be found in (Korhonen et al., 
2006). An often applied method for assessing an area’s CC is the manual interpretation of 
orthophotos. This technique is however costly, limited by shadowing effects and the quality of 
the results are dependent on the interpreter. It is therefore difficult to obtain objective 
quantitative measurements that are suitable for comparisons with remotely based CC measures 
(Holmgren et al., 2008). A different approach is to define the amount of CC as a relation 
between two trees. Depending on the threshold of CC, the tree species and the tree crowns size a 
maximum distance between two trees can be determined (Hauk and Schadauer, 2009). This 
method, which is originally based on the work of Hasenauer (Hasenauer, 1997), is currently 
used for the manual delineation of forested areas at the Department of Forest Inventory at the 
Federal Research and Training Center for Forests, Natural Hazards and Landscape (BFW) in 
Austria. 

As an alternative to the manual photo interpretation the technique of airborne laser scanning 
(ALS) was established for assessing an area’s CC (Holmgren et al., 2008; Korhonen et al., 
2010). ALS, as an active remote sensing technique, is not influenced by shadowing effects or 
different sun illumination conditions, is able to deliver reliable information even for small forest 
gaps and is well suited for estimating CC. The normalized digital surface model (nDSM), 
calculated by subtracting the digital terrain model (DTM) from the digital surface model (DSM) 
provides an excellent data source for calculating the CC. Using the nDSM, a height threshold 
can be applied to decide whether a pixel is covered by tree crowns or not. In a next step the CC 
can be calculated by dividing the reference area by the tree crown covered area. As reference 
area forest stands or moving windows with user defined circular or squared kernel shapes are 
commonly in use. Unfortunately, due to the lack of precise geometric descriptions of the CC 
(i.e. reference size and -shape) the derived results are often not comparable and make the CC to 
a doubtful criterion. Therefore, this study aims at defining a novel, geometrically clear defined 
method for an automatic calculation of CC based on ALS and NFI data. In this approach CC is 
defined as a relation between the sum of the crown areas of three neighbouring trees at a time 
and the area of their convex hull. The new method is applied for three study areas in Tyrol, 
Austria considering the forest definition of the Austrian national Forest inventory (NFI). This 
study is part of the research project “LASER-WOOD” funded by the Klima- und Energiefonds 
in the framework of the program "NEUE ENERGIEN 2020". As LASER-WOOD is an ongoing 
project this paper describes first results of the ongoing investigations. 

The remaining parts of this paper are organized as follows: Section 2 describes the selected 
study areas and the used data. In Section 3 the methodology and implementation is explained. 
Section 4 shows results and their discussions whereas in Section 5 concluding remarks are 
given.  

 
2. Study area and dataset 
 
2.1 Study area 

In this contribution three different study areas in Austria are investigated. The study areas are 
located in the “Zillertal” which is located in the eastern part of the federal state of Tyrol. Each 
study area covers an area of 2.5 x 2.5 km and shows different structures and amounts of forested 
land (Figure 1). Study area 1 consists of a loose stocked forest at the upper timberline (Figure 
1a) with elevations from 1800 to 2000 m above sea level (a.s.l.). Study area 2 consists of a 
fragmented forest with patch-wise forest stands on the hillside (Figure 1b) with elevations from 
600 to 1600 m a.s.l. Study area 3 consists of a mainly dense forest with different age classes 
(Figure 1c). The elevations for study area 3 reach from 700 to 1500 m a.s.l. The dominant tree 
species in all three study areas are coniferous trees. Beside the forested areas buildings and 
power lines can be found in the study areas. 
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Figure 1: Orthophotos of the study areas. (a) Study area 1 shows a loose stocked forest at high elevations. 
(b) Study area 2 shows a patched, fragmented forest. (c) Study area 3 shows a relatively dense forest with 

different age classes. 
 
2.2 ALS data 

The used ALS data was acquired using an Optech Inc. ALTM 3100 laser scanner during 
multiple flight campaigns in 2008 under leaf-off and leaf-on canopy conditions. The mean point 
density is about 4 echoes / m² for study area 1, 5 echoes / m² for study area 2 and 9 echoes / m² 
for study area 3. Further details can be found in (Eysn et al., 2010a). 

 
2.3 Derived base products 

The ALS data has been processed and filtered using the hierarchic robust filtering approach 
(Kraus and Pfeifer, 1998) to obtain DTM’s. For the processing of the DSM a land cover 
dependent derivation approach (Hollaus et al., 2010) was chosen. By subtracting the DSM from 
the DTM a normalized digital surface model (nDSM) was created as a fundamental base 
product for calculating the CC and delineating forested areas. Additionally a slope adaptive echo 
ratio (sER) map (Höfle et al., 2009), as a measure for local transparency and roughness of the 
top-most surface, was derived. To eliminate buildings and other artificial objects, the sER map 
was corrected with morphological operations and thresholding to a so called “vegetation mask”. 
Further information on this correction can be found in (Eysn et al., 2010b). The spatial 
resolution of the derived products is 1 x 1 m². 
 
 
3. Methodology and Implementation 
 
3.1 Moving window approach 

As described in the Introduction the automatic inspection of the criteria CC is crucial and 
unfortunately not clearly defined. Especially for larger scale applications like the automatic 
delineation of forested areas based on ALS data the moving window approach leads to varying 
results. To demonstrate the effect of different parameters for kernel shapes and -sizes on the 
resulting CC maps, multiple variations of these two parameters have been analyzed. To be able 
to compare the results, the sum of areas fulfilling different CC thresholds are compared with 
each other. 

As a basis for these calculations a combination of a height tresholded nDSM and the vegetation 
mask is chosen. Pixels with a nDSM value greater than 2.0 m and an sER value less than 85% 
are assumed to be crown covered and are set to one. Pixels not fulfilling these criterions are set 
to zero. The height threshold is set to consider the minimum height criterion of the Austrian 
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NFI. Based on the derived binary, “preliminary vegetation map” the CC values are calculated 
with a circle- and square-shaped kernel with different kernel sizes using the software OPALS 
(OPALS, 2011). The used kernel sizes are defined as a radius (in pixels) from 1 to 40 Pixels. For 
example a kernel radius of 3 the square shaped kernel is a 7x7 matrix. The centre pixel of the 
kernel is calculated by the mean of all pixels covered by the kernel and represents the CC for 
this Pixel. To be able to check the results of these calculations against different forest 
definitions, several CC thresholds are applied to the calculated CC maps. For this study CC 
thresholds from 10 % to 100 % with steps of 10 % were chosen. The results of this processing 
step are binary maps which represent so called potential forest masks. Finally, the potential 
forest mask’s size within the study area is determined. For visualisation purposes those areas are 
plotted against the kernel sizes corresponding to the selected CC thresholds (see Figure 3).  

 
3.2 Tree triples approach 

The developed method for the calculation of CC aims at defining the criteria of CC with a clear 
geometrical definition which is based on ALS data and NFI data. The basic idea is to express 
CC as a relation between the sum of the crown areas of three neighbouring trees at a time and 
the area of their convex hull (see Figure 2). 

 

 
Figure 2: tree triples approach: three trees at a time are connected. The amount of CC is the relation 

between the area covered by crowns and the area of the convex hull.  

 

As described in (Eysn et al., 2010b) the tree positions are detected with a local maxima filter 
based on the nDSM and the vegetation mask. To consider the minimum height criterion of the 
Austrian NFI a height threshold of 2.0 m is applied to the maxima search. The crown diameters 
are assessed using empirical functions, which act as a relationship between tree height and 
crown radius. These functions are calibrated based on measurements of crown radii from the 
Austrian NFI, whereas for this study the function was assimilated for trees near the timberline. 
Further details can be found in (Eysn et al., 2010b). To find the tree triples for calculating the 
CC, a Delaunay triangulation is applied to the detected local maxima. The Delaunay 
triangulation is calculated using libraries of the Open Source software CGAL (CGAL, 2011). In 
a next step the sum of the crown areas Acr of three neighbouring trees at a time and the area of 
their convex hull Ahull is calculated for each tree triple. For this purpose a tool was implemented 
in Python (PYTHON, 2011) which imports a triangulation, calculates the parameters Acr and 
Ahull and returns a CC value for each tree triple. For overlapping tree crowns within a tree triple 
the intersected crown area is used for Acr. Tree triples respectively their triangles are removed if 
the selected CC threshold is not fulfilled. The result of these calculations is a potential forest 
mask which considers the minimum height criterion as well as the minimum CC criterion. As 
the exported result is a triangulation with triangles fulfilling the CC criterion and not the convex 
hulls of the tree triples, the borderlines of the derived potential forest mask represent the tree 
stem axes. For this reason the resulting map is buffered by the half of the maximum available 
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crown diameter found in the study area. In order to prevent an overestimation of the derived 
potential forest mask the buffered area is intersected with the vegetation mask. 

 
3.3 Comparison of the two approaches  

To be able to compare the results of the two different approaches, a final forest mask, based on 
the potential forest mask, is derived for both methods. This is necessary because the moving 
window approach delivers raster based information, the tree triples approach delivers triangle 
based information which makes a direct comparison difficult.  

For both methods the final forest mask is calculated considering the geometrical aspects of the 
forest definition of the Austrian NFI. For the moving window approach different final forest 
masks are calculated because of the different kernel sizes and –shapes. The minimum height (set 
to 2.0 m) and the minimum CC (set to 30 %) is already handled in the potential forest mask. The 
minimum area criterion is applied by vectorizing the potential forest mask and by deleting 
single polygons or filling forest gaps with an area less than 500 m². In a next step the minimum 
width criterion (set to 10 m) is applied by morphological operations. As areas might have 
changed due to deletion aCCording to the minimum width criterion, the minimum area criterion 
is checked a second time after this step. 
 
 
4. Results and Discussion 
 
4.1 general considerations 

The definition of CC claims a strictly vertical projection of the tree crowns. In ALS the laser 
beam vectors are inclinated in most instances (except at nadir) and the criteria of a vertical 
projection is not strictly maintained. However, in typical ALS surveys the off-nadir angles are at 
maximum 20°, so this effect should remain relatively small. In addition, however, the 
penetration ability of an ALS pulse may be limited through small canopy gaps, and vary 
somewhat with the technical acquisition settings (Korhonen et al., 2010). The crowns in the 
derived base products of ALS tend to be overestimated because the base products are widely 
raster based and the exact size of the modelled crowns depend on the spatial resolution of the 
models. 

In the following sections the results of the previous calculations are presented and discussed: 
 
4.2 Moving window approach 

The results of the moving window method for the three study areas are presented in Figure 3. 
For each study area the results are separated by the used kernel shape and the different CC 
thresholds (colored curves). The vertical axis represents the sizes of the resulting areas or 
potential forest masks in relation to the whole extent of the study area while the horizontal axis 
represents the different kernel sizes. The values on the vertical axis are normalized between 0 % 
and 100 %. For example, a kernel size of 0 (which means just one pixel) results in a potential 
forest mask similar to the vegetation mask. If the window size is not correlated with the 
resulting areas of fulfilled CC thresholds, all curves of the different CC threshold should be 
strictly horizontal. If the study area would be covered by a forest by 100%, all curves should be 
strictly horizontal lines which overlap at 100%. 

The CC threshold curves for study area 1 are wide spread compared to the results of the other 
study areas which seems to be a cause of the loose stocked forest pattern. For study area 2 and 
study area 3 the curves are narrower. This findings show, that a decrease of the forest density 
leads to an increased effect of different CC thresholds on the found area.   
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The result of study area 1 shows a strong variation of the resulting areas between kernel size 1 
and kernel size 8 for most of the selected CC thresholds. For kernel sizes from 9 to 40, the 
resulting forest masks seem to be more independent on the kernel size. In study area 2 (patched 
forest) a strong variation of the resulting areas is given for a larger range of kernel sizes 
compared to study area 1. It can be deduced, that the gradient and the curvature of the different 
curves reflect the kernel size dependency of the resulting potential forest masks for different 
selected CC thresholds.  
 

  

  

  
Figure 3: Resulting sizes of the potential forest masks of three different study areas using the moving 

window approach with varying kernel sizes. In the left column the results for a circle shaped kernel with 
different CC thresholds is shown for all three study areas. In the right column the results for a circle 

shaped kernel with different kernel sizes and different CC thresholds are shown. 
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 4.3 Tree triples approach 

A manual inspection of the automatically detected potential tree positions based on the nDSM 
and the vegetation mask shows suitable results (Figure 4b). Due to the limitation of the maxima 
search using the vegetation mask mainly maxima in vegetated areas are found. Because of the 
small kernel size of 5 x 5 pixels multiple local maxima are sometimes found within the area of 
single tree crowns. Especially within dense forested areas the detected local maxima do not 
represent the exact tree stem positions and the tree detection rate can be low. Single and clear 
separable trees in loose stocked areas are correctly detected in most instances. It can be assumed 
that the amount of detected local maxima is highly correlated with the chosen kernel size. In 
relation to the inspection of CC, not exact or non detected tree positions within a dense forest 
play a minor role since the criterion of CC is most critical for sparse, loose stocked forest areas 
where primary single, clearly separable trees are present.  

 

 
Figure 4: Intermediate results of the tree triple approach; a) orthophoto of a subset of study area 1 b) 
detected local maxima c) detected tree triples plus estimated crowns d) final forest mask fulfilling the 

criteria of the Austrian NFI. 

 

For the detected local maxima the corresponding tree crowns were calculated based on the 
calibrated formulas determined from NFI data. To validate the estimated crowns, the derived 
crown areas are compared to the source map. The source map for the calculations is the height 
tresholded (nDSM > 2 m) combined with the vegetation map. In the source map, all pixels 
fulfilling the selected thresholds are assumed to represent a crown pixel. For each study area the 
sum of these pixels represent the amount of land covered by tree crowns. The areas of the 
estimated crowns are also summed up. The comparison of these resulting sums (see Table 1) 
shows a good estimation of the tree crowns (see Figure 5b) for a loose stocked forest 
(delta = 3,9 %) while the estimation is worse (see Figure 5d) for a relatively dense forest 
(delta = 21,8 %). It can be assumed, that the overall smaller estimated sum of crown areas for 
the relatively dense forest can be explained by limitations of the local maxima search or because 
the calibration of the relation tree height versus tree crown was performed for mainly trees at the 
upper timberline.   

Table 1: Validation of the estimated tree crowns in comparison to the source map 

 ∑ crowns source map [%] ∑ estimated crowns [%] delta [%] 
study area 1 (loose stocked forest) 28,5 24,6 3,9 
study area 2 (patched forest) 36,5 24,3 12,2 
study area 3 (rel. dense forest) 64,9 43,1 21,8 
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Figure 5: comparison of estimated crowns with the source map; a) orthophoto of a subset of study area 1 
b) estimated tree crowns in a loose stocked forest c) orthophoto of a subset of study area 3 d) estimated 

tree crowns in a relatively dense forest 

The Delaunay triangulation of the potential tree positions shows conclusive results for the 
connection of tree triples (see Figure 4c). The derived tree triples are reliable filtered and 
eliminated depending on the selected CC threshold and provide, especially at loose stocked 
areas at the forests timberline, suitable results for the potential forest mask. This mask is a 
fundamental input for the delineation of forested areas based on a forest definition and 
therefore, the less detail of this “CC map” at relatively dense forested areas plays a minor role 
since the focus is on loose stocked areas.  

The final forest masks for the comparison of the different approaches are calculated based on 
the forest definition of the Austrian NFI. Due to the applied minimum area criterion small forest 
patches with an area less than 500 m² are removed and forest clearings with an area less than 
500 m² are assigned to the forest area. Narrow forest areas are eliminated by applying the 
minimum width criterion. The results of the calculated final forest masks are plotted in Figure 6. 
The results of study area 1 show almost similar curves for the circle- and square-shaped kernel 
while the study area 3 shows differing curves with increasing kernel size. It can be assumed that 
an increasing density of a forested area combined with an increasing kernel size leads to more 
different results in the resulting final forest mask. Compared to the tree triples approach, the 
results for the patched and relatively dense forest show almost similar results if a kernel size of 
9 to 12 m is chosen, while the results differ for the loose stocked forest. The results show big 
differences with de- and increasing errors at increasing kernel sizes. Those big differences 
reflect the limitations of the moving window approach since the results are high correlated with 
the kernel size. 
 

 
Figure 6: comparison of the resulting forest masks for the moving window approach and the tree triples 

approach; a) loose stocked forest b) patched forest c) relatively dense forest 

a b c
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5. Conclusion 
This study shows the high potential of ALS data for assessing CC and consequently for deriving 
a forest mask for large areas. A clear geometrical definition for the calculation of CC is 
necessary since CC is a fundamental criterion in most forest definitions and the results of the 
moving window method are differing due to its high dependency on the kernel size. It could be 
shown, that a decrease of the forest density leads to an increased effect of different CC 
thresholds on the found forest area. Especially at the upper timberline, different kernel sizes and 
CC thresholds lead to different results. The tree triples method can overcome the limitations of 
the moving window approach especially at loose stocked forests. The local maxima detection 
works reliable for such forest areas. The local maxima detection could be improved, especially 
for dense forests, by applying a more complex detection method. The estimation of tree crowns 
based on the tree height shows consistent results at the, related to CC, critical area at the upper 
timberline. The estimation of crowns could be improved by a local calibrated transfer function. 
In future studies, the method will be firstly investigated for mixed and deciduous forests and 
secondly a validation with forest inventory will be performed. However, acquiring reference 
measurements from field data for large areas as well as the manual orthophoto interpretation is 
still challenging and therefore a reliable method for calculation CC from ALS data is a big 
effort. 
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Modelling light conditions in forests using airborne laser scanning data 
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Abstract 

The amount of available sunlight in vegetated areas is an important factor influencing species 
composition, plant morphology and natural succession. It is therefore a significant parameter in 
forestry, ecology and other sciences dealing with biodiversity relevant studies. Research 
indicates a strong correlation between the quality and quantity of sunlight and the vegetation 
structure, both in horizontal and vertical direction. Due to the high complexity and variability of 
the canopy architecture, continuous area-wide data collection of light conditions in the 
understorey is needed for accurate modelling of light transmission. However, conventional 
ground based measurement methods are pointwise and time consuming, therefore not feasible 
for data acquisition of large areas. 
The ability of small-footprint airborne laser scanning (ALS) to penetrate small canopy gaps 
makes this remote sensing method especially suitable for vegetation studies. Geometric 
information of the vegetation structure can be derived directly from the 3D point cloud. This 
allows for modelling of the distribution of sunlight-absorbing or intercepting parts of the 
foliage, which consequently cast shadows on the surrounding understorey vegetation or the 
ground. Light transmission through the canopy can therefore be described in a very direct way 
by employing this 3D structural information.  
In this paper a methodology for modelling light conditions in forests using ALS data is 
proposed. The approach is based on a modified version of photogrammetric monoplotting. The 
parallel sun rays from variable sun positions act as projection rays being traced through the 3D 
point cloud (i.e. laser echoes) that represents the canopy. A defined size is assigned to each 
individual laser echo which casts a shadow of the respective size and shape. Shadowed areas are 
then derived by intersecting these projection rays with a digital terrain model and by rasterizing 
the projected point cloud. By employing ALS data from different acquisition times (leaf-on and 
leaf-off) the influence of vegetation phenology is explored. The derived shadow raster maps 
describe where a shadow is cast and how many intercepting parts of the canopy contribute to it. 
Consequently, these maps provide an excelent input for modelling the amount of available 
sunlight in vegetated areas, considering canopy gaps in arbitrary directions and also the seasonal 
variability of vegetation. The first results show that ALS is a time- and cost- efficient means for 
area-wide analysis of sunlight condition for forest floors, as well as for different understorey 
layers. 
 
Keywords: LiDAR, light transmission, vegetation structure, monoplotting, vegetation phenology   
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1. Introduction 

The amount and quality of available sunlight in vegetated areas is an important factor having 
critical effects on sub-canopy air temperature, photosynthesis and soil condition (e.g. soil 
moisture). It therefore influences species composition, plant morphology and natural succession, 
all of which are significant parameters for biodiversity relevant studies in order to assess, 
evaluate and monitor the vegetation’s current condition. The scattering process and the 
interaction of sunlight within the foliage are of a highly complex nature, dependent on 
biophysical and geometrical features of the canopy [Kimes and Smith, 1980; Woolley, 1971]. It 
was found that the vertical and horizontal structure of vegetation, as well as the existence and 
size of canopy gaps have great impact on the distribution of light in vegetated areas [Canham et 
al., 1990; Comeau and Heineman, 2003; Lieffers et al., 1999; Whitmore et al., 1993]. 
Knowledge about the canopy architecture, meaning the spatial composition of trees or bushes 
and the arrangement of their branches and leaves or needles, is therefore of critical importance 
for the modelling of light transmission.  
Conventional methods of measuring the photosynthetically active radiation (PAR), describing 
the visible spectrum of sunlight that is intercepted (IPAR) or transmitted (TPAR) by the 
vegetation, are ground based (e.g. directly with quantum sensors or indirectly with 
hemispherical photographs) [Hardy et al., 2004]. These measurements are time consuming, thus 
not feasible for area wide acquisition and sometimes requiring frequent repetitions due to 
seasonality effects [Oshima et al., 1997; Romell et al., 2009]. Modern remote sensing 
techniques provide a time- and cost-efficient way of data acquisition, enabling wide-area 
analysis of locations otherwise very hard to reach for ground based inventories. Especially 
small-footprint laser scanning, also referred to as light detection and ranging (LiDAR), is an 
observation technique well suited for the derivation of geometric information on the canopy 
architecture. Recent studies have investigated and successfully applied airborne or spaceborne 
laser scanning data for the determination of light transmission through the canopy [Jochem et 
al., 2009; Lee et al., 2009; Parker et al., 2001; Todd et al., 2003]. 
In this paper, a methodology for the modelling of light conditions in forests employing high-
density full-waveform airborne laser scanning (ALS) data is proposed. A point cloud based 
approach is used to predict patterns of direct sunlight and shadow in a deciduous forest 
depending on the existence and location of canopy gaps in every part of the vegetation stratum. 
The proposed procedure is capable of deriving maps showing the distribution of shadowed areas 
for arbitrary sun positions. By analysing ALS data from different acquisition times the influence 
of vegetation phenology on the light and shadow distribution can be observed. 

2. Study area and data set 

The study site is located in the federal state of Burgenland in Austria. The area comprises a 
forest consisting mainly of deciduous trees and bushes of different stages of succession. For the 
purpose of this study, an area of 150 x 250 m² with loosely distributed vegetation of different 
height was chosen in order to have unobstructed areas where the results of the modelled 
vegetation shadows could be visually observed (see Figure 1). The analysed ALS data were 
acquired during two flight campaigns in 2010, which were kindly provided by the company 
RIEGL Laser Measurement Systems GmbH within the research project TransEcoNet [2011]. For 
the purpose of vegetation phenology studies the same area was scanned twice: in February 
under leaf-off and in June under leaf-on conditions. The mean point (i.e. echo) density in open 
areas was 12.5 pts/m², in overgrown areas sometimes twice this amount and more. A digital 
surface model (DSM) was derived from the first echoes by selection of the highest points within 
grid cells of 0.5 x 0.5 m². The digital terrain model (DTM) was calculated based on the last 
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echoes using hierarchic robust filtering [Briese et al., 2002]. Additionally, a normalized DSM 
(nDSM) was calculated by subtracting the DTM from the DSM. All three models had a grid 
width of 0.5 m. Based on the DTM the normalized heights of all echoes were derived and only 
the echoes above 0.25 m were selected as vegetation echoes for the subsequent step of shadow 
projection. 
For the modelling of light conditions also the position of the sun is needed. The MIDC SOLPOS 
calculator [2011] was employed to compute azimuth and elevation of the sun’s location for 
hourly intervals and the period of a whole year (2010) for the location of the study site.  

 

Figure 1: Location and overview of the study area. Central image shows the true-colour orthophoto (OP), 
the right image the normalized digital surface model based on the leaf-on data (nDSM = DSM - DTM).  

3. Method 

3.1. Basic concept 

The advantage of ALS, as an active measurement system, compared to airborne and spaceborne 
imagery, is that the laser beams can pass through small gaps in the foliage. It can therefore 
retrieve information about overgrown smaller vegetation or objects and, in most cases, the laser 
beams also reach the ground itself. The author’s hypothesis is that what is true for laser beams 
has to apply for sun rays, as well. Every gap the laser can penetrate, also can the sunlight and if 
the laser beam is intercepted by an object, e.g. a tree trunk or a branch, also is the sunlight. 
Consequently, a shadow is cast by the intercepting object. If this object is big enough to be 
covered by the entire footprint of the laser beam (a so-called extended target), the total emitted 
energy contributes to the backscattered signal. However, due to the conical shape of the laser 
beam, getting wider as it travels through space, it is likely that more than one object is hit with 
one shot. This is especially true in vegetated areas, where multiple echoes per emitted laser 
pulse are the norm (so-called non-extended targets) [Wagner, 2005]. As a result, the emitted 
energy is shared among the different scatterers. Due to the complex nature of the scattering 
process in vegetation we do not exactly know to which part each of the scatterers contributes, 
meaning we do not exactly know what spatial extent the intercepting objects have. This 
circumstance also influences the casting of shadows according to our hypothesis.  
The basic concept is that a sun ray, considered as a projection ray, travels through space, meets 
a laser point with a defined spatial extent, which is subsequently projected onto the ground 
represented by a DTM. A shadow in the shape and size of his projection is cast onto the DTM. 
The definition of the point’s size then relates to the before described problem of not knowing 
the extent of single scatterers. To deal with this fact it is assumed that for the case of an 
extended target the point size has to be equal to the size of the entire footprint area. The size of 
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non-extended targets is to be reduced according to the number of echoes in the shot. For 
example, if the shot produces three echoes, than the respective footprint area is divided by three 
and the size of the point is only a third, as is the shadowed area correspondingly. Hence, an 
extended target casts a bigger shadow than a non-extended, which also finds its trivial 
equivalent in nature: e.g. bigger branches cast wider shadows. Extensions of this straightforward 
assumption are presented in the outlook at the end of this paper (see section 5). For the task of 
projecting the laser points onto the DTM we decided to apply a monoplotting approach, which 
is explained in detail in the following section.  

3.2. The monoplotting approach 

The term monoplotting in photogrammetry refers to the analytical analysis of curved object 
surfaces using a single orthorectified image (orthophoto). It is based on the methods of 
projective geometry, considering the orthorectified image as a central projection of the terrain 
surface. The approach can be described by three main steps: (1) selecting a pixel of the 
orthophoto, (2) defining the projective ray through the projection centre and the selected pixel 
and (3) intersecting this ray with the surface model in order to interpolate the 3D surface 
coordinate [Kraus, 2007].  
For the purpose of shadow projection in this study this monoplotting concept was utilized, 
however some adaptions to the usage with ALS data had to be made. The projection centre, 
analogous to the perspective centre of the lens in photogrammetry, in this case is the sun. 
Because of the large distance from sun to Earth the projection rays appear nearly parallel, 
compared to the more conical shape in the standard case. Furthermore, instead of pixels in a 
digital image, the 3D laser points are used to define the projection rays. They originate from the 
sun, go through each echo and project it down to the DTM (see Figure 2). According to section 
3.1, the size of each projected echo is defined by the number of consecutive echoes resulting 
from an emitted laser shot and the respective footprint size of the laser beam. Calculated from 
the beam divergence of 0.5 mrad of the employed laser scanner [RIEGL, 2011] and an average 
flying altitude of 500 m above ground level during this campaign, the diameter of the footprint 
on horizontal surfaces results in 0.25 m and its area is 0.049 m². Even for the largest trees in the 
study area (around 21 m), the differences in footprint size due to differences in range are 
insignificant and therefore ignored. Hence, the same footprint size applies for the calculation of 
the size of all of the projected echoes.  

3.3. Implementation and processing 

The monoplotting algorithm was implemented in MATLAB [2011]. As input an ALS point 
cloud (column-wise in ASCII format including information on echo number) and a DTM 
(GeoTIFF format), as well as a set of desired sun positions (as described in section 2) for which 
the projection should be carried out, have to be provided. To be able to observe and discuss the 
influences of vegetation phenology on the resulting shadowed areas, the leaf-off data set 
together with the averaged sun positions from February and the leaf-on data set together with 
the sun positions from June were used. Altogether, the monoplotting had to be done for 10 
hourly sun positions in February and for 14 in June. Although SOLPOS returns positions before 
dawn and after dusk, only azimuths between sunrise and sunset and above 10° of elevation were 
considered.  
The desired accuracy of the interpolation can also be defined as an additional input parameter. 
For the current study it was set to 0.25 m, which is half the grid width of the DTM. The result of 
the MATLAB processing is one file for each sun position containing the 3D coordinates of the 
projected points (x,y,zDTM) and their assigned sizes in m² in a four column ASCII format. 
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Subsequently, the ASCII files were imported into GRASS GIS [2011] using the module r.in.xyz, 
creating raster data sets with 0.5 m grid size where all the projected point sizes within one grid 
cell were accumulated. To reduce salt and pepper effects the resulting raster maps were 
smoothed with a mode filter using the module r.neighbors and a square kernel with a size of 
3 x 3 pixels. Finally, the georeferenced shadow raster maps were exported with the module 
r.out.gdal to GeoTIFF format and visualized (see Figure 3 and Figure 4). 
 

 

Figure 2: Schematic depiction of the proposed monoplotting approach in horizontal (X’/Y’) and upright 
projection (X’’/Y’’). Parallel sun (projection) rays p1,2,3 projecting the ALS points onto the DTM, casting 

shadows of different size according to the number of echoes within the respective laser shot. 

4. Results and discussion  

For leaf-on and for leaf-off conditions the shadows were computed for the months February and 
June, respectively. Figure 3 and Figure 4 each show three examples of the resulting shadow 
raster maps at three times of day. The informative value of the proposed methodology had to be 
verified visually, as no reference measurements, e.g. with a quantum sensor, lux meter or a 
similar instrument, were at hand. The maximum sun elevation angle calculated with SOLPOS 
for February was roughly 30°, which was around noon. At all other times of day, the sun 
irradiates in rather flat elevations angles, therefore creating very long shadows, especially for 
high trees. This can be seen in Figure 3a and c correspondingly, were the high tree in the centre 
of the image (red number 1) casts his shadow far away (marked as red ellipse), whereas the 
lower ones cast shorter shadows (compare tree heights in Figure 1). In June the sun elevation 
angles are steeper, therefore the shadows are generally shorter. This is true for the results shown 
in Figure 4, where the shadowed areas are smaller and at all times nearer to the shading object. 
It can also be observed that the differences in acquisition time influenced the result. In Figure 4 
the shadows appear generally darker than in Figure 3, meaning that more or “bigger” echoes 
contributed to the respective shadowed area on the ground. Also Figure 4 creates the impression 
as if the tree tops cast the darker shadows. The obvious explanation is the fact that during leaf-
on conditions the majority of laser echoes come from the top canopy, whereas during leaf-off 
conditions more penetration takes place and the echoes are more equally distributed over all 
height levels. For the present study area, 38 % of the vegetation echoes from the leaf-off data set 
were located above the 80th height percentile, while for the leaf-on data this number increased to 
65 %. The sensitivity to the different input data sets suggests that the proposed method could be 
used for a seasonality dependent modelling of light conditions, thus considering the vegetation 
phenology in a functional relationship.  
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Figure 3: Shadow raster maps based on the leaf-off data (selected vegetation echoes only) and the 
averaged sun positions from February. Yellow means no shadow is cast, blue means the area is shadowed. 

The darker the blue, the more or “bigger” echoes contribute to the shadow. 

 

Figure 4: Shadow raster maps based on the leaf-on data (selected vegetation echoes only) and the 
averaged sun positions from June. The cast shadows are generally darker compared to Figure 3 due to the 

more dense distribution of the laser echoes in the tree crowns in the summer flight. 

The proposed algorithm of shadow projection bears analogies to ray tracing, which was 
invented in 3D computer graphics for visible surface determination [Agoston, 2005]. As well as 
ray tracing, monoplotting is a computationally extensive procedure, especially as it was applied 
in this study for the 3D ALS point cloud. Therefore, the runtime of the MATLAB program with 
respect to the different employed data sets shall be noted. The leaf-off data consisted of 242595 
echoes and the computation of the shadow raster maps took between 2.5 and 3.5 minutes for a 
single sun position. For the leaf-on data with 361119 echoes computing times ranged from 3.5 
to 5 minutes. The differences in processing time within one data set resulted from the fact that 
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the interpolation step, as it is currently implemented, tends to converge slower with shallow sun 
elevation angles. To speed up computation, binary input and output could be employed, which 
would speed up the I/O tasks in MATLAB significantly.  

5. Conclusions and outlook 

Methods for sunlight and shadow prediction have to consider the fact that shadows cast in 
overgrown areas are not continuous and of the same intensity or darkness. We applied a point 
cloud (i.e. vegetation echoes) based method which solves this task effectively and, as shown in 
the resulting shadow raster maps, quite successfully. The simplified assumption of the projected 
point sizes being dependent on the number of consecutive echoes in a laser shot (see section 
3.1) can be further extended to better reproduce the natural conditions. According to Wagner et 
al. [2006] the backscattering cross-section, a measure which can be derived from full-waveform 
ALS data during the task of data calibration, can be referred to as the effective area of collision 
of the laser beam and an object. Therefore, the cross-section can be employed in order to derive 
the point size according to the proposed method, representing a much more adequate depiction 
of the intercepted area of the laser beam. Due to the currently used method of creating the raster 
maps (accumulating all the projected point sizes within a grid cell; see section 3.3), strongly 
inclined parts of the DTM would accumulate more points and thus produce darker shadows. 
This is also the fact for strongly varying point densities in case of heterogeneously distributed 
scan lines or strip overlaps. Inclined surfaces could be compensated by the introduction of the 
surface slope and aspect to the algorithm. Varying point densities may be considered by 
normalisation of the shadow values using a point density map. Furthermore, the topographic 
shadows, which are currently not considered, could be integrated by applying a line of sight 
analysis on the DTM. In this way, parts of the surface which are shadowed by others can be 
found. The total cast shadow then has to be the sum of the topographic and the vegetation 
shadow. However, these limitations are not significant for the presented study site, as the area is 
rather flat with low relief energy. On the other hand, the usage of a surface model as projection 
surface opens up interesting opportunities for the modelling of light conditions in different 
vegetation strata. A DSM comprising the herbaceous or shrub layer could be created based on 
selected laser echoes from the respective height levels. Consequently, the light situations in 
these different parts of the vertical structure could be examined, which provide valuable input 
for various biodiversity analyses.  
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Key Words: Forestry, LAI, laser scanning, imaging spectroscopy 

Airborne laser scanning has become an established method for deriving structural forest parameters 
like tree height, crown length or crown cover. While some parameters are easily retrieved with laser 
scanning  data  and  imaging  spectroscopy,  others  are  not,  ‐  the  reason  for which  are model  and 
(ground‐based) measurement uncertainties. This is especially true for the estimation of the Leaf Area 
Index, which practically only allows for indirect measurements  in forest environments. Since (a) the 
LAI is an important input parameter for process‐based forest growth models and (b) there is yet no 
clear  preference  for  using  laser  scanning  or  imaging  spectroscopy  for  its  retrieval,  unlike  other 
structural  forest  parameters,  this  study  compares  the  LAI  estimation  both  from  airborne  laser 
scanning and imaging spectroscopy and discusses related difficulties.     

During  an  extensive  field  campaign  at  one  of  the  EnMAP  (Environmental Mapping  and  Analysis 
Program) core forest research sites (Merzalben, Pfaelzerwald, Germany) in August 2010, a total of 25 
plots  in mixed  beech‐oak  forest  stands were  sampled  for  LAI.  A  laser  scanning  dataset  collected 
almost contemporarily to the HyMap image acquisition served for establishing fractional cover maps 
with two different methods (1). Corresponding LAI maps were generated based on the formulation 
proposed  by  Verger  et  al.  (2)  and  according  to  the  classic  LAI  formulation  (3).  The  results were 
compared  to  the mean  ground‐based  LAI  of  the  25  plots.  To  test  the  transferability  of  the  LAI 
retrieval  from  laser  scanning  a  comparison was made with  a  second  laser  scanning  dataset  from 
another  forest  region  (4).  The  LAI  retrieved  from  the  laser  scanning was  then  compared  to  LAI 
derived from empirical regressions with selected hyperspectral vegetation indices.  

Results show that the  individual empirical models all provide a good estimation of Leaf Area  Index 
with R² values ranging from 0.50 to 0.92. By stratifying according to tree species and stand structure 
as well  as  adjusting  the  LAI‐model  applied  to  the  laser  scanning  data,  the  performance  of  these 
empirical  models  can  be  greatly  improved  for  both  the  laser  scanning  and  the  HyMap‐based 
vegetation  indices. However  results also  show  that both approaches  suffer equally  from  the main 
limitation of the empirical approach ‐ which is the lack of transferability. For the laser scanning data 
the estimation is influenced by the combined effects of variable laser scanner system parameters and 
site‐specific canopy variables such as clumping and leaf angle distribution. Further research is needed 
to assess  these effects, particularly with  regard  to  the different  laser  scanning based  gap  fraction 
models. For this purpose we will apply terrestrial  laser scanning to validate both the airborne  laser 
scanning derived gap fraction and the ground‐based measurements.  
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Monday 17th October 2011: Keynote Speaker 

 

Airborne laser scanning based stand level management inventory system of Finland.  
Matti Maltamo*1, Petteri Packalén 2, Eveliina Kallio 3 , Jyrki Kangas 4, Janne Uuttera 4 , Juho Heikkilä 5 

1University of Eastern Finland, School of Forest Sciences 
2Metsähallitus 
3UPM Kymmene Oyj 
3ForestryDevelopment Centre TAPIO 
 
In Finland, a new ALS based stand level management inventory was developed during last few years. The 
system is based on area based approach of ALS data. Additionally, the spectral and texture features of the 
aerial images are utilized in order to improve the separation of the tree species.  The species-specific stand 
attributes are simultaneously estimated with a nearest neighbour imputation. The new airborne laser scanning 
based stand level management inventory system has been successful. During just a few years almost all actors 
of practical forestry have modified their inventory and planning systems to be compatible with the new 
inventory procedure which will cover almost 3 000 000 hectares in 2011. This paper describes the background, 
development and practical application of this inventory system.  
 
Notes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SilviLaser 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems 
16-20 October, Hobart, Tasmania 

2 

 

 Monday 17th October 2011: Session 1 - Deploying LiDAR applications in organisations and business 

 
 
A national review of airborne lidar application in Australian forest agencies 
Russell Turner 1, Nicholas Goodwin 2, Jeremy Friend 3, David Mannes 4, Jan Rombouts 5, Andrew Haywood 6 

1 Forest Science Centre, Department of Primary Industries New South Wales, Sydney, NSW 
2Remote Sensing Centre, Department of Environment and Resource Management, Ecosciences Precinct, 
Dutton Park. QLD 
3Planning, Environment and Silviculture, Forest Products Commission, Bunbury, WA 
4 Resource Information, Forestry Tasmania, Hobart, TAS 
5Resource Planning, Forestry South Australia, Mount Gambier, SA 
6Resource Planning, Department of Sustainability and Environment, VIC 
 
This paper provides a narrative of airborne lidar application across Australian forest agencies. It includes a brief 
history of early lidar research and operational trials, as well as current programs and future directions on a 
state by state basis. This review demonstrates a diverse range of lidar applications and increasing adoption of 
lidar technology within state agencies across Australia. 
 
 
Airborne LiDAR based forest inventory in Bangladesh for REDD plus MRV: scope and potentiality 
Parvez Rana* 1,2, Hanna Holm 3, Tuomo Kauranne 3 

1School of Forest Sciences, University of Eastern Finland, Finland  
2Department of Forest Resource Management, Swedish University of Agricultural Sciences, Sweden  
3Arbonaut Ltd. Kauppakatu 21, Finland  
 
Nowadays, the accurate measurements of carbon stock for carbon trading in REDD plus (Reducing Emissions 
from Deforestation and Forest Degradation in Developing Countries) countries are going highly demanding. 
IPCC (Intergovernmental Panel on Climate Change) Tier 3 level accuracy for estimation of emissions from 
deforestation and forest degradation requires detailed national inventory of key carbon stocks, repeated 
measurements and modeling. Present study has been carried out to know scope and potentiality of the 
airborne LiDAR based forest inventory in Bangladesh for REDD plus MRV (monitoring, reporting and 
verification). Here we supposed a hybrid method where the integration of airborne LiDAR data with satellite 
imagery and ground truth data based forest inventory in Bangladesh. As the forest of Bangladesh is highly 
dynamic and inaccessible due to hilly and mountainous area, this method will give an accountable and 
transparent report of carbon stock. We also highlighted the limitation of this approach in a developing country 
like Bangladesh due to poor economic and technical condition. Till now there is no record of application of 
airborne LiDAR system for forest inventory in Bangladesh. Finally, we recommended that the Forest 
Department of Bangladesh with financial and technical help from international organization can do a pilot 
project in Sundarban Mangrove Forest.  
 
 
Stand level inventory of eucalypt plantations using small footprint LiDAR in Tasmania, Australia 
Robert Musk 

Models derived using Brieman’s Random Forests algorithm have been identified in past studies as having 
greater predictive accuracies than those derived using nearest neighbour imputation approaches. This is 
attributed to the algorithms ability to model complex interactions among predictor variables and its resistance 
to overfitting. These two properties are of particular value in modelling LiDAR-derived variables where strong 
colinearity is a common feature. In this study, the random forest algorithm is applied to a large inventory 
dataset to generate mapped estimates of forest stand structure. The ability of the algorithm to identify an 
optimal set of candidate variables is assessed by means of an iterative model fitting procedure. The study area 
comprises a eucalypt hardwood plantation estate in northern Tasmania, Australia. Model pseudo R2 values 
were 74.6% for basal area, 96.0% for mean dominant height, 64.2% for stocking and 83.9% for merchantable 
stand volume respectively. 
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Building a case for lidar-derived structure stratification for Australian softwood plantations 
Russell Turner*, Amrit Kathuria, Christine Stone 

Conventional resource inventories in Australian softwood plantations usually utilise Geographic Information 
System (GIS) thematic layers to stratify the resource prior to field sampling. Airborne lidar can offer a viable 
alternative for stratification but there are no standardised methods for plantation managers.  This paper 
explores issues with current thematic stratification approaches and argues that relatively basic metrics 
extracted from a lidar-derived canopy height model (CHM) are suitable for constructing better stratification 
options. The case is supported with findings from an airborne lidar inventory undertaken in a pine plantation in 
New South Wales (NSW), Australia. Lidar stand level metrics including mean height, mean above mean height, 
mean dominant height, predicted stocking, canopy cover percentage, occupied volume and height variance 
were tested as surrogates for plantation structure. The study demonstrated that lidar metrics can predict 
stand attributes such as age class (R2= 0.91, RMSE 1.9%), thinning treatment (89% accuracy), mean height, (R2= 
0.95, RMSE 4%), stocking (R2= 0.82, RMSE 26%), basal area (R2= 0.67, RMSE 19%) and total stand volume (R2= 
0.8, RMSE 19%) across a range of stand structures. Since the metrics tested were highly correlated with survey 
data it is argued that they could provide a valid basis for a developing a new structure stratification approach 
to improve sampling design in future plantation resource inventories. 

Notes: 
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Monday 17th October 2011: Keynote Speaker 

 

Ground based and airborne lidar - a natural combination 
David Jupp 

When, at the end of the 20th century, a group from CSIRO (Australia) was evaluating support (aka seeking 
funding) for their ideas about combined airborne and ground based Lidar, the ground based system they 
proposed was seen as an adjunct for on-ground checking. But their common experience with forestry and 
environmental companies was lack of interest in airborne and amazing enthusiasm for ground based. Perhaps 
the idea of a measurement tool that was not remotely operated by someone else but was in the forest and 
operated by them was what was attractive. Whatever the reason, that group has been focused on ground 
based Lidar ever since. I am sure this is not an uncommon experience, but perhaps ground based systems are 
not yet fulfilling that observed interest to become an ubiquitous component of forest measurement.  

One possible reason for this is that ground based (GB) and airborne (AB) systems need each other and that will 
be the somewhat “rhetorical” topic of this talk. A major combined use that has been suggested is that GB can 
be used to “calibrate” or “validate” AB. “Calibrate” means setting parameters for data interpretation of AB 
such that it generates biomass or something else of interest over a wide area. “Validate” means to ensure that 
such wide area information is staying sufficiently close to the truth to be useful. If this were not enough, 
people may suggest that GB samples an area and AB can extend the sampling to a wide area containing the 
samples. But this is not too different from calibration. Again, in tall and dense forests the two systems may 
provide “handshaking” between information about the upper and lower parts of the forest.  

It is tempting to look at GB and AB as the same activity from different “platforms”, but this is not quite correct. 
GB systems are really not necessarily fixed to the “ground” but rather work from a fixed reference coordinate 
system allowing multiple angles and multiple volumes sampling from a number of locations – even from above 
the canopy. I believe AB is characterised by the dynamical nature of its collection system and is much more 
similar to space-borne (SB) systems than to GB systems. Accepting this definition, we can consider 
measurement strategies for GB systems that will be called “extensive” strategies and “tomographic” 
strategies. The first aims to collect as much information as possible from a single point of reference at a site 
and sample as many different (but possibly not overlapping) sites within a wide area as possible. The second 
aims to use multiple points of reference to sound the same volume to maximise information about the volume 
– which is usually necessarily a single site. Each of these must deal with the complex combinations of gaps, hits 
and occlusion within a forest and they tend to do it in different ways. 

Within this framework, the talk will use the experiences of scientists mostly at CSIRO (Australia), Boston 
University, City University of New York and University of British Columbia to discuss the potential for successful 
integration of AB and GB systems. It involves issues of data compatibility (such as the use of intensity 
information, waveforms and calibration), sampling versus tomography and consistency of processing and 
interpretation models. It will be proposed that ultimately, the realisation of the integration involves deriving a 
“transfer function” between measurements in the two systems. This function must, by the nature of the 
systems, be statistical and can be empirical or model based. Of all the possibilities, model based transfer is the 
one that probably interests scientists most and the talk will illustrate how the groups above have progressed 
towards this end. Finally, it should be pointed out that there may be more answers to the questions posed 
here in the presentations at the conference than there are in the talk. Hopefully, that will be the case. The 
main objective is to address the issues and look to the work of the many scientists now working in AB and GB 
Lidar to make it happen. 
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Monday 17th October 2011: Session 2 - Wood resource assessment and value recovery 

 

 Harvesting productivity analysis using LiDAR 
Muhammad Alam*, Martin Strandgard, Mark Brown, Julian Fox 

Department of Forest and Ecosystem Science, The University of Melbourne 
 
Mechanised harvesting operations are common in Australia because of their increased productivity and 
efficiency, improved worker safety and reduced cost of operations. Most research has found that the 
productivity and efficiency of a mechanised harvesting system is affected by a number of factors including 
forest stand characteristics (tree size or piece size, stand density, undergrowth), terrain variables (slope, rocks, 
woody debris), operators’ skill and machinery limitations. The purpose of the study was to use remote sensing 
technology to quantify these forest stand and terrain factors (particularly slope) and hence derive relationships 
to predict harvester productivity from remote sensing data. A case study was conducted in mature radiata pine 
(Pinus radiata) plantation at Mount Burr Reserve Forest, South Australia (37.61° S, 140.44° E). LiDAR (Light 
Detection And Ranging) flown in 2007 was used to identify and quantify stand and terrain factors (particularly 
tree size). A time and motion study conducted during final harvest was used to estimate the impact of each 
factor (tree size and slope) on harvester productivity. Tree size estimates derived from the LiDAR data were 
grown to the point of harvest using empirical growth models. The point of harvest tree size estimates were 
ground-truthed against harvester measurements of the same trees. Empirical models were then developed to 
enable the LiDAR-derived estimates of tree size to be used to estimate productivity of harvesting equipment. 
The robustness of these relationships will be tested by applying the model to areas not used in the 
development process. 
 
 
Scaling plot to stand-level lidar to province in a hierarchical approach to map forest biomass in Nova Scotia 
Chris Hopkinson, David Colville*, Danik Bourdeau, Suzanne Monette, Robert Maher 
 
This paper presents a study that used lidar transect, plot and wide area polygon sample data collected across 
Nova Scotia, Canada from 2005 to 2010 to calibrate and extrapolate above ground forest biomass from 
permanent sample plots (PSPs) to forest stand polygons to the entire Province. The whole tree dry biomass 
estimate for the total forest resource inventory (FRI) database in Nova Scotia is ~ 373x 106tonnes ±39%. 
Where lidar coverage exists, biomass is modelled at the 25 m grid cell resolution, which is a great 
improvement over the previous eco region level estimates, allowing for more effective operational stand 
management. Given the large spatio-temporal domain of the data sources, one of the major challenges faced 
in this study was temporal latency between coincident field, lidar and GIS data inputs, which was a significant 
contributor to the overall level of uncertainty in the result. 
 
 
Estimating stand volume from nonparametric distribution of airborne LiDAR data 
Doo-Ahn Kwak*1, Taejin Park 2, Jong Yeol Lee 2, Woo-Kyun Lee 2 
 
1Environmental GIS/RS Centre, Korea University, South Korea 
2Division of Environmental Science and Ecological Engineering, Korea University, South Korea 
 
This study was performed to estimate stand-level volume using the characteristics of vertical and horizontal 
distribution of airborne Light Detection And Ranging (LiDAR) data. It is found that the height distributional 
parameters, such as percentile, of LiDAR data reflected on-and in-canopy in a stand have the relationship with 
stand volume in previous research. However, we assumed that the nonparametric height distribution form of 
canopy LiDAR returns would be obviously related with the stand volume directly. Nonparametric height 
distribution was presented to be a continuous line according to the frequency of LiDAR returns by the height. 
Thereafter, the sum of each height of all canopy returns, which means the area below the continuous line, was 
compared to stand volume using National Forest Inventory (NFI) data. In addition, for verifying the volume of 
test stands, the similarity which is the overlapping ratio between the height distribution curves of sample and 
test stand was calculated. The relationship between the height sum and stand volume was relatively highto be 
R2=0.83. Based on such relationship, the maximum similarity of each test stand was computed as compared 
sample stands. As a result, mean similarity and root mean square error (RMSE) of estimated stand volumes 
were 82% and 34.96m3/ha respectively. However, supplementary indices, for non-overlapping part in similar 
distribution of canopy returns of sample and test stand, are needed to reduce such errors. 
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A method for linking TLS- and ALS-derived trees 
Andreas Fritz*, Holger Weinacker, Barbara Koch 
 
University of Freiburg, Department of Remote Sensing and Landscape Information Systems 
 
Within the past decade progress towards automatic recognition of individual trees and their parameters was 
made in both TLS and ALS-data based algorithms. In this paper we present an approach to combine single 
trees derived from ALS and TLS-data in order to gain a higher level of information. Therefore, two data sets are 
used: 1. a set of 3D-stemfiles generated by the algorithm described in Bienert et al.2007 and 2. a set of 
detected single trees for the corresponding area of the data set 1 based on the algorithm described in Gupta et 
al.2010. The 3D-stemfiles include position, information regarding sweep and diameter in 10cm height 
intervals. The ALS-tree description covers the position, maximum crown diameter and length as well as tree 
top height. This information is used for a hierarchic approach of linking ALS and TLS-derived trees based on 
three different initial matching algorithms. The estimated position error is taken into account to generate an 
initial list of matching candidates. The 2D-distance based initial linking method linked 41% of the TLS-trees. It 
was found that 3D-estimation of the tree top based on sweep information of the TLS-trees led only to minimal 
more imputations than the 2D-approach. A possible reason is seen in the linear models chosen, which do not 
reflect the tree shape invariably. Future work focuses on the integration of species information and the 
quantification of false linkage, which could not be evaluated within this study. 
 
 
Reducing extrapolation bias of area-based k-nearest neighbour predictions by using individual tree crown 
approaches in areas with high density airborne laser scanning data 
Johannes Breidenbach* 1,2, Erik Næsset 2, Terje Gobakken 2 
 
1Norwegian Forest and Landscape Institute 
2Norwegian University of Life Sciences 
 
K-nearest neighbour (kNN) approaches are popular statistical methods for predicting forest attributes in 
airborne laser scanning (ALS) based inventories. Their main upsides are the simplicity to predict multivariate 
response variables and their freeness of distributional assumptions on the conditional response. One of their 
largest draw-backs is that predictions outside the range of the reference data inherently result in an under-or 
overestimation. This property of kNN approaches is known as extrapolation bias and aggravates with an 
increasing number of neighbours (k) used for the prediction. This study presents one possibility to reduce 
extrapolation biases of predictions based on the area-based approach (ABA) by using individual tree crown 
(ITC) approaches within those specific areas of a low density ALS acquisition where the point density might be 
sufficiently high for using ITC methods. In the proposed strategy, additional (or artificial) reference plots 
augmented field measured plots. Artificial plots were created by applying ITC segmentation to a canopy height 
model derived from high density ALS data. The response variable biomass per hectare was predicted for every 
segment following a semi-ITC approach. The segment predictions were aggregated at the artificial plot level. 
The artificial plots were then treated in the same way as the original reference data to make predictions in 
areas with low density ALS data based on the ABA. It was hereby assumed that the predicted plot level 
response on the artificial plots is equivalent with the observed plot level response on the original reference 
data. The data consisted of 110 reference plots with a smaller data range than the 201 independent validation 
plots. Considerable extrapolation bias was visible if only the reference plots were used for the prediction. 
Almost no extrapolation bias was found if the prediction was based on reference plots augmented by artificial 
plots. The root mean squared error (RMSE) of the biomass predictions based on the reference plots was 
39.1%. The RMSE reduced to 29.8% if the reference plots were augmented by artificial plots. 
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Stem detection and measuring DBH using terrestrial laser scanning 
Martin Van Leeuwen*1,  Nicholas Coops 1, Glenn Newnham 2, Thomas Hilker 3, Darius Culvenor 2, Michael 
Wulder 4 
 
1University of British Columbia, Forest Resources Management, Vancouver Canada 
2Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton South , VIC 
3National Aeronautics and Space Administration (NASA), Goddard Space Flight Centre, Greenbelt, USA 
4Pacific Forestry Centre, Victoria, British Columbia, Canada 
 
Plot-level forest inventory information is critical for forest management; however, acquisition of forest 
structural attributes is a time consuming, costly, and often inconsistent, task. Recent developments have 
utilized terrestrial laser scanning (TLS) for rapid acquisition of forest structural detail as point cloud data, 
suitable for conversion to forest attributes using appropriate algorithms. Processing of these data remains a 
non-trivial task. In this paper, an efficient and robust method for stem detection from terrestrial laser scanning 
is presented based on the Medial Axis Transformation. The algorithm effectively eliminates outliers such as 
branches and uses a small number of parameters. Results show robustness of model parameters and minor 
errors of commission, while errors of omission are a function of range distance from the scanner. For 
horizontal distances up to 10 meter from the scanner 86% of trees manually detected from the scans could 
also be detected automatically. This includes some very small trees (<10 cm) that would not have been 
included in field inventories. Implications of the current algorithm and related data requirements on 
acquisition protocols are discussed. 
 
Notes: 
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Monday 17th October 2011: Session 3 - Wood resource assessment and value recovery 

 
 
Tree biomass estimation using ALS features 
Minna Räty* 1, Ville Kankare 1, Xiaowei Yu 2, Markus Holopainen 1, Mikko Vastaranta 1, Tuula Kantola 1, Juha 
Hyyppä 2, Risto Viitala 3 

1Department of Forest Sciences/University of Helsinki, Finland 
2Finnish Geodetic Institute 
3HAMK University of Applied Sciences, Finland 
 
Today the estimation of biomass and detection of changes in biomass in large areas is based on coarse remote 
sensing data and field measurements, which are time consuming, expensive and, above all, in local level 
inaccurate.  The recent development of techniques has offered opportunities to develop new methods, e.g. 
laser scanning. Airborne laser scanning (ALS) derived features could be used to estimate the total biomass of 
standing trees. The objective of this study was to make preliminary investigations between accurately 
measured biomasses in the field and ALS derived features. Study material consisted of 38 sample trees: 19 
Scots pines (Pinus sylvestris) and Norway spruces (Picea abies), which biomasses were accurately measured. 
ALS derived segments representing the field trees were matched and features for trees were extracted from 
ALS points within segments. Correlations between biomasses and ALS features were calculated and simple 
regression models were formulated. The relative residual errors were 21% for Scots pine and 40% for Norway 
spruce. More empirical tests are needed for ALS based tree biomass estimations. 

 
Stand level species classification and biomass estimation using LiDAR height, intensity, and ratio parameters 
Taejin Park* 1, Doo-Ahn Kwak 2, Woo-Kyun Lee 1 , Jong-Yeol Lee 1 

1Department of Environmental Science and Ecological Engineering, Korea University, Korea  
2Environmental GIS/RS Centre, Korea University, Seoul, South Korea 
 
In this study we use airborne LiDAR to classify tree species and estimate volume at the stand scale using 
multiple linear discriminant analysis and multiple linear regression analysis. This involved the extraction of 38 
independent variables from LiDAR data including height, intensity, and ratio metrics. In stand species 
classification, the 90 percentile of height (HC,90), standard deviation of the intensity (IC,std) and vegetation 
intensity ratio (VIR) were the most suitable variables for explaining each stand species. Hit ratio represented by 
accuracy in discriminant analysis was 81.7% in stand species classification. Afterward, the regression models 
were estimated using each variable, with the best model then selected using the corrected Akaike's 
Information Criterion (AICc). HC,90 , mode of intensity (IC,mode) and standard error of mean of intensity 
(IC,se) were applied to optimally explain the stand volume of Japanese Larch (Larix leptolepis), with an R2=0.83. 
With the mean of height (HC,mean), mode of height (HC,mode), standard deviation of intensity (IC,std) and 
range of intensity (IC,range) could be used to predict the stand volume of Japanese red pine (Pinus densiflora), 
with an R2=0.79. Finally, the 80th height percentile (HC,80), IC,mode and the kurtosis of intensity distribution 
(IC,kurt) were applied to predict the stand volume of Oaks (Quercus spp.) with an R2=0.68. 

 
Effect of scan coverage on stem diameter measurement using terrestrial LiDAR 
Akira Kato* 1, L. Monika Moskal 2, Tatsuaki Kobayashi 3 

1GraduateSchool of Horticulture, Chiba University, Japan 
2Precision Forestry Cooperative, College of the Environment, School of Forest Resources, University of 
Washington, USA 
3GraduateSchool of Horticulture, Chiba University, Japan 
 
This paper presents a new approach to measure stem diameters based on the data acquired by multiple 
scanning by terrestrial lidar. Recent terrestrial lidar (Riegl VZ400) has wider coverage and is able to efficiently 
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provide the highest point density data. Stem diameter derived from terrestrial lidar was compared with field 
measured diameter at breast height (d.b.h) of 42 sample trees. Stem returns of d.b.h were extracted and used 
to identify the approximated stem centre using principal component analysis. Various scan coverage of stem 
returns was used in the algorithm developed in this study to assess which is the most appropriate to measure 
stem diameter. The results show that more than 40% scan coverage of stem returns can produce stem 
diameter with an error of 5 cm or less using the algorithm. The applied technique can also assess the quality of 
wood by estimating straightness of stems from the alignment of stem centres at several heights. Furthermore, 
stem volume which is the most important variable to estimate the amount of carbon can also be measured 
directly using this technique. 

 
Stem curve measurement using terrestrial laser scanning 
Xinlian Liang* 1, Juha Hyyppä 1, Ville Kankare 2, Markus Holopainen 2 

1Finnish Geodetic Institute, Department of Remote Sensing and Photogrammetry, Masala, Finland 
2University of Helsinki, Department of Forest Resource Management, Finland 
 
Terrestrial laser scanning (TLS) has been shown to be a promising technology for the accurate forest inventory 
on the sample plots. The advantages of applying TLS can be improving the accuracy and efficiency of the field 
measurements. In addition, TLS data have the possibility to provide more tree parameters than what are 
commonly accepted and employed at the moment. This paper discusses the automatic measurement of the 
stem curve using TLS. A pine and a spruce were used in the experiment. The stem curve estimated from point 
cloud was compared to the field measurements. The experiment shows that the estimation of the stem curve 
from single-scan and merged point clouds are comparable to each other. This result indicates that TLS data has 
the potential to automatically estimate the stem curve. 

 
Estimating single-tree branch biomass of Norway spruce by airborne laser scanning 
Marius Hauglin*, Janka Dibdiakova, Terje Gobakken, Erik Næssetc 

Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences  
  
Dry weight of the branches of 20 trees of Norway spruce was obtained through destructive sampling. Airborne 
laser scanning data from the same trees were used to calculate crown volume for each tree. The crown 
volume was derived by using the crown laser echoes with a radial basis function to construct a crown surface. 
A regression model was fitted to the data, with the crown volume as explanatory variable and the dry weight 
of the branches as response. The model revealed a strong relationship between the two, with R2 = 0.80. A 
leave-one-out cross-validation gave a root mean square error of 34%. 

 
Airborne laser scanning-based stem volume imputation in a managed, boreal forest area: a comparison of 
estimation units 
Jari Vauhkonen* 1, Petteri Packalén 1, Juho Pitkänen 2 

1University of Eastern Finland, School of Forest Sciences, Joensuu ,Finland 
2Finnish Forest Research Institute, Joensuu Research Unit, Joensuu, Finland 
 
In typical airborne laser scanning (ALS)-based inventories, the forest is aggregated from initial estimation units, 
for which the attributes are produced using variable imputation techniques. The initial units vary in size and 
shape, being usually either regular grid cells or segments derived from the ALS data. This study compared small 
grid cells and segments of trees or tree groups as initial estimation units in an ALS-based estimation of species-
specific, plot-level volume. The experiments were carried out in a managed, boreal forest area in Eastern 
Finland, where pine was the dominant species, and spruce and deciduous trees formed the other species 
groups. The field data consisted of 79 sample plots (400–900 m2 in area) and the ALS data had a density of 
about 12 pulses/m2. The estimation was overall very accurate, resulting in best-case root mean squared errors 



SilviLaser 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems 
16-20 October, Hobart, Tasmania 

11 

 

of 13% for the total volume, 23% for pine, 49% for spruce and 90% for the deciduous trees at the plot-level. 
The total volume was estimated most accurately using a method in which 0 to n trees were imputed per 
segment. However, the differences between the estimation units were minor. Despite the significant biases in 
the estimates, the species-specific estimation was most accurate using a single-tree approach, i.e. by 
considering only the largest trees per segments in the imputation. The species-specific biases were of the same 
magnitude than the volume not detected by the tree detection algorithm, indicating that the proportion of the 
detected trees was estimated very accurately. 

Notes: 
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Tuesday 18th October 2011: Keynote Speaker 

 

Lidar in Australia - Progressing from digital elevation models to environmental monitoring 

Christian Witte, John Armston, Nick Goodwin, Peter Scarth, Dan Tindall (all DERM) and Nerida Wilson 
(Geoscience Australia) 

There has been significant investment into acquisitions of airborne lidar data across Australia. The main drivers 
have been tsunami and sea-level rise risk assessment, flood modelling, communications, transport and urban 
infrastructure planning, mining, forestry, environmental assessments and emergency management. In most 
cases, the focus has been on the generation of accurate digital elevation models (DEM’s). However, these lidar 
datasets include a range of vegetation types, streams, gullies and other landscape features of interest and 
provide a baseline for monitoring changes in vegetation structure and terrain over time. The benefits of 
existing airborne lidar datasets for monitoring applications will be discussed using a number of case studies. 
This includes monitoring change in vegetation structure over a 10-year period in Queensland, 
calibration/validation of products derived from spaceborne sensors, assessing streambank erosion along the 
Lockyer Creek in Queensland following the major floods in 2011 and monitoring gully erosion for selected sites 
in Great Barrier Reef catchments.  

Future large area captures will also be discussed including an overview of the monitoring initiative by Ergon 
Energy aiming to cover a corridor of 150,000km in Queensland on an annual basis. The key challenges in 
establishing and continuing monitoring programs using airborne lidar technology will be highlighted. These 
include: (i) field calibration data requirements (including terrestrial lidar); (ii) survey control and uncertainty 
assessment; (iii) the methods used to generate derived products such as DEM’s or forest and woodland 
metrics; (iv) sensor characteristics; and (v) data capture specifications. The authors believe that lidar-based 
environmental monitoring will grow significantly in Australia and best use of these data poses a number of 
important research questions. With open access to current and future lidar datasets by the research 
community, as well as the appropriate funding support, this technology will increasingly support 
environmental planning and policy decision making in Australia. 

Notes: 
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Tuesday 18th October 2011: Session 4 - Bio-diversity forest health & environmental applications 

 

Applying terrestrial LiDAR to derive gap fraction distribution time series during bud break 
Kim Calders* 1, Jan Verbesselt 1, Ham Bartholomeus 1, Martin Herold 1 
 
1Laboratory of Geo-Information Science and Remote Sensing, Wageningen University 
 
The scientific community is witnessing a significant increase in the availability of different global satellite 
derived biophysical data sets. However, the use of such data is currently not supported by accurate in-situ 
biophysical measurement (e.g. canopy structure) in both a research and operational context for the 
monitoring of forest and land dynamics. Consequently, there is an urgent need for methods to measure in-situ 
canopy structure accurately and better integrate with improved and innovative remote sensing approaches. 
This paper explores the use of a ground-based, upward looking LiDAR instrument, combined with a fully 
automated analysis method to retrieve the gap fraction distribution. Traditional inventory methods for the 
assessment of forest structure are less objective or based on a 2D approach. We compare the seasonal 
dynamics of gap fraction distribution from hemispherical photographs and terrestrial LiDAR measurement 
during bud break. 
Preliminary analysis shows that gap fraction distributions derived from terrestrial LiDAR were consistently 
lower than the values obtained from hemispherical photography. This might indicate that the LiDAR scans at 
the centre position of the plot are not representing the plot scale variation. However, the LiDAR based 
methodology is fully automated, requires no operator interference and is more objective, whereas the analysis 
of hemispherical photographs requires a large number of operator decisions (e.g. thresholding). Further 
improvements of this LiDAR-based method can still be achieved by (i) a better understanding of scanner 
settings and data resolution on the derived gap fraction and (ii) integration of target intensity in the analysis. 
This paper highlighted the high potential and need for a robust method to derive gap fraction distributions to 
monitor seasonal dynamics in forests. 
 
 
Foliage profiles from ground based waveform and discrete point LiDAR 
Jenny Lovell* 1, David Jupp 2, Eva van Gorsel 2, Jose Jimenez-Berni 2, Chris Hopkinson 3, Laura Chasmer 4 

1CSIRO Marine and Atmospheric Research, Hobart, Australia 
2CSIRO Marine and Atmospheric Research, Canberra, Australia 
3Applied Geomatics Research Group, Lawrencetown, Canada 
4Wilfrid Laurier University, Waterloo, Canada 
 
Terrestrial lidar systems provide a means to characterise the structure of a forest canopy. Their use to measure 
foliage area volume density depends on the ability to account for sampling effects and intensity calibration of 
the instrument. This paper presents a theoretical framework for the unbiased calculation of foliage amount 
using a waveform recording lidar instrument to simulate point cloud data. The method is initially based on the 
hemispherical scan configuration of the instrument, but is generalised to be applied to point cloud data in a 
generic coordinate system. The theory is tested with the simulated point cloud data as well as data from a 
commercial instrument. Foliage profiles from the terrestrial lidar instruments and airborne lidar are compared. 
 
 
Generating an automated approach to optimize effective leaf area index by Canadian boreal forest species 
using airborne LiDAR  
Heather Morrison* 2, Chris Hopkinson 1, Laura Chasmer 3, Natascha Kljun 4 

1Acadia University, Wolfville, Nova Scotia, Canada  
2Applied Geomatics Research Group, NSCC Annapolis Campus, Nova Scotia, Canada  
3Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario, Canada  
4Department of Geography, Swansea University, Swansea, Wales, United Kingdom  
 
Obtaining forest structure data to compute leaf area index (LAI) can be a challenge in remote areas like the 
Canadian boreal forest. Light ranging and detection (LiDAR) data provides a 3-dimensional view of the forest 
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that can be calibrated with minimal field data requirements relative to other remote sensing data. Our 
objective is to develop an automated method for combining a limited amount of field data with LiDAR to 
generate estimates of LAI. To accomplish this we used geographic information system (GIS) tools to expand 
upon a physically-based gap fraction model by incorporating a process for optimizing extinction coefficient by 
forest species. In this paper we demonstrate a simple, efficient method for optimizing remote sensing-based 
estimates of canopy attributes from limited field data. We were able to reduce the RMSE in modelled effective 
leaf area index by an average of 0.48 across all species. Combining such simple model optimisation approaches 
with other automated LiDAR-based canopy attribute extraction procedures shows promise as we move 
towards ever greater levels of LiDAR forestry operationalisation. 

 
Change detection of mountain vegetation using multi-temporal ALS point clouds 
Mattias Nyström *, Johan Holmgren, Håkan Olsson 

Section of Forest Remote Sensing, Department of Forest Resource Management, Swedish University of 
Agricultural Sciences, Umeå, Sweden 
 
Multi-temporal laser scanner data to be used in change detection studies will most likely be acquired with 
different sensors, flying altitudes, and system parameters. Therefore, calibration is probably needed in order 
to make laser returns from vegetation comparable between two laser data acquisitions. In this study, two ALS 
point clouds were acquired with different sensors and flying altitudes. The first data set had 11.5pointsm-2and 
was obtained in 2008 with a Top Eye MKII scanner and the second with a density of 1.1pointsm-2was obtained 
in 2010 with an Optech ALTM Gemini scanner. The test site was located in Abisko in northern Sweden with 
forest dominated by mountain birch. Six meter radius sample plots were placed in the forest-tundra ecotone 
and assigned one of the following treatments: (1) reference with no removal of trees, (2) removal of 50% of 
the total number of stems above 1.5m, and (3) removal of 100% of the total number of stems above 
1.5m.Histogram matching was used to calibrate the two data sets and sample plots were then classified into 
the three treatments. The overall classification accuracy was 82% using only the proportion of vegetation 
returns from the canopy as explanatory variable.  Features created from gridded laser data had overall higher 
classification accuracy than laser features created directly from the point cloud. Histogram matching made the 
two data sets comparable by reducing the difference between them. These early results show how changes 
can be detected even with different sensors, flying altitudes, and system parameters. 

 
Stability of LiDAR-derived raster canopy attributes with changing pulse repetition frequency 
Allyson Fox* 1,2, Chris Hopkinson 1,2, Laura Chasmer 3, Ashley Wile 2 
1Acadia University, Wolfville, Nova Scotia, Canada  
2Applied Geomatics Research Group, NSCC Annapolis Campus, Nova Scotia, Canada  
3Cold Regions Research Centre, Wilfrid Laurier University, Ontario, Canada  
 
Laser pulse characteristics (pulse emission rate and inherent pulse properties) influence the representation of 
forest canopy structure using LiDAR data. As the use of LiDAR-derived models for large scale forest canopy 
characterization increases, there is a need to optimize flight configuration settings to achieve this efficiently, 
and to ensure that changes observed in multi-temporal growth studies are due to forest change and not flight 
configuration influences. Using an Optech Inc. ALTM 3100 airborne LiDAR sensor pulse repetition frequency 
(PRF) was systematically varied over seven flights, in a three hour period, over Acadian mixed-wood forest 
plots in Nova Scotia, Canada in July 2005. Canopy height and fractional cover models were created and 
analysed to determine if differences in sensor configuration settings influence typical LiDAR-derived raster 
representations of canopy structure. Preliminary findings for both canopy height and fractional cover models 
are evaluated and discussed. 
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Characterizing peat swamp forest environments with airborne LiDAR data in Central Kalimantan (Indonesia) 
Hans-Dieter Viktor Boehm1, Veraldo Liesenberg2, Juergen Frank1 & Suwido H. Limin3 

1Kalteng Consultants [www.kalteng.org], Kirchstockacher Weg 2, D-085635, Hoehenkirchen, Germany 
2Faculty of Geosciences, Geotechnique and Mining, TU Bergakademie Freiberg, Bernhard-von-Cotta-Str. 2, D-
09599, Freiberg, Germany 
3Universitas Palangka Raya and CIMTROP, Jalan Yos Sudarso, Palangka Raya, 73112, Central Kalimantan, 
Indonesia 
 
We investigated how measures derived from both small footprints airborne Light Detection and Ranging 
(LiDAR) data and Ortho-Photo images can be used to characterize Peat Swamp Forest (PSF) environments in 
Central Kalimantan (Indonesia). In August 2007 we mapped by helicopter several transects using Riegl LiDAR 
(LMS-Q560) Technology. In this study, our main objectives were:  

a) to evaluate the peat surface/profile and their associated domes;  
b) to estimate the dependence of tree canopy height with both peat dome thickness and peat dome 

slope variations;  
c) to estimate Above Ground Biomass (AGB) variations based on tree canopy height and physiognomy 

variations; and  
d) to demonstrate the applicability of LiDAR technology to detect logging activities in tropical peat 

swamp forest environments.  
 

Additionally, we would like to demonstrate the first results of our second LiDAR survey conducted in August 
2011. We found that in an undisturbed tropical PSF area the average tree-height increased from 15.32m 
(2007) to 17.18m (2011) by difference of 1.86m which is 12%. This clearly shows the forest recovery capacity in 
secondary tropical PSF under protected conditions (e.g. conservation status).   Hence, we would like to 
demonstrate preliminary results of change detection method over this endangered ecosystem as well as the 
retrieval of forest attributes (e.g. AGB, LAI, Canopy Coverage, etc) in the frame of REDD+ knowledge. 
 
Notes: 
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Tuesday 18th October 2011: Session 5 - Bio-diversity forest health & environmental applications 

 

Comparison of the spatial pattern of trees obtained by ALS based forest inventory techniques 
Petteri Packalén* 3, Jari Vauhkonen 1, Eveliina Kallio 1, Jussi Peuhkurinen 1, Juho Pitkänen 2, Inka Pippuri 1, Matti 
Maltamo1 

1Faculty of Science and Forestry, University of Eastern Finland, Joensuu, Finland 
2Finnish Forest Research Institute, Joensuu Research Unit, Joensuu, Finland 
3College of Forestry, Oregon State University, USA 
 
The spatial pattern of trees in a forest can be defined as the locations of the trees in relation to each other. 
The spatial arrangement of a point (e.g. tree) pattern may be random (Poisson), clustered or regular. In this 
study the spatial pattern of trees was determined at the plot level by using L function, which is a square root 
transformation of Ripley's K function. The spatial pattern of tree was summarized in to three classes: regular, 
random and clustered. The study was carried out with 79 sample plots located in a managed forest area in 
eastern Finland. Tree maps were produced with the individual tree detection (ITD) and semi-individual tree 
detection (Semi-ITD) and spatial patterns of trees were calculated from the tree coordinates. The spatial 
pattern of trees was also predicted directly by using patch metrics calculated from the canopy height model as 
explanatory variables (AREA). The low resolution airborne laser scanning (ALS) data was used in the AREA and 
the high resolution data in the ITD and Semi-ITD. The Kappa value for the ITD was almost zero, which indicates 
virtually random classification. The AREA and Semi-ITD methods were clearly more accurate than the ITD. 
Kappa values for the Semi-ITD and AREA were 0.34 and 0.24, respectively, which nevertheless cannot be 
considered to be very good. However, determining the spatial pattern of trees by ALS is somewhat unexplored 
field of study. It should be studied how well the spatial pattern of trees can be determined in different type of 
forests. 

 
Fusion of airborne LiDAR and WorldView-2 MS data for classification of depth to permafrost within Canada's 
sub-Arctic 
Laura Chasmer* 1, Chris Hopkinson 2, Heather Morrison 2, Richard Petrone 1, William Quinton 1 

1Cold Regions Research Centre, Wilfrid Laurier University  
2Applied Geomatics Research Group, NSCC, Lawrencetown  
 
The discontinuous permafrost zone of north-western Canada is characterised by a heterogeneous landscape of 
tree-covered permafrost plateaus that rise 0.5 m to 2.0 m above the surrounding fens and bogs. The depth to 
permafrost or “frost table” is influenced to some extent by vegetation canopy cover, which drives complex 
feedbacks related to permafrost thaw. Spectral remote sensing offers the possibility of large area mapping of 
canopy and ground surface characteristics that may be used as a proxy for permafrost thaw within remote 
northern areas. However, this depends on whether or not spectral band scan be used to identify slight 
variations in vegetation characteristics. The following study compares vegetation and topographic 
characteristics obtained using airborne Light Detection And Ranging (LiDAR) with high spatial resolution 
WorldView-2 spectral bands and in situ transect measurements of the depth to frost table. The results of this 
study indicate that the depth to the frost table is related to above ground vegetation cover and tree height, yet 
relationships are complicated by canopy and under story characteristics, topographic derivatives, and the 
position of the measured frost-table transect within the fragmented plateau. Comparisons between vegetation 
structural characteristics and WorldView-2 spectral bands are also examined so that confidence can be applied 
to depth of frost table estimates from WorldView-2 based on canopy characteristics. Discrete WorldView-2 
pixels are related to depth to frost table (bands red, near infrared1,2)and canopy metrics/topography obtained 
from airborne LiDAR. Variability is due, in part to absorption of near infrared by shadow fractions observed 
within WorldView-2pixels, and spectral reflectance of ground vegetation visible within mixed pixels. High 
resolution spectral imagery, therefore, provides a link to processes controlling spatial variability of the depth 
to frost table. 
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Using high density ALS data in plot level estimation of the defoliation by the Common pine sawfly 
Tuula Kantola* 1, Paivi Lyytikainen-Saarenmaa 1, Mikko Vastaranta 1, Ville Kankare 1, Xiaowei Yu 2, Markus 
Holopainen 1, Mervi Talvitie 1, Svein Solberg 3, Paula Puolakka 4, Juha Hyyppä 2 

1University of Helsinki, Finland  
2Finnish Geodetic Institute  
3Norwegian Forest and Landscape Institute, Norway  
4 Finnish Forest Research Institute, Vantaa, Finland  
 
The climate change has been related to the increase of forest insect damages in the boreal zone. The 
prediction of the changes in the distribution of insect-caused forest damages has become a topical issue. The 
common pine sawfly (Diprion pini L.) is regarded as a significant threat to boreal Scots pine (Pinus sylvestris L.) 
forests. Efficient and accurate methods are needed for monitoring and predicting changes in insect defoliation. 
In this study, the field work has been carried out in 2009 in Eastern Finland, where D. pini has caused 
considerable damage in managed Scots pine forests. Altogether 95 sampling plots were used in the analysis. A 
high density ALS data was acquired simultaneously with the field work. The aim of the present study was to 
test the accuracy of the plot level needle loss predictions determined from the area based and single tree ALS 
features separately. The Random Forest method (RF) was utilized in the estimation. The best classification 
accuracy for the test set was 67.4% (area based features). The best plot level accuracy using the tree-wise 
features was 60.6%, respectively. 

 
Assessing spatial variation for tree and non-tree objects in a forest-tundra ecotone in airborne laser scanning 
data 
Nadja Thieme*, Ole Martin Bollandsås, Terje Gobakken, Erik Næsset 

Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Norway 
 
Changing climate is expected to have a significant impact on temperature-sensitive ecosystems like the forest-
tundra ecotone. In Norway, this ecotone constitutes a large proportion of the total land area and effective 
monitoring techniques are required. It has been indicated that height and intensity data from airborne laser 
scanning may hold potential for monitoring of small trees. In the present study, Voronoi polygons and 
variograms were employed in order to assess the spatial patterns of trees and non-tree objects located in the 
forest-tundra ecotone. Patterns both for trees and non-tree objects could be recognised using Voronoi 
polygons in combination with height and intensity values. Furthermore, variograms and cross-variograms 
revealed different characteristics for trees and non-tree objects, however, limited to large individual objects 
located on flat terrain. 

 
Exploring horizontal area-based metrics to discriminate the spatial pattern of trees using ALS 
Inka Pippuri*, Eveliina Kallio, Matti Maltamo, Petteri Packalén, Heli Peltola 

Faculty of Science and Forestry, University of Eastern Finland, Finland  
 
Airborne Laser Scanning (ALS) data can be used to accurately determine tree and stand characteristics. We 
hypothesize here that three-dimensional ALS data can also be used for characterizing the horizontal forest 
structure like the spatial pattern of trees. This kind of information is of primary interest in forest management. 
The objectives of this study were (1) to identify ALS point cloud metrics and horizontal texture and landscape 
metrics, which can be used to determine the spatial pattern of trees and (2) to study how well the clustered 
spatial pattern of trees can be separated from others. The field data consisted of 28 microstands, of which 11 
were clustered and 17 random or regular. Linear discriminant analysis was used to classify the microstands by 
means of the metrics calculated from ALS data. The best ALS metrics to determine the spatial pattern of trees 
were determined by the best overall accuracies (OA) and kappa-values (k) and based on the significance tests 
of models and the correlation matrices of metrics.  
The classification of the spatial pattern of trees succeeds well based on ALS metrics, with the overall accuracy 
being 0.89 and kappa-value 0.77. Especially the calculated landscape metrics were found good predictors of 
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the spatial pattern of trees, for example: the number of the ground patches per hectare, the average size of 
the tree patches and the standard deviations of the size of all patches in the microstand. To conclude, our 
results were encouraging to detect the spatial pattern of trees based on low density ALS data. 

 
Comparison of discrete return and waveform airborne LiDAR derived estimates of fractional cover in an 
Australian savanna 
John Armston* 1,2, Mattias Disney 3 , Philip Lewis 3, Peter Scarth 1,2, Peter Bunting 4, Richard Lucas 4, Stuart 
Phinn 1, Nicholas Goodwin 2 

1 Joint Remote Sensing Research Program, Centre for Spatial Environmental Research, School of Geography, 
Planning and Environmental Management, University of Queensland 
2 Remote Sensing Centre, Environment and Resource Sciences, Queensland Department of Environment and 
Resource Management 
3Department of Geography, University College London, UK 
4Institute of Geography and Earth Sciences, University of Aberystwyth, Wales, UK 
 
The advance of commercial airborne lidar systems from discrete-return to waveform recording instruments 
has made repeatable estimates of biophysical variables from these different methods questionable. Using an 
experimental airborne waveform lidar data set acquired in an Australian savanna, this study presents a 
method for the derivation of canopy/ground backscatter coefficients from waveform lidar and a comparison of 
discrete return and waveform approaches to the estimation of fractional cover. Despite limited validation, the 
results indicate that waveform estimates of fractional cover can provide consistently higher accuracy than 
discrete return estimates under varying survey properties. Ongoing work using raw waveform data across 
larger areas and 3D radiative transfer simulations aims to develop a quantitative understanding of the impact 
of disparate sensor and survey properties on the detection of change in vegetation structure using commercial 
lidar instruments. 

Notes: 
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Tuesday 18th October 2011: Keynote Speaker 

 

Lidar-plots: A new wide-area data collection opportunity 
Mike Wulder 

Research Scientist, Forest Inventory and Analysis  
 
Forests are an important global resource, playing key environmental and economic roles. Forest monitoring 
and reporting are typically a national responsibility, with international collaboration and cooperation enabling 
generation of global statistics. The implementation of quality national monitoring programs is required for the 
generation of robust national statistics. Programs based upon samples of field plots have proven robust, but 
are difficult and costly to implement and maintain. Programs with air photo plot based sampling have been 
developed to mitigate some of the difficulties and limitations with ground plot based programs, especially for 
large nations. Further, samples of satellite data are becoming increasingly used to produce reliable statistics on 
forest characteristics and change over large areas. Photo- and satellite-based programs require ground 
measures to assist in ensuring the quality of attribution undertaken; thereby a conundrum emerges, where 
ground plots are again desired. To offer a source of detailed data for calibration and validation to large area 
mapping and monitoring programs we propose the collection and integration of lidar-plots. Light detection 
and ranging (lidar) has been shown as a data source offering timely and accurate measures of vertical forest 
structure, relating important information such as canopy height and biomass. Rather than using lidar to 
produce wall-to-wall coverage we propose the use of transects of scanning lidar to relate the forest conditions 
present over large areas. Given appropriate sampling statistics can be generated directly from the lidar-plots 
collected over the transects. In other instances the lidar-plots may be treated as ground plots are typically 
treated, providing locally relevant information that can be used independently or integrated with other data 
sources. Issues such as costs and access limitations combine to result in ground plots being endemically in 
short supply. Lidar-plots are envisioned to mitigate this limitation and to produce information to aid and 
augment monitoring programs and to support science activities.  
In this presentation we further outline the context resulting in the need for detailed forest information over 
wide areas, we describe the concept for specification, collection, and sharing of lidar-plots; a case study is then 
presented to illustrate the concept. We conclude with recommendations for alternate implementations, future 
activities, and improvements to the concept and processes described. 

Notes: 
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Tuesday 18th October 2011: Session 6 – Large area applications 

 

Airborne lidar sampling of the Canadian boreal forest: Planning, execution & initial processing 
Chris Hopkinson 1, Laura Chasmer*, Michael Wulder 2, Nicholas Coops 3, Trevor Milne 1 , Allyson Fox 1, 
Christopher Bater 3 

1Applied Geomatics Research Group, Lawrencetown, Nova Scotia, Canada  
2Pacific Forestry Centre, Canadian Forest Service, Victoria, British Columbia, Canada 
3Department of Forest Resource Management, UBC, Vancouver, British Columbia, Canada 
 
During the summer of 2010, a transcontinental aerial survey mission was performed to acquire 24,000 line km 
of lidar transects covering >15,000 km2representing all ecozones within Canada’s boreal forest. The coverage 
equates to ~21 million ‘lidar plots’ at the 25 m grid cell resolution. Each ‘plot’ contains the position and 
intensity of 1000 to 2000 laser points, which describe the terrain surface and 3D canopy structure, which will 
be used to predict forest inventory attributes and to support calibration of wide area satellite-based imagery. 
Furthermore, in similar fashion to geo-located permanent sample plots, the lidar transect flight path from 
2010can be re-surveyed in the future to facilitate monitoring of forest development and change in a consistent 
and quantifiable manner. The paper describes the mission planning criteria, survey logistical considerations 
and customised transect data processing routines. 

 
Assessing the accuracy of GLAS topography estimation by using airborne Light Detection And Ranging 
(LiDAR) measurements 
Han Meng*, Bernard Devereux, Gabriel Amable  

Geography Department, the University of Cambridge, UK  
 
Topography estimation is a key factor in forestry studies. The accurate prediction of topography underneath 
tree canopies will certainly improve the subsequent forest bio-physical characteristics estimation such as tree 
height, stem volume, biomass/carbon stocks. Thus, the assessment of the accuracy of GLAS topographical 
estimation is essential before the data can be used for forest bio-physical characteristics prediction. This study 
proposes the use of airborne LiDAR measurements to assess GLAS ground elevation estimates in a mixed 
woodland and arable site in south-east England near Thetford, UK, at at 52.4N, 0.81E, given that airborne 
LiDAR measurements have already been validated using ‘ground-truth’ data. GLAS full waveforms are 
decomposed into up to six Gaussian modes and different indices, such as waveform centroid position (GLA14 
position) and GLA01 last peak position, are calculated based on the peak positions of these Gaussian modes. 
Elevations estimated from these indices are compared with airborne LiDAR elevation estimates for assessment 
purpose and optimal estimates will be selected based on the results.  
Four comparison models are introduced in this study. From these, model 1 (the comparison between GLA14 
elevation and non-filtered airborne last return pulses elevation) and model 4 (the comparison between GLA01 
last mode elevation and filtered airborne last return pulses elevation) have the best performance with R-
squared values of 0.89 and 0.87, respectively, and RMSE values of 3.82 and 4.69, respectively. After removal of 
outliers for model 4, the R-squared value improves to 0.99 and the RMSE value reduced significantly to 0.66.  
A simplified experiment is implemented in this study in order to investigate the impacts on biomass/carbon 
stock estimates arising from use of different models, with the assumption that there is a uniform average tree 
height of 20 meters and uniform stem density through the study site. 

 
Characteristics of satellite LiDAR waveform in tropical rain forests from the comparison with canopy 
condition derived from high resolution satellite data 
Yasumasa Hirata 

Climate Change Office, Forestry and Forest Products Research Institute, Tsukuba, Japan 
 
This study aims to investigate characteristics of satellite LiDAR waveform in tropical forests by comparing with 
canopy structure derived from high resolution satellite data. Study area is located in the Tangkulap Forest 
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Reserve, Sabah, Malaysia, which is managed by the Sabah Forestry Department under the Deramakot Forestry 
District. ICESat GLAS data for the study area were prepared and provided by the National Snow and Ice Data 
Center. GLA01data and GLA14 data were used. Footprints of laser pulse from ICESat GLAS were identified on 
the QuickBird image and stand structures in the footprints were estimated from crown information. First, 
canopy closure within a footprint was calculated using the generated mask. Distribution of individual crown 
areas within a footprint was investigated for all footprints in the study area. Grade of degradation due to 
historical selective logging was decided from these two factors, namely, canopy closure and crown size 
structure. Waveform in each footprint was extracted from ICESat GLAS data and the relationship between 
stand structure, which was estimated from crown information, and the waveform was investigated. In 
addition, waveform in oil palm plantation, which was outside of the extent of high resolution satellite data, 
was also investigated. The condition of the area was identified using using Google Earth. Stand structure was 
estimated from waveform of satellite LiDAR data. Length of waveform almost indicated maximum tree height. 
Peak position of waveform indicated the height of canopy layer. The height and position of peak of waveform 
indicated the grade of forest degradation. Further studies are required for identify the relationship between 
waveform of a shot of laser pulse from satellite LiDAR and canopy condition such as canopy closure and 
distribution of crown area quantitatively. 
 
 
Model development for the estimation of aboveground biomass using a lidar-based sample of Canada’s 
boreal forest 
Christopher W. Bater1,*, Michael A. Wulder2,*, Nicholas C. Coops1,*, Chris Hopkinson3, Samuel B. Coggins4, Eric 
Arsenault5, André Beaudoin6, Luc Guindon6, R.J. Hall5, Philippe Villemaire6, & Murray Woods7.   
 
1Integrated Remote Sensing Studio, Department of Forest Resources Management, University of British 
Columbia. 
2Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada. 
3Applied Geomatics Research Group, Centre of Geographic Sciences.  
4Nisga'a Lisims Government. 
5Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada.  
6Laurentian Forestry Centre, Canadian Forest Service, Natural Resources Canada. 
7Southern Science and Information Section, Ontario Ministry of Natural Resources.  
 
The northern forested areas of Canada are largely unmanaged and not subject to inventories with the same 
level of detail or regularity as southern forested regions. In an effort to augment monitoring and inventory 
activities, airborne light detection and ranging (lidar) has been employed to obtain plot-level information over 
a sample of Canada’s northern forests. During the summer of 2010, a series of 34 transects were flown over a 
total length of more than 24,000 km, spanning the width of the Canadian landmass from Nova Scotia to the 
Yukon, and crossing eight ecozones and 13 UTM zones. Following data acquisition, a suite of plot-level lidar 
vegetation metrics were calculated. To develop estimates of forest attributes such as biomass, however, field 
data were required from the range of conditions found across the region. To that end, datasets were acquired 
from Quebec, Ontario and the Northwest Territories. In this paper we describe the development of regression 
models for large area estimates of various tree aboveground biomass components using field and lidar 
datasets of uncommon provenance, with significant differences both in terms of the environments in which 
they were collected, and the characteristics of the field and lidar surveys. The equations developed are 
deemed suitable for application and extrapolation across the national series of lidar transects. 
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Notes: 
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Tuesday 18th October 2011: Session 7 – Poster Presentations 

 

Early assessment of industrial needs: harvesting and allocation decisions supported by ALS and TLS 
Gero Becker*, Thomas Smaltschinski, Martin Opferkuch, Holger Weinacker 

Institute of Forest Utilization and Work Science & Department of Remote Sensing and Landscape Information 
Systems*). University of Freiburg 
 
Context: To plan their own supply with regard to product demand, the wood industry needs precise 
requirements towards the qualitative properties of its purchased logs (volume, species, dimension, length, 
diameter, knottiness, taper, sweep and the absence of stem defects). Early information of the prospective 
wood quality from the designated harvestable stands is therefore required. Traditional inventory data are in 
most cases out-dated and not detailed enough to fulfil these information needs. In many forests (e.g. small 
private holdings) inventory data do not exist at all. To conduct up-to-date pre-harvest ground inventory is time 
consuming and costly. In this situation remote sensing with laser technology is a promising alternative. 
Methodology: Aerial laser scanning (ALS) covers big areas and provides primarily height data, from where 
terrain information as well as canopy information can be extracted, so that single tree recognition and 
modelling of the crown shape is possible. Broadleaved and coniferous trees can be distinguished, but species 
identification is still difficult (Spectral aerial photography may help to solve this problem). From the tree height 
and the crown shape, important quality information like branchiness can be derived based on well established 
allometric functions, but information (diameter, shape, bark features) of the stem below the crown (which 
represents the most valuable part of the tree) is difficult to obtain via ALS.  
Terrestrial Laser Scanning (TLS) provides information on the below-crown part of the stand. Depending on the 
type of laser scanner and the stand density, within a circle with a radius of r~±15m the exact position and 
detailed dimension and quality data of every (visible) stem can be obtained already with one instrument set 
up. Theoretically, a total coverage of the stand would be possible, with a sufficient number of instrument set 
ups, but this would not be economically feasible for industrial application.  
The suggested solution is a combination of total (crown-) assessment via ALS and sampling of stem data via 
TLS. After AL scanning of the respective stand, circular sample plots are defined and located. Number and 
radius of the plots are derived from stand characteristics (variation of stand density and tree heights) based on 
statistical considerations. For all merchantable trees within these circular plots, their (foot) position and crown 
shape is 3-D modelled from ALS points.TL scanning of the stem of all (merchantable) trees is then conducted 
from the centre of these sample plots. Georeferenced data of ALS and TLS positions allow modelling the full 
tree by composing the respective crown and stem data. 

 
Remotely sensed crown structure as an indicator of wood quality: A comparison of metrics from aerial and 
terrestrial laser scanning 
Thomas Adams*, David Pont, Jonathan Harrington 

Scion, 49 Sala Street, Rotorua, New Zealand.  
 
Aerial LiDAR offers a fast and efficient means to estimate wood quantity, but there has been little work to date 
on wood quality. In this study we investigate the hypothesis that remotely sensed crown structure from Aerial 
Laser Scanning (ALS) can be used as an indicator of log quality at an individual tree level.  
A New Zealand Pinus radiata forest was flown with aerial LiDAR at 8 pts per m2. Five trees from within the 
forest were scanned with a terrestrial laser scanner (TLS) to determine external signs of log quality. These 
measurements were diameter at breast height (DBH), volume, taper, sweep, lean, circularity and average 
internode distance. In this study we develop a series of metrics from ALS point clouds for each tree to describe 
the crown structure, which are then correlated against the TLS data. To derive these metrics, novel algorithms 
were developed for TLS data which extend the level of detail previously obtainable. These algorithms are also 
detailed in this paper.  
As only five trees were studied, the results are proof-of-concept more than outright proofs. The purpose of 
this paper is to document techniques which will be employed in the future over a much greater sample, 
proving the preliminary findings presented here. In this small sample we found that crown area from ALS had a 
moderately strong correlation with DBH and sweep. Crown density from ALS was also moderately correlated 
to average internode distance. The correlations show that there is at least a moderate connection between 
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crown structure and log properties, and that at higher LiDAR pulse densities and a larger sample size we can 
expect to describe this connection with greater certainty.  
In further studies we also hope to correlate ALS and TLS metrics with internal wood properties, as found from 
destructive sampling. 

 
Developing lidar interpretation software for wood resource inventory in Forests NSW 
Russell Turner*, A Farjad, J Trinder, S Lim 

1Forest Science Centre, Department of Primary Industries, Sydney, NSW 
2School of Surveying and Spatial Information Systems, UNSW, Sydney, NSW 
 
Forest inventory programs are traditionally based on very limited field sampling data which is then 
extrapolated across the entire forest estate. One of the major weaknesses of this approach is that the limited 
number of plots often covers less than 2% of the total forest area and this can influence how representative 
the data may be of forest variation. Instead of relying solely on field plots sampled at around 1 per 400 to 1000 
ha, future resource inventory programs could utilise high sampling density full-waveform lidar to conduct on-
screen manual interpretation. The premise is that one analyst using lidar full-waveform data onscreen could 
potentially manually interpret 50 lidar plots per day compared to two field crewmembers measuring 4 to 6 
plots per day. This involves a paradigm shift from 100% field survey dependent forest sampling to a mix of lidar 
plot interpretation with significantly fewer field plot samples. If feasible, this innovative resource assessment 
approach has the potential to provide significant savings in future resource inventory programs. The strength 
of the new generation of full waveform lidar systems lies in the enormous amount of structural data that can 
be rapidly collected. However, this strength is also their weakness for two reasons. Firstly, these systems 
generate extremely large volumes of data that demand exceptional data storage capacity (i.e. terabytes of 
space).  And secondly, there is a scarcity of commercial software capable of processing the data in a way 
customised specifically for forestry purposes. Forests NSW (FNSW) and the University of New South Wales 
(UNSW) have developed a new lidar processing platform that offers the visualisation of point cloud data 
viewed in 2D and 3D displays and a suite of manual tools to add markers, measure stem and crown parameters 
and tag key attributes such as form quality, species and growth stage for each tree. In addition, a series of 
automated plot statistics can also be extracted such as point percentile counts at nominate height thresholds, 
common descriptive statistics (e.g. max, mean, mode, median, standard deviation etc.), and canopy cover 
percentage. A prototype of the new software should be ready for field testing in late 2011. 
 

Towards automated and operational forest inventories with T-Lidar 
Othmani Ahlem* 1, Piboule Alexandre 2, Krebs Michael 3, Stolz Christophe 1, Lew-yan-voon Lew 1 

1Laboratoire LE2I –UMR CNRS, France 
2ONF,R&D department, F-54000 Nancy, France 
3ENSAM,Equipe Bois, F-71250 Cluny, France 
 
Forest inventory automation has become a major issue in forestry. The complexity of the segmentation of 3D 
point cloud is due to mutual occlusion between trees, other vegetation, or branches. That is why, the 
applications done until now are limited to the estimation of the DBH (Diameter at Breast Height), the tree 
height and density estimation. Furthermore other parameters could also be detected, such as volume or 
species of trees (Reulke and Haala)... 
This paper presents an effective approach for automatic detection, isolation of trees and DBH estimation. Tree 
isolation is achieved using an innovative approach based on a clustering methodology followed by a 
skeletonization step. The DBH of trees is then determined automatically. The efficiency of our algorithm is 
evaluated with comparison with ground data, measured by classical methods. 
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3-D modelling of forest structure for parameterization of radiative transfer models 
Martin Van Leeuwen*, Nicholas Coops, Glenn Newnham, Thomas Hilker, Darius Culvenor, Michael Wulder 
 
Reconstructions of individual trees and their complex canopy structure provide an important means for 
studying a range of physiological processes including photosynthesis, respiration and resource use efficiencies 
and for assessing the effects of competition and crown structure on tree functioning. 
However, measuring and registering detailed descriptions of tree and canopy structure has for long been 
challenging due to the laborious nature of data acquisition and subjectivity of taking field measurements in 
complex forest scenes. This study investigates the potential of ground-based, time-of-flight laser scanners for 
use in the 3D explicit reconstruction of forest structure and parametrization of radiative transfer models. 
 

Evaluation of nonlinear equations for predicting diameter from tree height for Pinus radiata (D. Don) in an 
airborne laser scanning-based plantation inventory 
Huiquan Bi* 1,2, Julian Fox 2, Yun Li 3, Yuancai Lei 4, Yong Pang 4 

1 Forest Science Centre, Science and Research Division, New South Wales, Department of Industries and 
Investment, Beecroft, NSW  
2 School of Forest and Ecosystem Science, University of Melbourne  
3 School of Information Science and Technology, Beijing Forestry University, Beijing, China 
4 Institute of Forest Resources Information Techniques, Chinese Academy of Forestry, Beijing, China  
 
More than 30 height-diameter equations in the forest biometrics literature were evaluated to select 
candidates for deriving equation forms for predicting diameter from tree height in support of LiDAR based 
forest inventory. The evaluation was based on four criteria: (1) the height-diameter function is inversable, (2) 
the inverse function is continuous and monotonically increasing over a specified working range of total tree 
height, (3) DBH is equal to zero at breast height in the inverse function, and preferably (4) the inverse function 
has an inflection point that is consistent with biological expectations. A total of 12 candidate equation forms 
were derived, which included 5 two-parameter and 7 three-parameter equations. The estimation properties 
and predictive performance of these 12 equation forms were further evaluated and compared through 
repeated sampling and fitting using data from 3581 trees destructively sampled for taper measurements from 
Pinus radiata plantations across New South Wales, Australia. Three equation forms, including the constrained 
Richards, Weibull and the combined power and exponential function, displayed superior prediction accuracy 
and estimation properties, and so were recommended as the primary equation forms for developing diameter-
height equations. The remaining equation forms were marred by either lower prediction accuracy or poorer 
estimation properties or both. The three recommended equation forms should only serve as basic 
deterministic specifications, upon which other tree and stand variables should be incorporated as predictors to 
further improve their predictive performance. 

 
Revisiting the status of space-borne lidar missions for assessing structural and biophysical forest parameters 
in the context of sustainable management of Earth resources 
Sylvie Durrieu* 1, Ross Nelson 2 
 
1Cemagref, UMR TETIS, 500, rue J.F. Breton BP 5095, 34196 Montpellier Cedex 5, France  
2 Biospheric Sciences Branch, NASA/GSFC, Greenbelt, USA  
 
Assessing forest aboveground biomass at global scale is crucial to address the challenge of sustainable 
management of forest resources and to strengthen forest-based climate change mitigation. To achieve this 
goal relying on spaceborne lidar missions is acknowledged to be a highly relevant solution. However, if this is 
taken as a given from the measurement point of view, the premise that spaceborne observation is the most 
suitable solution to provide information for sustainable management of forest resources is worth discussing. In 
this paper we suggest to take a fresh look at measurement processes designed to support the monitoring of 
Earth resources. We discuss the sustainability of Earth observation from space considering (1) issues that call 
into question the assumption that Earth-orbiting platform will always be available to the civilian remote 
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sensing community and (2) issues concerning environmental impacts of space activity on the Earth. This leads 
us to suggest some actions that could help to design future observation systems in a more sustainable way in 
order to strengthen the capacity of measurement processes to meet their stated functional goal, i.e. 
sustainable management of forest resources. 

 
Vegetation classification in the Swedish sub-arctic using a combination of optical satellite images and 
airborne laser scanner data 
Mattias Nyström*, Karin Nordkvist, Heather Reese, Johan Holmgren, Håkan Olsson 

Swedish University of Agricultural Sciences, Department of Forest Resource Management, Sweden. 
 
The aim of this pilot study was to investigate to which degree the accuracy of automated vegetation 
classification in the Swedish sub-arctic could be improved by combining optical satellite data with airborne 
laser scanner (ALS) data, compared to using satellite data only. This information is of interest in an ongoing 
discussion about the possible inclusion of the mountains in northern Sweden in the national laser scanning 
that started in 2009. A SPOT 4 scene and ALS data from an Optech ALTM Gemini scanner, both from 2010, 
were used in maximum likelihood classification. Data for training and validation was obtained from 279 plots 
with 20 m radius that were visited in field 2010. These plots were located near Abisko in northern Sweden (lat. 
68° 23' N, long. 18° 53' E), on the north and south side of Lake Torne Träsk. A classification scheme with 7 
classes based on the Swedish mountain vegetation map was used. Classification using only SPOT data gave an 
over-all accuracy of 75.6%, and the combination of SPOT data and ALS data increased the accuracy to 81.4%. 

 
Lidar data and cooperative research at Panther Creek, Oregon 
James Flewelling* 1, George McFadden 2 

1Seattle Biometrics, Seattle, WA, USA 
2Bureau of Land Management, Portland, OR, USA 

A 2,300 hectare forested watershed in the coastal mountain range of Oregon, USA is the subject of 
collaborative research with a principal objective of evaluating uses of lidar and other remotely sensed data for 
the development of detailed forest inventories.  Panther Creek watershed (4518’ N, 12321’ W) is at an 
elevation of 100-700 m, about 57 km southeast of Portland.  Major species are Douglas fir, western hemlock, 
western red cedar, grand fir, red alder and big leaf maple; tree heights are up to 60 m.  The Bureau of Land 
Management and other cooperators are using the watershed to test and develop methodology for detailed 
stand level forest inventories, the detailed mapping of soils and slope stability, and the assessment of other 
ecosystem functions. Wall-to-wall discrete return lidar has been acquired under leaf-off conditions annually 
starting in 2007, and will continue through 2012. Leaf-on discrete return lidar was collected in 2007 and 2010 
and will be collected in 2012.  Surveys used Leica ALS50 Phase II or ALS60 lasers; pulse density is about 8 per 
m2; in 2010 selected areas received multiple passes, raising the density up to 50 pulses per m2.  Return 
intensities are being corrected for power output and camera-to-target distances. Full waveform lidar leaf-on 
data was acquired in 2010, as was 4-band color-infrared imagery using a Leica ADS40 camera. Also in 2010, 
hyperspectral data from a Hymap sensor was acquired. Eighty-four cadastral-surveyed 0.08 ha stem-mapped 
permanent plots were installed, mostly in 2009; measurement will be repeated after the 2012 growing season. 
Several other imagery sources are available. A project goal is to compare and evaluate methodologies. All data 
are available to research groups wanting to participate. Data are well documented and organized, and include 
cut-outs of the remotely sensed data at each of the plot locations. 
 
 
LiDAR estimation of quadratic mean canopy height and stem density in native sclerophyll forests 
Yadav Prasad Kandel*, Julian Fox, Stefan Arndt, Stephen Livesley 
 
Department of Forest & Ecosystem Science, The University of Melbourne  
 
LiDAR, relatively a new active remote sensing technology, capable of providing three-dimensional structural 
information of forest stands as well as individual trees has already been established as an operational tool in 
European and North American forestry. LiDAR estimates of various structural and biophysical parameters are 
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more accurate for pine forests than that for the broad-leaved and mixed species multi-story forests. In this 
study, plot level mean dominant height and quadratic mean canopy height were estimated quite accurately 
using the LiDAR data from two different types of native sclerophyll forests. R2 of the regression model for the 
mean dominant height was 87.09 % for the Central Highlands Ash Regrowth (CHAR) and 92.1 % for the Black 
Range Mixed Species (BRMS) forest. Similarly, R2 of the regression model for the quadratic mean canopy 
height was 48.4 % for the CHAR and 92.7 % for the BRMS forest. Stem density (number of trees per hectare) is 
the most difficult forestry attribute to estimate from remote sensing technology including LiDAR. When 
various LiDAR metrics were used directly to develop a regression model of stem density in the CHAR and BRMS 
forests, the models developed had very low (less than 0.3) R2. Therefore, in this study, an indirect method of 
estimating stem density using LiDAR data was developed. Using this new indirect method, the number of trees 
was predicted with mean prediction error of -64.12 trees per hectare for calibration plots and 105.29 trees per 
hectare for validation plots in CHAR forest, which is a wet sclerophyll forest. In the RRMS forest, which 
represents a dry sclerophyll forests, prediction error for number of trees, was 79.99 trees per hectare for 
calibration plots and 4.96 trees per hectare for validation plots. 
 
 
Using a flux footprint model and airborne LiDAR to characterize vegetation structure and topography 
frequently sampled by Eddy Covariance: Implications for MODIS product validation 
Laura Chasmer* 1, N Kljun 2, Chris Hopkinson 3, S Brown 1, T Milne 3, K Giroux 1, A Barr 4, K Devito 5, I Creed 6, 
Richard Petrone 1 
 
2Dept. of Geography, College of Science, University of Swansea, Swansea, Wales UK  
3Applied Geomatics Research Group, NSCC, Middleton NS Canada  
4Environment Canada, National Water Research Institute, Saskatoon SK Canada  
5Dept. of Biological Sciences, University of Alberta, Edmonton AB Canada  
6Dept. of Biology, University of Western Ontario, London ON Canada  
 
Exchanges of CO2 transported to eddy covariance instruments are often assumed to be representative of site 
average vegetation, understory, and topographical characteristics, regardless of the frequency with which 
these have been sampled. All sites have some degree of heterogeneity (e.g. an upland area, bog, area of dense 
understory, etc.), which could influence CO2 exchanges if scalar fluxes from prevailing wind directions 
frequently sample these parts more than others. This could have implications for site representation, model 
evaluation, and remote sensing product validation and scaling. The use of flux footprint models has improved 
our understanding of the spatial and temporal distribution of source/sink areas measured within the field of 
view of eddy covariance instrumentation (e.g. Schmid, 1994). The flux footprint is defined as the probability of 
flux contribution per unit area upwind of the eddy covariance instrumentation (Kljun et al. 2002, 2004). When 
a footprint is combined with remote sensing data, the probability density function of the weighted source/sink 
contribution to the eddy covariance instrumentation provides spatially contiguous information on vegetation 
structural and topographic influences on net ecosystem production(NEP) (Chasmer et al. 2008). Simple logic 
follows: if CO2 fluxes originate from areas of higher biomass, then measurements of flux should indicate 
increased uptake (NEP) when compared with lower biomass areas (etc.), all else being equal. Combining 
footprints with high resolution spatially continuous remote sensing data from airborne LiDAR, hyperspectral or 
spectral imagery provides a powerful tool for characterizing the areas sampled most frequently by eddy 
covariance. In this study, we use a 3D classification methodology to characterize vegetation structural and 
topographic attributes most frequently sampled by eddy covariance within 1) a homogeneous mature boreal 
aspen stand; and 2) a heterogeneous upland aspen/wetland complex using airborne LiDAR. The vegetation and 
topographic characteristics found within the areas most sampled at each site were then used to classify the 
larger region for evaluation of the MODIS gross primary production (GPP) product, i.e. choosing MODIS pixels 
that have similar attributes to those found within footprint most frequently sampled by eddy covariance.  
The results of this study find that footprints from prevailing wind directions at the homogeneous mature aspen 
stand have, on average, taller trees (7%), greater effective LAI (30%), denser understory (5%), and fewer low-
lying topographic depressions than secondary wind origins. At the heterogeneous aspen stand, footprints from 
prevailing wind directions have, on average, shorter trees (-11%), lower effective LAI (-17%), and a greater 
proportion of topographic depressions.  

Classification of vegetation structure and topography within a 1 km radius of the homogeneous and 
heterogeneous stands indicated that 56% (homogeneous aspen) and 69% (heterogeneous aspen) were 
representative of vegetation and topographic attributes sampled by eddy covariance. Thus, prevailing wind 
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directions may over- or under-sample some parts of the ecosystem more than others, which could result in 
over- or underestimates of NEP when compared with similar representative ecosystems.  

When scaled to MODIS GPP, correspondence with GPP estimated using eddy covariance and meteorological 
methods improved by 13% when using LiDAR ‘classified’ pixels as opposed to those pixels most proximal to the 
tower. This illustrates that airborne LiDAR and footprint analysis can be used to link eddy covariance 
measurements of ecosystem exchanges between scales. This has important implications for assessment of 
spatial variability of vegetation/topography on NEP; identifying landscape features that are frequently 
sampled; classifying spatial heterogeneity; and scaling. More detail of this study is provided in Chasmer et al. 
(2011). 

 

Satellite vs. airborne lidar estimates of aboveground biomass and forest structure metrics at footprint scale 
Sorin Popescu 1, Kaiguang Zhao 1, Amy Neuenschwander 2, Chinsu Lin 3 
 
1 Spatial Sciences Laboratory, Department of Ecosystem Science and Management, Texas A&M University, 
United States  
2 Centre for Space Research, University of Texas  
3 Department of Forestry, National Chiayi University, Taiwan  
 
Small footprint airborne lidar, sometimes referred to as airborne laser scanning (ALS), provides the best 
measurement accuracy of terrain elevation and vegetation heights, even on sloped terrain or for dense 
forests. However, large footprint, full waveform satellite lidar data, such as data provided by the Geoscience 
Laser Altimeter System (GLAS) aboard the Ice Cloud and land Elevation Satellite (ICESat), proved to have the 
potential for assessing vegetation parameters at unprecedented scales, from regional to continental and global 
extents. The overall goal of this study was to compare biomass estimates and height metrics obtained by 
processing GLAS waveform data and spatially coincident discrete-return airborne lidar data over forest 
conditions in east Texas, which are characteristics of much of the south-eastern United States. The study area 
includes pine plantations in various developmental stages, old growth pine stands, and upland and bottomland 
hardwoods. Since biomass estimates are derived from waveform height metrics, we also compared ground 
elevation measurements and canopy parameters. More specific objectives were to compare the following 
parameters derived from GLAS and airborne lidar: (1) ground elevations; (2) maximum canopy height; (3) 
average canopy height; (4) percentiles of canopy height; and (5) above ground biomass. We used the elliptical 
shape of GLAS footprints to extract canopy height metrics and biomass estimates derived from airborne lidar. 
Individual tree parameters, including tree height, crown width and tree locations, were estimated from the 
ALS-derived canopy height model using an individual-tree isolation method and were related to diameter-at-
breast-height (dbh) measurements and dbh-based general biomass equations for pine and mixed hardwood to 
compute above-ground biomass. The resultant biomass map derived at individual tree level was used as the 
dependent variable in our investigations of deriving biomass at footprint scale using GLAS variables and linear 
regression models.  
Results indicated a very strong correlation for terrain elevations between GLAS and airborne lidar, with an r 
value of 0.98 and a root mean square error of 0.78 m. GLAS height variables were able to explain 80% of the 
variance associated with the reference biomass derived from airborne lidar, with an RMSE of 37.7 Mg/ha. 
Most of the models comparing GLAS and airborne lidar height metrics had R-square values above 0.9. 
 
 
The significance of managed and natural vegetation on house survival during wildfires 
Anders Siggins, Glenn Newnham & Raphaele Blanchi  
 
1CSIRO Land and Water 
2CSIRO Land and Water 
3CSIRO Ecosystem Sciences 
 
The impact of wildfires at the urban interface is a major concern for people safety and property loss. The 
Australian forest fires of February 2009 resulted in the highest loss of life from forest fires in Australian history, 
and occurred in semi-rural and rural areas in Victoria. The most deadly of these fires occurred in the Kinglake 
region north of Melbourne. In this area there is generally no clear delineation of the urban interface. In this 
situation, where houses can be located within the natural forest, each house has its own unique forest 
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boundary which must be defended in the event of a fire. Along with the natural forest, there are also small 
forest patches and isolated trees between houses and the forest that may provide a direct fuel path to the 
house for the flame front. These patches of vegetation are typically assumed to be ‘managed’ vegetation; 
areas from within which fire fighters can carry out suppression activities safely and effectively. In this study 
Lidar data collected prior to the fire was used to generate maps of vegetation extent using a cover threshold 
method. Spatial patterns of vegetation extent were then used to discriminate managed vegetation from 
natural forest, and the managed vegetation around each house was then analysed with respect to the damage 
that each house experienced from the wildfire.  The results showed that the proximity of managed vegetation 
to houses was not a significant factor in relation to fire damage, but that the total cover of this vegetation 
around the house was a significant factor. 
 
Notes: 
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Wednesday 19th October 2011: Keynote Speaker 

 
 
Looking forward to lidar's colourful future 
Iain Woodhouse 
 
The University of Edinburgh and cArbomap  
 
In this presentation, Dr Woodhouse will present a vision for multi- and hyper-spectral canopy lidar from 
aircraft and satellites.  
It will describe results of a 2008 laboratory-based experiment that demonstrated the principle of our 
multispectral canopy lidar concept, measuring the normalised difference vegetation index (NDVI) and the 
photochemical reflection index (PRI) of potted trees, and a new experiment in 2011 being developed with 
Heriot Watt University to look at hyperspectral canopy lidar.  
The presentation will also describe a design for an airborne Multi Spectral Canopy LiDAR (MSCL) system that 
operates at four wavelengths, as opposed to the existing commercially available single wavelength LiDAR 
systems. This instrument is being optimised to measure forest properties by combining the proven strengths of 
multispectral sensing with the 3D structural information from LiDAR. The value of multispectral lidar is that it:  
> uses the spectral information to better resolve 3D forest structure (including the location of the ground), and 
> determines those processes directly related to photosynthesis and the uptake of carbon throughout the 
canopy (traditional spectral imagers can only measure the top layer of the canopy that is visible from above).  
Finally, Dr Woodhouse will present a vision which will see this unique approach taken into space so that all the 
world's forest carbon can be mapped. This would give an unprecedented level of information that would allow 
us to better manage the global forest resource. The spaceborne concept is called SpeCL (multi-Spectral Canopy 
Lidar, “speckle”). In 2010 it was submitted as a full application to the European Space Agency’s Earth Explorer 
8 call and it was highlighted in a short list of 11 mission that have "considerable scientific potential". The ESA 
Scientific Advisory Committee described the approach as a "very innovative mission concept". 
 
Notes: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SilviLaser 11th International Conference on LiDAR Applications for Assessing Forest Ecosystems 
16-20 October, Hobart, Tasmania 

31 

 

Wednesday 19th October 2011: Session 8 – Emerging technologies 

 
 
Error assessment and mitigation for hyper-temporal UAV-borne LiDAR surveys of forest inventory. 
Luke Wallace*, Arko Lucieer, Darren Turner, Christopher Watson 
 
School of Geography and Environmental Studies, University of Tasmania  
 
Remotely sensed LiDAR data has become an important tool in the management of modern forest inventories. 
Monitoring the high frequency changes within forests with this data has been restricted by the cost and 
intermittent nature of LiDAR surveys. The use of Unmanned Aerial Vehicles (UAVs) as a remote sensing 
platform is a rapidly developing field and is capable of allowing highly dynamic environmental changes to be 
monitored. As such recent studies presented in the literature highlight the potential of UAV systems for forest 
monitoring. This study further investigates the potential of UAVs by examining the achievable accuracy of a 
newly developed UAV-borne LiDAR system in comparison to a traditional full scale system. The major 
contributions to the error budget of a UAV-borne LiDAR system are constrained through the use of a novel 
UAV specific processing workflow. Central to this workflow is the fusion of observations from a low cost 
Inertial Measurement Unit, a GPS receiver and a high definition video camera with a Sigma-Point Kalman 
Smoother allowing for highly accurate estimates of orientation. We found that using this workflow and under 
certain flying conditions accuracies similar to a modern full-scale system are achievable from this low-cost 
platform. 
 
 
A new photon counting lidar system for vegetation analysis 
Jaqueline Rosette* 1, Christopher Field 2, Ross Nelson 1, Phil DeCola 2, Bruce Cook 1 
 
1NASA Goddard Space Flight Center, Biospheric Sciences, Greenbelt, USA  
2 Sigma Space, Lanham, USA  
 
This paper considers the potential of a new scanning photon-counting system for vegetation analysis. The 3D 
Mapper sensor was developed by Sigma Space Corporation and is being tested within NASA’s Carbon 
Monitoring System (CMS) project (NASA, 2010). The sensor is able to map 60 km2 per hour using less than 150 
mW of 532 nm green light with about 30 cm between measurement points. While this area coverage rate is 
already several orders of magnitude higher than can be achieved by conventional lidar, substitution of higher 
power lasers would permit significantly higher mapping rates with the same resolution or much higher spatial 
resolution at the current rates. Data were collected for a test site to the west of Fredericksburg, Virginia, USA 
and demonstrated the capability with a low powered laser, of relatively high density data collection, and good 
penetration through the canopy, despite high canopy fractional cover and a hazy atmosphere at the time of 
flight. This preliminary study supports the potential of this emerging technology for vegetation analysis. 
Further research is required to develop algorithms to exploit the capabilities of such systems and to provide a 
greater understanding of the interactions with vegetated surfaces. Studies of this nature will inform future 
photon-counting satellite lidar sensors such as NASA’s ICESat II, which is due for launch at the beginning of 
2016. 
 
 
Sorted Pulse Data (SPD) Format: A new file structure for storing and processing LiDAR data. 
Peter Bunting* 1,2, John Armston 3, Daniel Clewley 1, Richard Lucas 1 
 
1Institute of Geography and Earth Sciences, Aberystwyth University, UK 
2Landcare Research, Palmerston North, NZ 
3Joint Remote Sensing Research Program, Centre for Spatial Environmental Research, School of Geography, 
Planning and Environmental Management, University of Queensland  
 
This paper presents a new generic method and format for storing and processing airborne and terrestrial 
LiDAR pulse data within a HDF5 file.   The format is specifically designed to support both traditional discrete 
return and full waveform data, uses a pulse (rather than point) based data model and has been developed and 
applied successfully using a wide range of disparate airborne and terrestrial LiDAR datasets.   The format is 
proposed as an alternative to existing solutions as it includes support for full waveform data, explicit pulse 
based data structures and flexible spatial indexing using cartesian, spherical and polar coordinate systems and 
projections.   The HDF5 format supports compression but in part due to the more complex data structures 
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used the amount of compression that can be achieved is limited.   However, it compares favourably with the 
file size of uncompressed LAS files and is able to accommodate a much wider range of LiDAR datasets. 
 
 
Tree detection, delineation, and measurement from LiDAR point clouds using RANSAC 
Peter Tittmann* 1, Sohail Shafii* 2, Bruce Hartsough 3, Bernd Hamann 2 
 
1Department of Geography, UCD (University of California, Davis)  
2Department of Computer Science, UCD  
3Department of Biological and Agricultural Engineering, UCD  
 
As Light Detection And Ranging (LiDAR) (point) data sets increase in resolution, earth scientists become more 
interested in detecting and delineating trees using LiDAR. The majority of conventional methods that detect 
and delineate trees convert point data into gridded surfaces. Unfortunately, this conversion process has the 
potential to introduce error. We improve a point-based geometric model fitting strategy based on “RANdom 
Sample Consensus” (RANSAC), known as StarSac, and compare the method’s results against field data. The 
analysis demonstrates that StarSac produces similar results to field data, and is a strong alternative to 
conventional methods. 
 
Mobile terrestrial laser scanning in urban tree inventory 
Mikko Vastaranta 1, Tuula Kantola* 1, Markus Holopainen 1, Ville Kankare 1, Harri Kaartinen 2, Antero Kukko 2, 
Matti Vaaja 3, Juha Hyyppä 2, Hanna Hyyppä 3 
1University of Helsinki, Finland  
2Finnish Geodetic Institute  
3Aalto University School of Science and Technology 
 
In this study we evaluated an accuracy of mobile terrestrial laser scanning (MLS) measurements in urban tree 
inventory. The MLS data were collected in August 2010 with the FGI Roamer mobile mapping system, 
consisting of a Faro LS 880 laser scanner and a NovAtel HG1700 SPAN58 INS system mounted in a car. Study 
areas were divided to park and urban forest located in Seurasaari, Helsinki, Finland. Studied inventory 
characteristics were tree location and –diameter-at-breast-height (dbh). Reference measurements consisted 
altogether from 201 trees, which locations were measured using RTK GPS and static terrestrial laser scanning 
while tree dbhs were measured using steel callipers. Tree mapping and dbh measurements were done from 
the MLS point clouds manually. Tree location accuracy of MLS measurements were 0.72 m in park and 0.47 cm 
in forest conditions as root mean squared error in dbh were 7.0% and 12.5%, respectively. MLS can be used in 
urban tree inventory in targets with a good visibility and relatively dense network of roads or paths. 
 
Notes: 
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Wednesday 19th October 2011: Session 9 – New methods and algorithms 

 
 
Another dimension from LiDAR - Obtaining foliage density from full waveform data 
Thomas Adams* 1, Peter Beets 1, Christopher Parrish 2 
 
1Scion, 49 Sala Street, Rotorua, New Zealand  
2NOAA/NGS, JHC-CCOM, Durham, NH, USA  
 
LiDAR tells the user where surfaces are, not what they are. In this study we investigate the potential for 
waveform LiDAR to provide more information on the nature of the returns over forestry. Waveform LiDAR was 
acquired for ten Pinus radiata plots in a New Zealand plantation, along with comprehensive leaf area sampling 
in 2m vertical bands. The decay rate of each waveform peak was shown to be a useful tool for estimating 
foliage density, and has potential for identifying regions containing ground and understorey.  Leaf Area Density 
(LAD) is an expression of foliage density per unit height, and a relationship between waveform decay rate and 
LAD was developed with an R2 of 56%. Incorporating the proportion of discrete LiDAR that fell in that band 
(which itself has an R2 of 50%) improves this model to explain 69% of the variation in LAD. This is a good result, 
especially given the costs and difficulties in measuring leaf area directly. As foliage density varies dramatically 
on a fine scale it was not possible to differentiate the nature of every single LiDAR return – but by averaging 
over a small area local variation in LAD could be easily mapped. Ground returns could be distinguished as 
having short decays, and broad leafed understorey typically had values between those of the canopy and 
ground, although surface roughness and slope make it impossible to robustly identify single returns. This study 
produced a useful model for estimating LAD in Pinus radiata which could easily be extended to other 
coniferous species. 
 
 
The Sorted Pulse Data Software Library (SPDLib): Open source tools for processing LiDAR data. 
Peter Bunting* 1,2, John Armston 3, Daniel Clewley 1, Richard Lucas 1 
 
1Institute of Geography and Earth Sciences, Aberystwyth University, UK 
2Landcare Research, Palmerston North, NZ 
3Joint Remote Sensing Research Program, Centre for Spatial Environmental Research, School of Geography, 
Planning and Environmental Management, University of Queensland  
 
SPDLib is a new set of tools that allow processing and analysis of the full range of LiDAR data from terrestrial, 
airborne and spaceborne systems, including both discrete return and waveform datasets.   The software 
provides an implementation of the SPD file format that allows efficient and flexible storage of these datasets 
largely through the inclusion of spatial indexing and pulse (rather than point) based data structures.   A 
visualisation tool (SPD Points Viewer), which builds on top of SPDLib and the SPD file format, has also been 
developed.   The software and source code have recently been made freely available and can be accessed 
online through open source code repositories.   Future developments will focus on the development of new 
waveform processing functionality and optimizing performance. The software and documentation can be 
obtained from http://www.spdlib.org. 
 
 
Comparison of point cloud data reduction methods in single-scan TLS for finding tree stems in forest 
Paula Litkey, Puttonen Eetu, Liang Xinlian* 
 
Finnish Geodetic Institute 
 
The point density in a single-scan terrestrial laser scanner (TLS) point cloud is very dense close to the scanner 
and gets sparser as the distance from the scanner increases. A full circular scan can contain tens of millions of 
points, which is impractical for most algorithms that work on point data. The number of points can be reduced 
by taking a sample of the original data. We have studied what influence different sampling methods have on 
the number of points that falls on tree stems. We propose that the number of points available on a far-away 
tree can be increased with a smart data reduction scheme. The data reduction favours far-away points over 
the densely located points close to the scanner. The main findings of this study are that removing ground 
points before sampling gives a great advantage in data reduction and that a point selection using only 
horizontal  distances (2D Cartesian, xy-plane) favours low points. 
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Automated log counting: Proof of concept algorithm 
Hamish Marshall 
 
Interpine Forestry Ltd  
 
Improving log inventory is a key area where the New Zealand forestry industry could significant improve its 
supply chain performance. Although the process of counting logs seems relatively simple; in reality it is a 
difficult and labour intensive job. This is particularly significant to the New Zealand log export industry which is 
required to count and barcode every log (excluding pulp) that is exported. The fluctuating nature of export 
markets means that automated methods of counting logs hold significant potential. This paper investigates the 
accuracy of log counts for logs in pile/stacks using 3-dimensional (3D) point cloud data obtained from a ground 
based LiDAR scanner. In the past there have been a number of attempts to develop an automatic log counting 
system, the majority of these have used 2-dimensional photographic images. It was hypothesised that using 3D 
point data would overcome some of the problems that these approaches have encountered in the past. The 
validation study carried out on the algorithm showed that logs can be accurately counted and log diameters 
can be measured. Further work would be required to develop the algorithm into a commercial product and to 
determine the most cost effective hardware required to collect the 3-dimensional data required by the 
algorithm. 
 
Optimal LiDAR gridding parameterization for effective leaf area estimation in the boreal forest Yukon 
Territory, Canada 
Heather Morrison* 1, 2, Chris Hopkinson 2, 1, Michael Wulder 3 
 
1Acadia University, Wolfville, Nova Scotia, Canada  
2Applied Geomatics Research Group, NSCC Annapolis Campus, Nova Scotia, Canada  
3Pacific Forest Centre, Canadian Forest Service, Victoria, British Columbia, Canada  
 
The increased availability of LiDAR-based forestry models raises questions about fundamental procedural steps 
undertaken before published models begin. The processing stage being investigated in this study is the 
parameterization of routines used for gridding inputs for forestry models. Grids are a valuable format for 
modelling as they organize scattered point clouds into manageable pixels for sophisticated processing. Our 
objective was to examine the effect of grid cell resolution and circular search radii for gridding on resulting leaf 
area index (LAI) data layers. LAI is employed in models at various scales and was therefore of interest for a 
range of study objectives. We generated 16 gridded estimates of LAI using unique combinations of cell 
resolution and search radius for comparison with values measured in the field. Our results determined that cell 
resolution was not important, allowing for more application flexibility without introducing bias, while search 
radius was critical for obtaining the most accurate estimates. This type of scale sensitivity analysis is important 
for any modelled variable that will be applied in a variety of spatial contexts. 
 
Notes: 
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Wednesday 19th October 2011: Session 10 – Fire and water 

 
 
Developing a regional canopy fuels assessment strategy using multi-scale LiDAR 
Birgit Peterson* 1, Kurtis Nelson 2 
 
1 ASRC Research and Technology Solutions contractor to the U.S. Geological Survey (USGS), Earth Resources 
Observation and Science (EROS) Center, Sioux Falls, SD  
2 USGS, EROS, Sioux Falls, SD  
 
Accurate assessments of canopy fuels are needed by fire scientists to understand fire behaviour and to predict 
future fire occurrence. A key descriptor for canopy fuels is canopy bulk density (CBD). CBD is closely linked to 
the structure of the canopy; therefore, lidar measurements are particularly well suited to assessments of CBD. 
LANDFIRE scientists are exploring methods to integrate airborne and spaceborne lidar datasets into a national 
mapping effort. In this study, airborne lidar, spaceborne lidar, and field data are used to map CBD in the Yukon 
Flats Eco region, with the airborne lidar serving as a bridge between the field data and the spaceborne 
observations. The field-based CBD was positively correlated with airborne lidar observations (R2 = 0.78). 
Mapped values of CBD using the airborne lidar dataset were significantly correlated with spaceborne lidar 
observations when analysed by forest type (R2 = 0.62, evergreen and R2 = 0.71, mixed). Though continued 
research is necessary to validate these results, they do support the feasibility of airborne and, most 
importantly, spaceborne lidar data for canopy fuels assessment. 
 
 
LiDAR-based estimation of forest floor fuel loads using a novel distributional approach  
Jan Van Aardt* 1, Mary Arthur 2, Gretchen Sovkoplas 2, Tyson Lee Swetnam 3 
 
1Rochester Institute of Technology, Rochester, NY, USA 
2University of Kentucky, Lexington, KY, USA  
3University of Arizona, Tucson, AZ, USA 
 
Light detection and ranging (LiDAR) has seen significant application across a range of forest structural 
assessment applications, ranging from forest volume and biomass assessment, to ecological applications such 
as leaf area and fuel load modelling. However, quantification of sub-canopy structure remains a challenge, 
especially when considering downed coarse woody debris (CWD) near the ground surface. This is true because 
the LiDAR signal attenuates through the canopy, LiDAR systems can be set to record the last of many returns, 
which is often the ground itself, and there is a system-specific vertical resolution that influences detection of 
structure in-between returns. We applied a LiDAR distributional approach to CWD modeling that included both 
above-ground and theoretical “below-ground” returns, with the latter being attributed to multiple scattering 
effects. This was done for oak dominant forests in central Appalachia, Kentucky, USA. Medium-fast (10h) and 
medium-slow (100h) CWD fuel loads exhibited the best results; e.g., an adjusted R2=0.99 and a root mean 
square error value of 0.111Mg/ha (4.7% of the mean) were achieved for 100h CWD fuel loads. Independent 
variables included a balanced set from both the above-and below-ground distributions. Results hint at the 
significant potential of extending distributional approaches to CWD estimation.     
 
 
Using airborne survey to map stream form and Riparian vegetation characteristics across Victoria 
Nathan Quadros* 1, Rick Frisina 1, Paul Wilson 2 
 
1 Information Services Branch, DSE Victoria 
2 Office of Water, DSE Victoria 
 
The State of Victoria has established the index of stream condition (ISC) methodology for providing a river 
health assessment. The index of stream condition (ISC) is a baseline dataset used in river investment and 
planning. The ISC evaluates the environmental conditions of the major rivers and tributaries across Victoria. 
The ISC assessment undertaken during 2009-2010 has included a significant investment in the use of LiDAR 
and aerial photography to assess the riparian vegetation and river form components of ISC stream network.  
The health of riparian vegetation and stream form is assessed by measuring a number of metrics. Each of the 
metrics can be measured by either or combination of LiDAR and/or aerial photography. The scores for all the 
ISC metrics are amalgamated into a single sub-index score for both the river form and riparian vegetation. 
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These sub-indexes will be combined with other sub-indices (such as hydrology and aquatic life) to provide an 
assessment of health for each river reach in Victoria.  
Compared to the results from prior research, the preliminary results have shown that riparian vegetation and 
stream form metrics are measured with a significant increase in detail, coverage and accuracy from the 
previously available information. It should be noted that the products are still being tested and validated in 
various catchments across the state.  
More significantly, the final results will provide a much needed input into the Victorian Strategy for River, 
Estuaries and Wetlands and more specifically will help to set management targets. The datasets will provide a 
key source of information for the regional priority setting process which identifies sites where on-ground 
works should be undertaken to either protect river values or to mitigate against risks to their values. 
 
 
Full waveform LiDAR for assessment of river health 
David Moore*, Alys Wall, Thomas Hollaus 
 
The Murray-Darling Basin covers 1,000,000 square kilometres; 13% of the Australian continent and produces 
39% of Australia’s total agricultural output. However, thirteen of the Basin’s 23 valleys are categorised as being 
in ‘very poor’ health and a further seven are in ‘poor’ health (Davies et al 2008). The Murray-Darling Basin 
Authority (MDBA) is responsible for reporting the health of the Basin’s rivers and for this purpose established 
the Sustainable Rivers Audit (SRA) to collect and analyse data to determine the environmental condition of the 
rivers by objective and repeatable methods.  
The first SRA assessed river health under three indicator themes; 1) Fish, 2) Macro invertebrates and 3) 
Hydrology. Two additional themes were included in the second SRA; Physical Form (of the river channels) and 
Vegetation. This project describes how these two additional themes were measured using full-waveform 
LiDAR. Highly automated workflows developed in the TNTmips™ Spatial Modelling Language were used to 
extract information from the LiDAR for statistical analysis. A semi-automated tool was developed to measure a 
range of river channel and foliage attributes by objective and repeatable means. More than 50 measurements 
are generated for each of 1610 sites stratified across the Basin’s 23 river valleys. Extensive field survey was 
used to verify the accuracy of the data. Full waveform LiDAR represents an extremely rich source of 
environmental information. This was exploited by the Sustainable Rivers Audit (SRA) program as a means of 
measuring the geomorphology and riparian vegetation at 1610 sample sites widely scattered across the 
Murray-Darling Basin (MDB). The project methodology was highly innovative and required the development of 
new algorithms and processes to extract the required information from LiDAR point clouds. 
 
Notes: 
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Displayed Posters 

 
 
Deploying LiDAR applications - Gearing toward the potential of LiDAR application in Malaysian forestry 
Mohd Hasmadi Ismail1 and Mohamad Sam Manaf2 

 
1 Forest Surveying and Engineering Lab., Faculty of Forestry University Putra Malaysia, Selangor, Malaysia  
2 RS&GIS Consultancy Sdn, Kuala Lumpur, Malaysia  

 
Information on forest properties have grown over time and will continue crucially in the future. The focus on 
timber for commercial trade in early 1960’s in Malaysia has been changed towards multi function forestry, 
supported by multi resources survey. Starting with high demand of the latest data and accurate information, 
and cost effective monitoring system, application of various technology of sensing system is applied into 
forestry. The introduction of precision forestry concept is not new but in Malaysia is still at infancy stage. It 
deals with advanced sensing technologies and analytical tools to support site-specific economic, 
environmental, and sustainable decision making for the forest management and development. The key 
discipline is highly relying on accurate, timely and detailed forest inventory characterization and structural 
information. This is possible by utilization of accurate measurement forestry data and information to improve 
operations and processes. Despite of the current use of high resolution satellite and airborne sensing, LiDAR is 
a promising alternative tool to be used in forestry sector. LiDAR can be used in forest engineering for terrain 
mapping and road planning, and tree/stand measurement for tropical forest. This paper gives a synopsis of 
LiDAR sensing technology application and its potential to Malaysian forestry. 
 
 
Laser scanning by echo signal digitization and waveform processing 
Martin Pfennigbauer*, Andreas Ullrich* 

 
RIEGL Laser Measurement Systems GmbH, Austria MARTIN  
 
LIDAR technology based on time-of-flight ranging with short laser pulses enables the acquisition of accurate 
and dense 3D data in form of so-called point clouds. The technique is employed from different platforms like 
stable tripods in terrestrial laser scanning or aircrafts, cars, and ships in airborne and mobile laser scanning. 
Historically, these instruments used analogue signal detection and processing schemes with the exception of 
instruments dedicated for scientific research projects or bathymetry. In 2004, a laser scanner device for 
commercial applications and for mass data production, the RIEGL LMS-Q560, was introduced to the market, 
making use of a radical alternative approach: digitizing the echo signals received by the instrument for every 
laser pulse and analysing these echo signals off-line in a so-called full waveform analysis in order to retrieve 
almost all information contained in the echo signal using transparent algorithms adaptable to specific 
applications. In the field of laser scanning the somewhat unspecific term “full waveform data” has since been 
established. We attempt a classification of the different types of the full waveform data found in the market. 
We discuss the challenges in echo digitization and waveform analysis from an instrument manufacturer’s point 
of view. Furthermore, the benefits to be gained by using this technique, especially with respect to the multi-
target capability of LIDAR instruments employing echo digitzation and the possibilities for applications in 
forestry assessment are addressed. 
 

 
New methods and algorithms - Crown coverage calculation based on ALS data 
Lothar Eysn*1, Markus Hollaus1, Klemens Schadauer2, Andreas Roncat1 
 
1 Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Austria 
2 Department of Forest Inventory at the Federal Research and Training Center for Forests, Natural Hazards and 
Landscape, Austria 
 
The objective of this paper is to present and evaluate a new geometrically unambiguously defined approach to 
calculate forest canopy cover, also known as crown coverage (CC) from airborne laser scanning (ALS) data 
based on national forest inventory (NFI) data. The CC is defined as the proportion of the forest floor covered 
by the vertical projection of the tree crowns. Most forest definitions lack in precise geometrical definitions for 
the calculation of CC and therefore, the results of common calculation methods differ and tend to be 
incomparable. To demonstrate the effect of such an unclear defined, common CC calculation method, CC 
maps, generated from moving window algorithms using different kernel shapes and sizes, are calculated and 
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analyzed for three study areas in Tyrol, Austria. The new unambiguous approach, the tree triples method, is 
based on defining CC as a relation between the sum of the crown areas of three neighbouring trees at a time 
and the area of their convex hull. The approach is applied for the same study areas and is compared with 
forest masks that are generated from moving window algorithms using different kernel shapes and sizes. 
 
 
LiDAR estimation of quadratic mean canopy height and stem density in native sclerophyll forests 
Yadav Prasad Kandel*, Julian Fox, Stefan Arndt, Stephen Livesley 

 
Department of Forest & Ecosystem Science, The University of Melbourne  
 
LiDAR, relatively a new active remote sensing technology, capable of providing three-dimensional structural 
information of forest stands as well as individual trees has already been established as an operational tool in 
European and North American forestry. LiDAR estimates of various structural and biophysical parameters are 
more accurate for pine forests than that for the broad-leaved and mixed species multi-story forests. In this 
study, plot level mean dominant height and quadratic mean canopy height were estimated quite accurately 
using the LiDAR data from two different types of native sclerophyll forests. R2 of the regression model for the 
mean dominant height was 87.09 % for the Central Highlands Ash Regrowth (CHAR) and 92.1 % for the Black 
Range Mixed Species (BRMS) forest. Similarly, R2 of the regression model for the quadratic mean canopy 
height was 48.4 % for the CHAR and 92.7 % for the BRMS forest. Stem density (number of trees per hectare) is 
the most difficult forestry attribute to estimate from remote sensing technology including LiDAR. When 
various LiDAR metrics were used directly to develop a regression model of stem density in the CHAR and BRMS 
forests, the models developed had very low (less than 0.3) R2. Therefore, in this study, an indirect method of 
estimating stem density using LiDAR data was developed. Using this new indirect method, the number of trees 
was predicted with mean prediction error of -64.12 trees per hectare for calibration plots and 105.29 trees per 
hectare for validation plots in CHAR forest, which is a wet sclerophyll forest. In the RRMS forest, which 
represents a dry sclerophyll forests, prediction error for number of trees, was 79.99 trees per hectare for 
calibration plots and 4.96 trees per hectare for validation plots. 

 
 

Modelling light conditions in forests using airborne laser scanning data 
Werner Mücke, Markus Hollaus 
 
Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, Vienna  
 
The amount of available sunlight in vegetated areas is an important factor influencing species composition, 
plant morphology and natural succession. It is therefore a significant parameter in forestry, ecology and other 
sciences dealing with biodiversity relevant studies. Research indicates a strong correlation between the quality 
and quantity of sunlight and the vegetation structure, both in horizontal and vertical direction. Due to the high 
complexity and variability of the canopy architecture, continuous area-wide data collection of light conditions 
in the understorey is needed for accurate modelling of light transmission. However, conventional ground 
based measurement methods are pointwise and time consuming, therefore not feasible for data acquisition of 
large areas. The ability of small-footprint airborne laser scanning (ALS) to penetrate small canopy gaps makes 
this remote sensing method especially suitable for vegetation studies. Geometric information of the 
vegetation structure can be derived directly from the 3D point cloud. This allows for modelling of the 
distribution of sunlight-absorbing or intercepting parts of the foliage, which consequently cast shadows on the 
surrounding understorey vegetation or the ground. Light transmission through the canopy can therefore be 
described in a very direct way by employing this 3D structural information. In this paper a methodology for 
modelling light conditions in forests using ALS data is proposed. The approach is based on a modified version 
of photogrammetric monoplotting. The parallel sun rays from variable sun positions act as projection rays 
being traced through the 3D point cloud (i.e. laser echoes) that represents the canopy. A defined size is 
assigned to each individual laser echo which casts a shadow of the respective size and shape. Shadowed areas 
are then derived by intersecting these projection rays with a digital terrain model and by rasterizing the 
projected point cloud. By employing ALS data from different acquisition times (leaf-on and leaf-off) the 
influence of vegetation phenology is explored. The derived shadow raster maps describe where a shadow is 
cast and how many intercepting parts of the canopy contribute to it. Consequently, these maps provide an 
excellent input for modelling the amount of available sunlight in vegetated areas, considering canopy gaps in 
arbitrary directions and also the seasonal variability of vegetation. The first results show that ALS is a time- and 
cost- efficient means for area-wide analysis of sunlight condition for forest floors, as well as for different 
understorey layers. 
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Estimation of Leaf Area Index based on airborne laser scanning and imaging spectroscopy  
Pyare Pueschel, Henning Buddenbaum, Joachim Hill 

 
Department of Environmental Remote Sensing and Geoinformatics, Trier University, 54286 Trier, Germany  
 
Airborne laser scanning has become an established method for deriving structural forest parameters like tree 
height, crown length or crown cover. While some parameters are easily retrieved with laser scanning data and 
imaging spectroscopy, others are not, - the reason for which are model and (ground-based) measurement 
uncertainties. This is especially true for the estimation of the Leaf Area Index, which practically only allows for 
indirect measurements in forest environments. Since (a) the LAI is an important input parameter for process-
based forest growth models and (b) there is yet no clear preference for using laser scanning or imaging 
spectroscopy for its retrieval, unlike other structural forest parameters, this study compares the LAI estimation 
both from airborne laser scanning and imaging spectroscopy and discusses related difficulties.  
During an extensive field campaign at one of the EnMAP (Environmental Mapping and Analysis Program) core 
forest research sites (Merzalben, Pfaelzerwald, Germany) in August 2010, a total of 25 plots in mixed beech-
oak forest stands were sampled for LAI. A laser scanning dataset collected almost contemporarily to the 
HyMap image acquisition served for establishing fractional cover maps with two different methods (1). 
Corresponding LAI maps were generated based on the formulation proposed by Verger et al. (2) and according 
to the classic LAI formulation (3). The results were compared to the mean ground-based LAI of the 25 plots. To 
test the transferability of the LAI retrieval from laser scanning a comparison was made with a second laser 
scanning dataset from another forest region (4). The LAI retrieved from the laser scanning was then compared 
to LAI derived from empirical regressions with selected hyperspectral vegetation indices.  
Results show that the individual empirical models all provide a good estimation of Leaf Area Index with R² 
values ranging from 0.50 to 0.92. By stratifying according to tree species and stand structure as well as 
adjusting the LAI-model applied to the laser scanning data, the performance of these empirical models can be 
greatly improved for both the laser scanning and the HyMap-based vegetation indices. However results also 
show that both approaches suffer equally from the main limitation of the empirical approach - which is the 
lack of transferability. For the laser scanning data the estimation is influenced by the combined effects of 
variable laser scanner system parameters and site-specific canopy variables such as clumping and leaf angle 
distribution. Further research is needed to assess these effects, particularly with regard to the different laser 
scanning based gap fraction models. For this purpose we will apply terrestrial laser scanning to validate both 
the airborne laser scanning derived gap fraction and the ground-based measurements. 
 
Notes: 
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